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Collective-Action Games

HE GAMES AND STRATEGIC SITUATIONS considered in. the pre‘cedin.g chap};1
ters have usually included only two or three players mlteracnr‘lg with e?gt:.
other. Such games are common in our own academic, business, politi-
ersonal lives and so are important to understand z_md.anal.yze.
But many social, economic, and political interacuon's are stl'ategic ?1tfxatlrc:;s;
in which numerous players participate at the same time, Strategies 0.1 ce; ’
paths, investment plans, rush-hour commuting routfas, and even studying a;r
associated benefits and costs that depend on the a.ctlons of many otheir1 Peoi :S
If you have been in any of these situations, you likely thoug‘ht s.omet h};ge o
wrong—too many students, investors, and commuter's crowding just w 3(1) "
wanted to be, for example. If you have tried to organize fellow ?tude?i ory 0»
community in some worthy cause, you probably faced frustl’latlon of the oppeS
e kind-—too few willing volunteers. In other words, multlple-pefson ga‘mb
often seem to produce outcomes that are not deemed sau‘sfactmy- Y
all of the people in that society. In this chapter, we will examine
erspective of the theory that we have alrea'dy developed,
ding of what goes wrong in such situations and what

cal, and p

sit
in society
many or even
such games from the p
We present an understan

can be done about it.
In the most general form, such many-player games concern problems of

collective action. The aims of the whole society or collective al:e best‘servec.l 11:; 11;&3
members take some particular action or actions, but these af:tlons ar ehnot 1; qne
best private interests of those individual Ijrlembers. In other worc.l}s’,b t.' e ;oofcthz
optimal outcome is not automatically achievable as the Nash equilibriu
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game. Therefore we must examine how the game can be modified to lead to the
optimal outcome or at least to improve on an unsatisfactory Nash equilibrium.
To do so, we must first understand the nature of such games. We find that they
come in three forms, all of them familiar to you by now: the prisoners’ dilemma,
chicken, and assurance games. Although our main focus in this chapter is on
situations where numerous individuals play such games at the same time, we
build on familiar ground by beginning with games between just two players.

Imagine that you are a farmer. A neighboring farmer and you can both ben-
efit by constructing an irrigation and flood-control project. The two of you can
join together to undertake this project, or one of you might do so on your owrn.
However, after the project has been constructed, the other automatically ben-
efits from it. Therefore each is tempted to leave the work to the other. That is
the essence of your strategic interaction, and the difficulty of securing collec-
tive action.

In Chapter 4, we encountered a game of this kind: three neighbors were each
deciding whether to contribute to a street garden that all of them would enjoy.
That game became a prisoners’ dilemma in which all three shirked; our analy-
sis here will include an examination of a more general range of possible payoff
structures. Also, in the street-garden game, we rated the outcomes on a scale of
1 to 6; when we describe more general games, we will have to consider more
general forms of benefits and costs for each player.

Our irrigation project has two important characteristics. First, its benefits
are nonexcludable: a person who has not contributed to paying for it cannot be
prevented from enjoying the benefits, Second, its benefits are nonrival: any one
person’s benefits are not diminished by the mere fact that someone else is also
getting the benefit. Economists call such a project a pure public good; national
defense is often given as an example. In contrast, a pure private good is fully ex-
cludable and rival: nonpayers can be excluded from its benefits, and if one per-
son gets the benefit, no one else does. A loaf of bread is a good example of a pure
private good. Most goods fall somewhere on the two-dimensional spectrumn of
varying degrees of excludability and rivalness. We will not go any deeper into
this taxonomy, but we mention it to help you relate our discussion to what you
may encounter in other courses and books.!

'Public goods are studied in more detail in textbooks on public economics such as those by Har-
vey Rosen and Ted Gayer, Public Finance, 8th ed. (Chicago: win/McGraw-Hill, 2007), and Joseph
Stighitz, Ecoromics of the Public Sector; 3rd ed. (New York: Norton, 2000).
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A, Collective Action as a Prisoners’ Dilemma

The costs and the benefits associated with building the irrigation project de-
pend, as do those associated with all collective actions, on which players partici-
pate. In turn, the relative size of the costs and benefits determine the structure
of the game that is played. Suppose each of you acting alone could complete the
project in 7 weeks, whereas if the two of you acted together, it would take only 4
weeks of time from each. The {wo-person project is also of better quality; each
farmer gets benefits worth 6 weeks of work from a one-person project (whether
constructed by you or by your neighbor) and 8 weeks’ worth of benefit from a
two-person project.

More generally, we can write benefits and costs as functions of the number
of players participating. So the cost to you of choosing to build the project de-
pends on whether you build it alone or with help; costs can be written as C(n)
where cost, C, depends on the number, r, of players participating in the project.
Then C(1) would be the cost to you of building the project alone. C(2) would
be the cost fo you of building the project with your neighbor, here C(1) = 7 and
C(2) = 4. Similarly, benefits (B) from the completed project may vary depend-
ing on how many {») participate in its completion. In our example, B(1} = 6 and
B(2) = 8. Note that these benefits are the same for each farmer regardless of par-
ticipation due to the public-good nature of this particular project.

In this game, each farmer has to decide whether to work toward the con-
struction of the project or not—that is, to shirk. (Presumably, there is a short
window of time in which the work must be done, and you could pretend to be
called away on some very important family matter at the last minute, as could
your neighbor.) Figure 12.1 shows the payoff table of the game, where the num-
bers measure the values in weeks of work. Payoffs are determined on the basis
of the difference between the cost and the benefit associated with each action.
So the payoff for choosing Build will be B(n) — C(n) with 7 = 1 if you build alone
and wih #n = 2 if your neighbor also chooses Build. The payoff for choosing Not
is just B(1) if your neighbor chooses Build, because you incur no cost if you do
not participate in the project.

NEIGHBOR
“uild : NOt
“Build 4,4 -1,6
You ——
Not-.§ 6~ 0,0

FIGURE 12.1 Collective Action As a Prisoners’ Diternma: Version |
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Given the payoff structure in Figure 12.1, your best response if your neigh-
bor does not participate is not to participate either: your benefit from com-
pleting the project by yourself (6) is less than your cost (7), for a net payoff of
—1, whereas you can get 0 by not participating. Similarly, if your neighbor does
participate, then you can reap the benefit (6) from his work at no cost to youun-
self; this is better for you than working yourself to get the larger benefit of the
two-person project (8) while incurring the cost of the work (4}, for a net payoff
of 4. The general feature of the game is that it is better for you not to participate
no matter what your neighbor does; the same logic holds for him. (In this case,
each farmer is said to be a free rider on his neighbor’s effort if he lets the other
do all the work and then reaps the benefits all the same.) Thus not building is
the dominant strategy for each. But both would be better off if the two were to
work together to build (payoff 4) than if neither builds {payoff 0}. Therefore the
game is a prisoners’ dilemma.

