PTC-2305: Terceira Prova

27 de novembro de 2015

Nome:	
Nº USP	:
Tipo de	da prova: 120 minutos prova: com consulta a formulário próprio (1 folha) ne todas as respostas!
Notas:	1ª Q:
	2ª Q:
	3ª Q:
	4ª Q:
	m . 1

- 1. (2,0) O sinal X(t) é constante igual a A, tal que $A \sim N(0,1)$. Responda:
 - (a) (0,5) Qual é a função $m_X(t)$?
 - (b) (0,5) Qual é a função de autocorrelação de X(t)?
 - (c) (0,5) X(t) é estacionário no sentido amplo?
 - (d) (0,5) X(t) é ergódico na média ou na autocorrelação?

- **2.** (2,0) O processo N(t) é um processo de Poisson, com taxa média de ocorrência de eventos de 2 eventos/min. Determine:
 - (a) (1,0) Qual é a probabilidade de ocorrerem quatro eventos no intervalo [0, 2] min?
 - (b) (1,0) Qual é a probabilidade de ocorrerem quatro eventos no intervalo [0, 2] min e outros quatro eventos no intervalo [3, 5] min?

- **3.** (3,5) O processo X[n] é iid, e X[n] ~ Uniforme(-1,1). O processo Y[n] é definido por Y[n] = X[n] + X[n-1]. Determine:
 - (a) (0,5) A função média $m_Y[n]$.
 - (b) (1,0) A função de autocorrelação $r_Y[\ell]$ de Y[n]. Qual é a potência média de Y[n]?
 - (c) (1,0) A densidade espectral de potência $S_Y(\omega)$.
 - (d) (1,0) Suponha que Y[n] passe por um filtro passa-baixas com características $H(e^{j\omega})=1$ para $|\omega|<\pi/2$, e $H(e^{j\omega})=0$ caso contrário. Qual é a potência média do sinal na saída do filtro?

4. (2,5) Considere um pulso

$$p(t) = \begin{cases} 1, & -1/2 \le t \le 1/2, \\ 0, & \text{caso contrário.} \end{cases}$$

O processo X(t) é definido como $X(t) = Ap(t-T_0)$, com $T_0 \sim \text{Uniforme}(-1/2, 1/2)$, e A = +1 com probabilidade 1/2 e A = -1 com probabilidade 1/2. T_0 e A são independentes entre si, e são escolhidos uma vez a cada realização do processo X(t).

- (a) (0,5) Determine a função $m_X(t)$.
- (b) (1,5) Determine a função de autocorrelação de X(t) para os casos $r_X(0,\tau)$ e $r_X(1/4,1/4+\tau)$.
- (c) (0,5) O processo é estacionário? Se for, calcule a densidade espectral de potência $S_X(\omega)$.