We see in this prisoners’ dilemma one of the main difficulties that arises
in games of collective action. Individually optimal choices—in this case, not to
build regardless of what the other farmer chooses—may not be optimal from the
perspective of society as a whole, even if the society is made up of just two farm-
ers. The social optimum in a collective-action game is achieved when the sum
total of the players’ payoffs is maximized; in this prisoners’ dilemma, the social
optimuin is the (Build, Build) outcome. Nash-equilibrium behavior of the play-
ers does not consistently bring about the socially optimal outcome, however.
Hence, the study of collective-action games has focused on methods to improve
on observed (generally Nash) equilibrium behavior to move outcomes toward
the socially best ones. As we will see, the divergence between Nash equilibrium
and socially optimum outcomes appears in every version of collective-action

games.

Now consider what the game would look like if the numbers were to change
slightly. Suppose the two-person project yields benefits that are not much better
than those in the one-person project: 6.3 weeks' worth of work to each farmer.
Then each of you gets 6.3 — 4 = 2.3 when both of you build. The resulting payoff
table is shown in Figure 12.2. The game is still a prisoners’ dilemma and leads to

NEIGHBOR

jilet ) Not
Build, 23,23 -1,6
You
" Not: 6,1 0,0

FIGURE 12.2  Collective Action As a Prisoners’ Dilermma: Version |l
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the equilibrium (Not, Nat). However, when both farmers build, the total payoff
for both of you is only 4.6. The social optimum occurs when one of you builds
and the other does not, in which case together you get payoff 6 + {—1) = 5.
There are two possible ways to get this outcome. Achieving the social optimum
in this case then poses a new problem: Who should build and suffer the payoff
of —1 while the other is allowed to be a free rider and enjoy the payoff of 62

B. Collective Action as Chicken

Yet another variation in the numbers of the original prisoners’ dilemma game of
Figure 12.1 changes the nature of the game. Suppose the cost of the work is re-
duced so that it becomes better for you to build your own project if your neigh-
bor does not. Specifically, suppose the one-person project requires 4 weeks of
work, so C(1) = 4, and the two-person project takes 3 weeks from each, so C(2)
= 3 (to each); the benefits are the same as before. Figure 12.3 shows the payoff
matrix resulting from these changes. Now your best response is to shirk when
your neighbor works and to work when he shirks. In form, this game is just like
a game of chicken, where shirking is the Straight strategy (tough or uncoopera-
tive), and working is the Swerve strategy (conciliatory or cooperative).

If this game results in one of its pure-strategy equilibria, the two payoffs sum
to 8; this total is less than the total outcome that both players could get if both
of them build. That is, neither of the Nash equilibria provides so much béne-
fit to society as a whole as that of the coordinated outcome, which entails both
farmers’ choosing to build. The social optimum yields a total payoff of 10. If the
outcome of the chicken game is its mixed-strategy equilibrium, the two farmers
will fare even worse than in either of the pure-strategy equilibria: their expected
payoffs will add up to something less than 8 (4, to be precise).

The collective-action chicken game has another possible structure if we
make some additional changes to the benefits associated with the project. As
with version II of the prisoners’ dilemma, suppose the two-person project is not
much better than the one-person project. Then each farmer’s benefit from the
two-person preject, B(2), is only 6.3, whereas each still gets a benefit of B(1) = 6

NEIGHBOR

U Build

CoNett |62 0,0

FIGURE 12,3 Collective Action As Chicken: Version]
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from the one-person project. We ask you to practice your skill by constructing
the payoff table for this game. You will find that it is still a game of chicken—
call it chicken IL It still has two pure-strategy Nash equilibria in each of which
only one farmer builds, but the sum of the payoffs when both build is only 6.6,
whereas the sum when only one farmer builds is 8. The social optimum is for
only one farmer to build. Each farmer prefers the equilibrium in which the other
builds. This may lead to a new dynamic game in which each waits for the other
to build. Or the original game might yield its mixed-strategy equilibrium with its
low expected payoffs.

C. Collective Action as Assurance

Finally, let us change the payoffs of the original prisoners’ dilemma case in a
different way altogether, leaving the benefits of the two-person project and the
costs of building as originally set out and reducing the benefit of a one-person
projectto B(1) = 3. This change reduces your benefit as a free rider so much that
now if your neighbor chooses Build, your best response also is Build. Figure 12.4
shows the payoff table for this version of the game. This is now an assurance
game with two pure-strategy equilibria: one where both of you participate and
the other where neither of you does.

As in the chicken Il version of the game, the socially optimal outcome here is
one of the two Nash equilibria. But there is a difference. In chicken I, the two play-
ers differ in their preferences between the two equilibria, either of which achieves
the social optimum, In the assurance game, both of them prefer the same equilib-
rium, and that is the sole socially optimal outcome. Therefore achieving the social
optimum should be easier in the assurance game than in chicken,

D. Collective Inaction

Many games of collective action have payoff structures that differ somewhat
from those in our irrigation project example. Our farmers find themselves in a
situation in which the social optimum generally entails that at least one, if not

NEIGHBOR

2 Build "
You |——

CNot | 3,-4 0,0

FIGURE 12.4 Collective Action as an Assurance Game
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both, of them participates in the project. Thus the game is one of collective
action. Other multiplayer games might better be called games of collective inac-
tion. In such games, society as a whole prefers that some or all of the individual
players do not participate or do not act. Examples of this type of interaction in-
clude choices between rush-hour comnuting routes, investment plans, or fish-
ing grounds.

All of these games have the atiribute that players must decide whether to
take advantage of some common resource, be it a freeway, a high-yielding stock
fund, or an abundantly stocked pond. These collective “inaction” games are bet-
ter known as common-resource games; the total payoff to all players reaches its
maximum when players refrain from overusing the common resource. The diffi-
culty associated with not being able to reach the social optimum in such games
is known as the “tragedy of the commons,” a phrase coined by Garrett Hardin in
his paper of the same name.?

We supposed above that the irrigation project yielded equal benefits to
both you and your farmer-neighbor. But what if the outcome of both farmers’
building was that the project used so much water that the farms had too little
water for their livestock? Then each player’s payoff could be negative when both
choose Build, lower than when both choose Not. This would be yet another vari-
ant of the prisoners’ dilemma we encountered in Section LA, in which the so-
cially optimal outcome entails neither farmer’s building even though each one
still has an individual incentive to do so. Or suppose that one farmer’s activity
causes harm to the other, as would happen if the only way to prevent one farm
from being flooded is to divert the water to the other. Then each player’s payoffs
could be negative if his neighbor chose Build. Thus another variant of chicken
could also arise. In this variant, each of you wants to build when the other does
not, whereas it would be collectively better if neither of you did.

Just as the problems pointed out in these examples of both collective action
and collective inaction are familiar, the various alternative ways of tackling the
problems also follow the general principles discussed in earlier chapters. Before
turning to solutions, let us see how the problems manifest themselves in the more
realistic setting where several players interact simultaneously in such games.

COLLECTIVE-ACTION PROBLEMS IN LARGE GROUPS

In this section, we extend our irrigation-project example to a situation in which
a population of N farmers must each decide whether to participate. Here we
make use of the notation we introduced above, with C(n) representing the cost

2 Garrett Hardin, “The Tragedy of the Commons,” Science, vol. 162 (1968), pp. 1243-1248.

COLLECTIVE-ACTION PROBLEMS IN LARGE GROUPS 453

each participant incurs when » of the N total farmers have chosen to partici-
pate. Similarly, the benefit to each, regardless of participation, is B(n). Each par-
ticipant then gets the payoff P(n) = B(n) — C(n), whereas each nonparticipant,
or shirker, gets the payoff S(n) = B(n).

Suppose you are contemplating whether to participate or to shirk. Your
decision will depend on what the other (N — 1) farmers in the population are
doing. In general, you will have to make your decision when the other (N — 1)
players consist-of 7 participants and (V — 1 — r) shirkers. If you decide to shirk,
the number of participants in the project is still #, so you get a payoff of S{n). If
you decide to participate, the number of participants becomes 7 + 1, so you get
P(n + 1), Therefore your final decision depends on the comparison of these two
payoffs; you will participate if P(n + 1) > S(n), and you will shirk if P(n + 1) <
S(n). This comparison holds true for every version of the collective-action game
analyzed in Section 1; differences in behavior in the different versions arise be-
cause the changes in the payoff structure alter the values of P(n + 1) and S(#).

We can relate the two-person examples of Section 1 to this more general
framework. If there are just two people, then P(2) is the payoff to one from build-
ing when the other also builds, S{1) is the payoff to one from shirking when the
other builds, and so on. Therefore we can generalize the payoff tables of Figures
12.1 through 12.4 into an algebraic form. This general payoff structure is shown
in Figure 12.5.

The game illustrated in Figure 12.5 is a prisoners’ dilemma if the inequalities

P(2) < 8(1), P(1) < §(0), P(2) > S{0)

all hold at the same time. The first says that the best response to Build is Not,
the second says that the best response to Not also is Not, and the third says
that (Build, Build) is jointly preferred to (Not, Not). The dilemma is of Type I if
2P(2) > P(1) + S(1), so the total payoff is higher when both build than when
only one builds. You can establish similar inequalities concerning these payoffs
that yield the other types of games in Section 1.

Return now to the multiplayer version of the game with a general n. Given
the payoff functions for the two actions, P(n + 1) and S(#), we can use graphs (o

MEIGHBOR

- Build 3 P(2), P2) | P(1), (1)
You

Not s S(1), P(1) 3(0), 5(0

FIGURE 12.5 General Form of a Two-Person Collective-Action Game
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help us determine which type of game we have encountered and its Nash e‘qui—
librium. We can also then compare the Nash equilibrium to the game’s socially
optimal outcome. . '

Take a specific version of our irrigation project example in which an erl'tn"e
village of 100 farmers must decide which action to take. Suppose th'a.t an irri-
gation project raises the productivity of each farmer’s land in proportion to the
size of the project; specifically, suppose the benefit to each farmer when n pgo—
ple work on the project is P(n) = 2 n. Suppose also that if you are not WOl‘kll’:.lg
on the project, you can enjoy this benefit and use your time to earn a.n‘extra 4in
some other occupation, so S(r) = 2xn + 4. Remember that your dec151f)n about
whether to participate in the project depends on the relative magnitudes of
P(n+ 1) =2(n+ 1)and S(n) = 2n + 4. We draw the two separate graphs of these
functions for an individual farmer in Figure 12.6, showing n over its full range
from 0 to (V- 1) along the horizontal axis and the payoff to the farmer along the
vertical axis. If there are currently very few participants (thus mostly shirkers),
your choice will depend on the relative locations of P(n + 1} and S{») on the l'eft
end of the graph. Similarly, if there are already many participant's, your choice
will depend on the relative locations of P(n + 1) and $(») on the rightend of the
graph. '

Because # actually takes on only integer values, each function P(n +.1) and
S(n) technically consists only of a discrete set of points rather than a cont‘muoPs
set as implied by our smooth lines. But when N is large, the discr‘ete points are
sufficiently close together that we can connect the successive points and show
each payoff function as a continuous curve. We also use linear P(n + 1) and 5(n)

Payoff

n—»

FIGURE 12.6 Multiplayer Prisoners’ Dilemma
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functions in this section to bring out the basic considerations and will discuss
more complicated possibilities later.

Recall that you determine your choice of action by considering the number
of current participants in the project, », and the payoffs associated with each
action at that n. Figure 12.6 illustrates a case in which the curve S(n) lies entirely
above the curve P(n + 1). Therefore, no matter how many others participate
(that is, no matter how large n gets), your payoff is higher if you shirk than if you
participate; shirking is your dominant strategy. These payoffs are identical for all
playets, so everyone has a dominant strategy to shirk. Therefore the Nash equi-
librium of the game entails everyone shirking, and the project is not built.

Note that both curves are rising as n increases. For each action you can take,
you are better off if more of the others participate. And the left intercept of the
S(n) curve is below the right intercept of the P(n + 1) curve, or S (0) =4 < P(N)
= 102. This says that if everyone including you shirks, your payoff is less than if
everyone including you participates. Everyone would be better off than they are
in the Nash equilibrium of the game if the outcome in which everyone partici-
pates could be sustained. This makes the game a prisoners’ dilemma,

How does the Nash equilibrium found using the curves in Figure 12.6 com-
pare with the social optimum of this game? To answer this question we need a
way to describe the total social payoff at each value of n; we do that by using the
payoff functions P(n) and S(n) to construct a third function T(n), showing the
total payoff to society as a function of n. The total payoff to society when there
are n participants consists of the value P(n) for each of the n participants and
the value S(#) for each of the (V — ) shirkers:

T(n) = nPn) + (N~ n Sin)

The social optimum occurs when the allocation of people between par-
ticipants and shirkers maximizes the total payoff T(n}, or at the number of
participants—that is, the value of n—that maximizes 7{(r). To get a better un-
derstanding of where this might be, it is convenient to write T(n) differently,
rearranging the expression above to get

T(n) = NS(r) — n[S(n) — P(n)).

This version of the total social payoff function shows that we can calculate it as
if we gave every one of the N people the shirker’s payoff but then remmoved the
shirker’s extra benefit [S(n) - P(n)] from each of the » participants.

In collective-action games, as opposed to common-resource games, we
normally expect S(#) to increase as n increases. Therefore the first term in this
expression, NS(n), also increases as n increases. If the second term does not
increase too fast as n increases—as would be the case if the shirker's extra benefit,

{S(r} ~ P{n)], is smalt and constant—then the effect of the first term dominates
in determining the value of T{n).
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This is exactly what happens with the total social payoff function for our
100-farmer example. Here T(n) = n P{n) + (N — n) S(n) becomes T(n) = n(2n;
+ (100 — 1) (21 + 4) = 2n* + 200n-2n* + 400 — 4n = 400 + 196x. In this case,
T(n} increases steadily with n and is maximized at n = N when no one shirks.

The large-group version of our two-person example holds the same lesson
as above. Society as a whole would be better off if all of the farmers participated
in building the irrigation project. But payoffs are such that each farmer has an
individual incentive to shirk. The Nash equilibrium of the game is not socially
optimal. Figuring out how to achieve the social optimum is one of the most im-
portant topics in the study of collective action and one to which we return later
in this chapter.

In other situations, T(n) can be maximized for a different value of n, not
just at n = N. That is, society’s aggregate payoff could be maximized by allow-
ing some shirking. Even in the prisoners’ dilemma case, it is not automatic that
the total payoff function is maximized when 7 is as large as possible. If the gap
between S(») and P(n) widens sufficiently fast as n increases, then the nega-
tive effect of the second term in the expression for T(#n) outweighs the positive
effect of the first term as z approaches N; then it may be best to let some people
shirk—that is, the socially optimal value for 1 may be less than N.

This type of outcome would arise in our village if S(n) were 4n + 4, rather
than 2# + 4. Then T(#n) = —2n® + 396n + 400, which is no longer linear in #. In
fact, a graphing calculator or some basic calculus shows that this T(n) is maxi-
mized at n = 99 rather than at n = 100 as was true before. The change to the
payoff structure has created an inequality in the payoffs-~the shirkers fare better
than the participants—which adds another dimension of difficulty to society’s
attempts to resolve the dilemma. How, for example, would the village designate
exactly one farmer to be the shirker?

Now we consider some of the other configurations that can arise in the
payoffs. For example, when P(n) = 4n + 36, so P(n + 1) = 4n’+ 40, and
${n) = 5n, the two payoff curves will cross in the figure. This case is illustrated in
Figure 12.7. Here, for small values of n, P(r -+ 1) > S(n), so if few others are par-
ticipating, your choice is to participate. For large values of n, P(n + 1) < §(n}, so
if many others are participating, your choice is to shirk. Note the equivalence of
these two statements to the idea in the two-person chicken game that “you shirk
if your neighbor works and you work if he shirks.” This case is indeed that of
chicken. More generally, the chicken case occurs when given a choice between
two actions, you prefer to do the one that most others are not doing.

We can also use Figure 12.7 to determine the location of the Nash equilib-
rium of this version of the game. Because you choose to participate when » is
small and to shirk when n is large, the equilibrium must be some intermedi-
ate value of 7. Only at that n where the two curves intersect are you indifferent
between your two choices. This location represents the equilibrium value of 7.
In our graph, P(n + 1) = S(n) when 45 + 40 = 55 or when n = 40; that is the
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F\Ia.sh equilibrium number of farmers from the village who will participate in the
irrigation project.

If the two curves intersect at a point corresponding to an integer value of n,
then that is the Nash equilibrium number of participants. If that is not the case,
then strictly speaking the game has no Nash equilibrium. But in practice, if the
current value of » in the population is the integer just to the left of the point of
intersection, then one more person will just want to participate, whereas if the
curtent value of » is the integer just to the right of the point of intersection, one
person will want to switch to shirking. Therefore the number of participants will
stay in a small neighborhood of the point of intersection, and we can justifiably
speak of the intersection as the equilibrium in some approxitnate sense,

The payoff structure illustrated in Figure 12.7 shows both lines positively
sloped, although they dor't have to be. It is conceivable that the benefit for each
person is smaller when more people participate, so the lines could be negatively
sloped instead. The important feature of the chicken collective-action game is
that when few people are taking one action, it is better for any one person to
take that action; when many people are taking one action, it is better for any one
person to take the other action,

What is the socially optimal outcome in the chicken form of collective
action? If each participant's payoff P{n) increases as the number of participants
increases, and if each shirker’s payoff $(n) does not become too much greater
than the P(n) of each participant, then the total social payoff is maximized
when everyone participates. This is the outcome in our example where T(n) =

5367 — n*; total social payoff increases in beyond the value of N (100 here), so
n = Nis the social optimum.

Payoff

n—
FIGURE 12.7 Multiplayer Chicken
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But more generally, some cases of chicken wilt entail social optima in which it
is better to let some shirk. This is exactly the difference between versions f and Il of
chicken in our example in Section 1. For an exercise, you may {1y generating a pay-
off structure that leads to such an outcome for our village farmers. In these more
general chicken games, the optimal number of participants could even be smaliver
than that in the Nash equilibrium. We return to exarnine the question of the social
optimum of all of these versions of the game in greater detail in Section 3.

Finally we consider the third possible type of collective-action game, assui-
ance. Figure 12.8 shows the payoff lines for the assurance case, where we sup-
pose that the village farmers get P(n + 1) = 4n + 4 and S(n) = 2n + 100. Here
S(n) > P(n + 1) for small values of #, so if few others are participating, then you
want to shirk, too. But P(n + 1) > S(») for large values of », so if many others are
participating, then you want to participate too. In other words, unlike chicken,
assurance is a collective-action game in which you want to make the choice that
the others are making.

Except for the labels, the graph in Figure 12.8 looks nearly identical to that
in Figure 12,7, The location of the Nash equilibrium depends critically on the
labels associated with the two lines, however. In Figure 12.8, for any initial value
of n to the left of the intersection, each farmer will want to shirk, and there will
be a Nash equilibrium at # = 0 where everyone shirks. But the opposite is.true to
the right of the intersection. In that portion of the graph, each farmer will want
to participate, and there will be a second Nash equilibrium at = N.

Technically, there is also a third Nash equilibrium of this game if the value of
n at the intersection is an integer value as it is in our example. There we find that
P(n+ 1) =4n+ 4 =2n+ 100 = S(n) when r = 48. Then if n were exactly 48, we
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would see an outcome in which there were some participants and some shirk-
ers. This situation could be an equilibrivm only if the value of 7 is exactly right.
Even then, it would be a highly unstable situation. If any one farmer acciden-
tally joined the wrong group, his choice would alter the incentives for everyone
else, driving the game to one of the endpoint equilibria. Those are the two stable
Nash equilibria of the game.

The social optimum in this game is fairly easy to see on the graph in Figure
12.8. Because both curves are rising—so each person is better off if more people
participate—-then clearly the right-hand extreme equilibrium is the better one
for society. This is confirmed in our example by noting that T(n) = 2n2 + 100n
+ 10,000, which is increasing in # for all positive values of z; thus the socially
optimal value of 7 is the largest one possible, or # = N. In the assurance case,
then, the socially optimal outcome is actually one of the stable Nash equilibria
of the game. As such, it may be easier to achieve than in some of the other cases.
The critical question regarding the social optimum, regardless of whether it rep-
resents a Nash equilibrium of the underlying game, is how to bring it about,

So far our examples have focused on relatively small groups of 2 or 100 per-
sons. When the total number of people in the group, N, is very large, however, and
any one person makes only a very small difference, then P(n + 1) is almost the
same as P(n). Thus, the condition under which any one person chooses to shirk
Is P{n) < S(n). Expressing this inequality in terms of the benefits and costs of the
commen project in our example—namely, P(n) = B(n} - C{n) and S§(n) = Bi{ny—
we see that P(n) (unlike P{n + 1) in our preceding calculations) is alwaysless than
S(n); individual persons will always want to shirk when Nis very large. That is why
problems of collective provision of public projects in a large group almost always
manifest themselves as prisoners’ dilemmas. But as we have seen, this result is
not necessarily true for smaller groups, Neither s it true for large groups in other
contexts such as congestion; we will discuss this case later in this chapter.

In general, we must allow for a broader interpretation of the payoffs P(n) and
S(n) than we did in the specific case involving the benefits and the costs of a proj-
ect. We cannot assume, for example, that the payoff functions will be linear. In
fact, in the most general case, P(n) and S(n) can be any functions of n and can
intersect many times. Then there can be multiple equilibria, although each can
be thought of as representing one of the types described so far.? And some games

® Several exercises at the end of this chapter present some examples of simple situations with
nontinear payoff curves and multiple equilibria. For a more general analysis and classification of
such diagrams, see Thomas Schelling, Micromotives and Macrobehavior [New York: Norton, 1978),
chap, 7. The theory can be taken further by allowing each player a continuous choice {for example,
the number of ours of participation) instead of just a binary choice of whether o participate. Many
such situations ave discussed in more specialized books on collective action, for example, Todd
Sandler, Collective Action; Theory and Applications (Ann Arbor: University of Michigan Press, 1993},
and Richard Cornes and Todd Sandler, The Theory of Externalities, Public Goods, and Club Goods,
2nd ed. {(New York; Cambridge University Press, 1996).
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will be of the common-resource type as well, so when we allow for completely
general games, we will speak of two actions labeled P and S, which have no
necessary connotation of “participation” and “shirking” but allow us to con-
tinue with the same symbols for the payoffs. Thus, when » players are taking
the action P, P(n) becomes the payoff of each player taking the action P, and S(r}
becomes that of each player taking the action S.

So far we have seen that collective-action games occur in prisoners’ dilemma,
chicken, and assurance forms. We have also seen that the Nash equilibria in
such games rarely yield the socially optimal level of participation (or restraint).
And even when the social optimurm is a Nash equilibrium, it is usually only one
of several equilibria that may arise. Now we delve further into the differences
between the individual {or private) incentives in such games and the group (or
social) incentives. We also describe more carefully the effects of each individual’s
decision on other individuals as well as on the collective. This analysis makes
explicit why differences in incentives exist, how they are manifested, and how
one might go about achieving socially better outcomes than those that arise’in
Nash equilibrium. i

A. Commuting and Spilloveys

We start by thinking about a large group of 8,000 commuters who drive every
day from a suburb to the city and back. As one of these commuters, you may
take either the expressway (action P) or a network of local roads (action S). The
local-roads route takes a constant 45 minutes, no matter how mahy cars are
going that way. The expressway takes only 15 minutes when uncongested, But
every driver who chooses the expressway increases the time for every other
driver on the expressway by 0.005 minutes (about one-quarter of a second),

Measure the payoffs in minutes of time saved—by how much the com-
mute time is less than 1 hour, for instance. Then the payoff to drivers on the
local roads, S(»), is a constant 60 — 45 = 15, regardless of the value of n. But
the payoff to drivers on the expressway, P{n), depends on #; in particular,
P{n) =60 — 15 = 45 for n = 0, but P(n) decreases by 5/1,000 (or 1/200} for every
commuter on the expressway. Thus, P{n) = 45 — 0.005n.

Suppose that initially 4,000 cars are on the expressway; n = 4000, With so
many cars on that road, it takes each of them 15 + 4,000 x 0.005 = 15 + 20 = 35
minutes to commute to work; each gets a payoff of P(r) = 25 [which is 60 — 35,
or P(4,000)]. Now consider the possibility that you, a local-road driver, might
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decide to switch from driving the local roads to driving on the expressway. Your
switch would increase by 1 the value of » and would thereby affect the payoffs
of all the other commuters. There would now be 4,001 drivers (inchuding you)
on the expressway, and the commute time for each would be 35 and 1/200, or
35.005, minutes; each would now get a payoff of P{n + 1) = P(4,001) = 24.995. This
payoff is higher than the 15 from driving on the local roads. Thus you have a private
incentive to make the switch, because for you, P(n + 1) > $(n) (24.995 > 15).

Your switch yields you a private gain—because it is privately held by you—
equal to the difference between your payoffs before and after the switch; this
private gain is P(n + 1) ~ S(n) = 9.995 minutes. Because you are only one per-
son and therefore a small part of the whole group, the gain in payoff that you re-
ceive in relation to the total group payoff is small, or marginal. Thus we call your
gain the marginal private gain associated with your switch.

But now the 4,000 other drivers on the expressway each take 0.005 of a min-
ute more as a result of your decision to switch; the payoff to each changes by
P(4,001) ~ P(4,000) = -0.005. Similarly, the drivers on the local roads face a
payoff change of $(4,001) — $(4,000), but this is zero in our example. The cumu-
lative effect on all of these other drivers is 4,000 X —0.005 = —20 {minutes). Your
action, switching from local roads to expressway, has caused this effect on the
others’ payoffs. Whenever one person’s action affects others like this, it is called
a spillover effect, external effect, or externality, Again, because you are but a
very small part of the whole group, we should actually call your effect on others
the marginal spillover effect.

Taken together, the marginal private gain and the marginal spillover effect
are the full effect of your switch on the group of commuters, or the overall mar-
ginal change in the whole group’s or the whole society’s payoff. We call this the
marginal social gain associated with your switch. This “gain” may actually be
positive or negative, so the use of the word gain is not meant to imply that all
switches will benefit the group as a whole. In fact, in our commuting example,
the overall marginal social gain is 9.995 ~ 20 = —10.005 (minutes). Thus, the

overall social effect of your switch is bad; the social payoff is reduced by a total
of just over 10 minutes.

B. Spillovers: The General Case

We can describe the effects we observe in the commuting example more gen-
erally by returning to our total social payoff function, T(r), where n represesnts
the number of people choosing B so N — nis the number of people choosing S.
Suppose that initially # people have chosen P and that one person switches from
S to P Then the number choosing P increases by 1 to (n + 1), and the number
choosing S decreases by 1 to (N — n — 1), so the total social payoff becomes
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Tn+ D =(n+1YPnr+1)-+[N-(r+1]Snt 1)
The increase in the total social payoff is the difference between T(r) and T(x +1):

Tn+ 1)~ T =nH+DPH+D+[N-(n+ 1] Sn+1) - nPH + (N—n} S(n)
=[Prn+1)— S+ nlPn+1) - Pl
+ [N=(n-+ D} [S(r+ 1} - S} (12.1)

after collecting and rearranging terms.

Equation (12.1) describes mathematically the various different effects of
one person’s switch from S to P that we saw earlier in the commuting example.
The equation shows how the marginal social gain is divided into the marginal
change in payoffs for the subgroups of the population.

The first of the three terms in Eq. (12.1)~-namely, (P(n + 1) — S(n)}—is the
marginal private gain enjoyed by the person who switches. As we saw above, this
term is what drives a person’s choice, and all such individual choices then deter-
mine the Nash equilibrium.

The second and third terms in Eq. (12.1) are just the quantifications of the
spillover effects of one person’s switch on the others in the group. For the n other
people choosing B, each sees his payoff change by the amount [P(r + 1) — P(r)]
when one more person switches to P; this spillover effect is seen in the second
group of terms in Eq. (12.1). There are also N — (n + 1) (or N—n — 1) others
still choosing S after the one person switches, and each of these players sees his
payoff change by [S{n + 1) — S(m}]; this spillover effect is shown in the third
group of terms in the equation. Of course, the effect that one driver’s switch has
on the time for any one driver on either route is very small, but, when there are
numerous other drivers (that is, when N is large), the full spillover effect can be
substantial.

Thus we can rewrite Eq. (12.1) for a general switch of one person from either
StoPorPtoSas: :

Mayginal social gain = marginal private gain + marginal spillover effect.
For an example in which one person switches from S to B we have

Marginal social gain = T(n + 1) — T{n),
Matrginal private gain = P(n + 1) — S(n}, and
Marginal spillover effect = n[P(n + 1) — P(m)] + [N — (n+ )] {S(r + 1) — S(n}].

USING CALCULUS FOR THE GENERAL CASE Before examining some spillover situations in
more detail to see what can be done to achieve socially better outcomes, we re-
state the general concepts of the analysis in the language of calculus. If you do
not know this language, you can omit the remainder of this section without loss
of continuity; if you do know it, you will find the alternative statement much
simpler to grasp and to use than the algebra employed earlier.
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If the total number N of people in the group is very large—say, in the hun-
dreds or thousands—then one person can be regarded as a very small, or infini-
tesimal, part of this whole. This allows us to treat the number 7 as a continuous
variable. If T{r) is the total social payoff, we calculate the effect of changing n
by considering an increase of an infinitesimal marginal quarntity dn, instead of
a full unit increase from rnto (n + 1). To the first order, the change in payoff is
T'(m)cln, where T"(n) is the derivative of 7T(n) with respect to 7. Using the expres-
sion for the total social payoff,

Tin} = nP(n) + (N~ n S(n),

and differentiating, we have

T'(n) = P(n) + nP'(n) — S'{n) + (N - mS’'(n)
= [P(n) — S(m] + nP'(n) + (N~ m8'(n. (12.2)

This is the calculus equivalent of Eq. (12.1). T'(n) represents the marginal so-
cial gain. The marginal private gain is P(n) — S(n), which is just the change in
the payoff of the person making the switch from S to P In Eq. (12.1}, we had
P(r+ 1) — S{n) for this change in payoff; now we have P(n) — S(7). This is be-
cause the infinitesimal addition of dn to the group of the n people choosing P
does not change the payoff to any one of them by a significant amount. However,
the total change in their payoff, nP’(n), is sizable and is recognized in the calcu-
lation of the spillover effect—it is the second term in Eq. (12.2)—as is the change
in the payoff of the (N — 1) people choosing S—namely, (N — 1) $'(n)—the third
term in Eq. (12.2). These last two terms constitute the marginal-spillover-effect
part of Eq. (12.2).

In the commuting problem, we have P(n) = 45 — 0.005x, and S(#) = 15.
Then with the use of calculus, we see that the private marginal gain for each
driver who switches to the expressway when n drivers are already using it is
P(n) — S(n) = 30 — 0.005n. Because P'(n) = —0.005 and $’() = 0, the spillover ef-
fectis 7 X (—0.005) + (N~ 1) x 0 = ~0.005n, which equals —20 when n = 4,000.
The answer is the same as before, but calculus simplifies the derivation and
helps us find the optimum directly.

(. Commuting Revisited: Negative Externalities

{\ I'legative externality exists when the action of one person lowers others’ payoffs;
{t Imposes some extra costs on the rest of society. We saw this in our commut-
ing example, where the marginal spillover effect of one person’s switch to the
expressway was negative, entailing an extra 20 minutes of drive time for other
commuters, But the individual who changes his route to work does nat take the
spillover—the externality—into account when making his choice. He is moti-
vated only by his own payoffs. (Remember that any guilt that he may suffer from
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harming others should already be reflected in his payoffs.) He will change his
action from S to P as long as this change has a positive marginal private gain. He
is then made better off by the change.

But society would be better off if the commuter’s decision were governed
by the marginal social gain. In owr example, the marginal social gain is nega-
tive (—10.005), but the marginal private gain is positive (9.995), so the individual
driver makes the switch even though society as a whole would be better off if
he did not do so. More generally, in situations with negative externalities, the
marginal social gain will be smaller than the marginal private gain due to the
existence of the negative spillover effect. Individuals will make decisions based
on a cost-benefit calculation that is the wrong one from society’s perspective.
As a result, individual persons will choose actions with negative spillover effects
more often than society would like them to do.

We can use Eq. (12.1) to calculate the precise conditions under which a
switch will be beneficial for a particular person versus for society as a whole.
Recall that if n people are already using the expressway and another driver is
contemplating switching from the local roads to the expressway, he stands to
gain from this switch if P(n + 1) > S(n), whereas the total social payoff increases
if T(n + 1) — T(n) > 0. The private gain is positive if

45 — (n+ 1) x0.005 > 15
44.995 — 0.005n > 15
n < 200 (44.995 — 15) = 3,999,

whereas the condition for the social gain to be positive is

45 -~ (m+ 1) x 0.005 — 15 — 0.005n >0
29.995 - 0.01n>0
n < 2,999.5.

o

Thus, if given the free choice, commuters will crowd onto the expressway
until there are almost 6,000 of them, but all crowding beyond 3,000 reduces the
total social payoff. Society as a whole would be best off if the number of com-
muters on the expressway were kept down to 3,000.

We show this result graphically in Figure 12.9. On the horizontal axis from
left to right, we measure the number of commurters using the expressway. On
the vertical axis, we measure the payoffs to each commuter when » others are
using the expressway. The payoff to each driver on the local road is constant and
equal to 15 for all »; this is shown by the horizontal line S(#). The payoff to each
driver who switches to the expressway is shown by the line P(n + 1}; it falls by
0.005 for each unit increase in 7. The two lines meet at n = 5,999; that is, at the
value of n for which P(n + 1) = S(n) or for which the marginal private gain is just
zero. Everywhere to the left of this value of », any one driver on the local roads
calculates that he gets a positive gain by switching to the expressway. As some
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drivers make this switch, the numbers on the expressway increase—the value
of n in society rises. Conversely, to the right of the intersection point (that is,
for n>5,999), S(n) > P(n+ 1); so each of the (n + 1) drivers on the expressway
stands to gain by switching to the local road. As some do so, the numbers on the
expressway decrease and # falls. From the left of the intersection, this process
converges to n = 5,999 and, from the right, it converges to 6,000.

If we had used the calculus approach, we would have regarded 1 as a very
small increment in relation to » and graphed P{»n) instead of P{# + 1). Then the
intersection point would have been at n = 6,000 instead of at 5,999. As you can
see, it makes very little difference in practice. What this means is that we can
call n = 6,000 the Nash equilibrium of the route-choice game when choices are
governed by purely individual considerations. Given a free choice, 6,000 of the
8,000 total commuters will choose the expressway, and only 2,000 will drive on
the local roads,

But we can also interpret the outcome in this game from the perspective of
the whole society of commuters. Society benefits from an increase in the num-
ber of commuters, », on the expressway when T(n + 1) — 7{(n) > 0 and loses
from an increase in nwhen T(n + 1) — T(n) < 0. To figure out how to show this
on the graph, we express the idea somewhat differently; we rearrange Eq. (12.1)
into two pieces, one depending only on P and the other depending only on S:

Tn+)~-Tw=n+LBPR+D+{N—(n+1)]Sh+1) - nPmn— [N— 1l S(n)
={Pr+ D+nPr+1) - P}
= {S(m + [N~ (n+ DIS(R+ 1) - S(w)]).
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The expression in the first set of braces is the effect on the payofis of the
set of commuters who choose P; this expression includes the P(n + 1) of the
switcher and the spillover effect, n{P(n + 1) — P(n)], on all the other n commut-
ers who choose P We call this the marginal social payoff for the P-choosing sub-
group, when their number increases from rn to n + 1, or MP(n + 1) for short.
Similarly, the expression in the second set of braces is the marginal social pay-
off for the S-choosing subgroup, or MS(#) for short. Then, the full expression for
T{n + 1) — T(n) tells us that the total social payoff increases when one person
switches from S to P (or decreases if the switch is from P to 8) if MP(n + 1) >
MS(#n). The total social payoff decreases when one person switches from S to P
(or increases when the switch is from P to S) if MP(n + 1) < MS(#).

Using our expressions for P(n + 1) and S(n} in the commuting example, we
have

MP(rn+ 1)=45 — {n+ 1) x0.005 + n X {—0.005) = 44.995 — 0.0ln

while MS(n} = 15 for all values of n. Figure 12.9 includes graphs of the relations
MP{n + 1) and MS(n). Note that the MS(n) coincides with S(r} everywhere
because the local roads are never congested. But the MP(n + 1) curve lies below
the P(n + 1) curve. Because of the negative spillover, the social gain from one
person’s switching to the expressway is less than the private gain to the switcher.

The MP{n + 1) and MS(n) curves meet at n = 2,999, or approximately 3,000.
To the left of this intersection, MP(n + 1) > MS(n}, and society stands to gain
by allowing one more person on the expressway. To the right, the opposite is
true, and society stands to gain by shifting one person from the expressway to
the local roads. Thus the socially optimal allocation of drivers is 3,000 on the ex-
pressway and 3,000 on the local roads.

If you wish to use calculus, you can write the total payoff for the expressway
drivers as nP(n) = n(45 — 0.005n) = 45n - 0.005r°. Then MP(n + 1) is the de-
rivative of this with respect to n—namely, 45 — 0.005 x 21 = 45 — 0.01x. The rest
of the analysis can proceed as before.

How might this society achieve the optimum allocation of its drivers? Differ-
ent cultures and political groups use different systems, each with its own mer-
its and drawbacks. The society could simply restrict access to the expressway to
3,000 drivers. But how would it choose those 3,000? It could adopt a first-come,
first-served rule, but then drivers would race each other to get there early and
waste a lot of time, A bureaucratic society could set up criteria based on complex
calculations of needs and merits as defined by civil servants; then everyone will
undertake some costly activities to meet these criteria. In a politicized society,
the important “swing voters” or organized pressure groups or contributors may
be favored. In a corrupt society, those who bribe the officials or the politicians
may get the preference. A more egalitarian society could allocate the rights to
drive on the expressway by lottery or could rotate them from one month to the
next. A scheme that lets you drive only on certain days, depending on the last
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digit of your car’s license plate, is an example. But such a scheme is not so egali-
tarian as it seems, because the rich can have two cars and choose license-plate
numbers that will allow them to drive every day.

Many economists prefer a more open system of charges. Suppose each
driver on the expressway is made to pay a tax , measured in units of time. Then
the private benefit from using the expressway becomes P(») — £, and the num-
ber n in the Nash equilibrium will be determined by P(n) — ¢ = S(n). {Here, we
are ignoring the tiny difference between P(n) and P(n + 1), which is possible
when Nis very large.) We know that the socially optimal value of 72is 3,000. Using
the expressions P(n) = 45 — 0.005x and S(#) = 15, and plugging in 3,000 for #n,
we find that P(n) — t= S(n)—that is, drivers are indifferent between the express-
way and the local roads—when 45 — 15 — ¢ = 15, or ¢ = 15. If we value time at
the minimum wage of about $5 an hour, 15 minutes comes to $1.25. This is the
tax or toll that, when charged, will keep the numbers on the expressway down to
what is socially optimal.

Note that when 3,000 drivers are on the expressway, the addition of one more
increases the time spent by each of them by 0.005 minute, for a total of 15 min-
utes. This is exactly the tax that each driver is being asked to pay. In other words,
each driver is made to pay the cost of the negative spiltover that he imposes on
the rest of society. This “brings home” to each driver the extra cost of his action
and therefore induces him to take the socially optimal action; economists say
the individual person is being made to internalize the externality. This idea,
that people whose actions hurt others are made to pay for the harm that they
cause, adds to the appeal of this approach. But the proceeds from the tax are not
used to compensate the others directly. If they were, then each expressway user
would count on receiving from others just what he pays, and the whole purpose
would be defeated. Instead, the proceeds of the tax go into general government
revenues, where they may or may not be used in a socially beneficial manner,

Those economists who prefer to rely on markets argue that if the expressway
has a private owner, his profit motive will induce him to charge just enough for
its use to reduce the number of users to the socially optimal level. An owner
knows that if he charges a tax ¢ for each user, the number of users 7 will be de-
termined by P(n) — t = S(n). His revenue will be tn = n{P(n) — S${n)], and he
will act in such a way as to maximize this revenue. In our example, the revenue
is n[45 — 0.005n — 15] = n[30 — 0.0057] = 30n — 0.0057% It is easy to see this
revenue is maximized when n = 3,000, But in this case, the revenue goes into the
owner's pocket; most people regard that as a bad solution.

D. Positive Spillovers

Many matters pertaining to positive spillovers or positive externalities can be
understood simply as mirror images of those for negative spillovers. A person’s
private benefits from undertaking activities with positive spillovers are less than
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society's marginal benefits from such activities. Therefore such actions will be
underutilized and their benefits underprovided in the Nash equilibrium. A better
outcome can be achieved by augmenting people’s incentives; providing those
persons whose actions create positive spillovers with a reward just equal to the
spillover benefit will achieve the social optimum.

Indeed, the distinction between positive and negative spillovers is to some
extent a matter of semantics. Whether a spillover is positive or negative depends
on which choice you call P and which you call 8. In the commuting example,
suppose we called the local roads P and the expressway S. Then one commuter’s
switch from S to P will reduce the time taken by all the others who choose S, so
this action will convey a positive spillover to them. In another example, consider
vaccination against some infectious disease. Each person getting vaccinated re-
duces his own risk of catching the disease (marginal private gain) and reduces the
risk of others’ getting the disease through him (spillover). If being unvaccinated is
called the § action, then getting vaccinated has a positive spillover effect. If re-
maining unvaccinated is called the P action, then the act of remaining unvacci-
nated has a negative spillover effect. This has implications for the design of policy
to bring individual action into conformity with the social optimum. Society can
either reward those who get vaccinated or penalize those who fail to do so.

But actions with positive spillovers can have one very important new fea-
ture that distinguishes them from actions with negative spillovers—namely,
positive feedback. Suppose the spillover effect of your choosing P is to increase
the payoff to the others who are also choosing P. Then your choice increases the
attraction of that action (P) and may induce some others to take it also, setting
in train a process that culminates in everyone’s taking that action. Conversely, if
very few people are choosing B, then it may be so unattractive that they, too, give
it up, leading to a situation in which everyone chooses S. In other words, posi-
tive feedback can give rise to multiple Nash equilibria, which we now illustrate
by using a very real example.

When you buy a computer, you have to choose between one with a Win-
dows operating system and one with an operating system based on Unix, such
as Linux. As the number of Unix users rises, the better it will be to purchase
such a computer. The system will have fewer bugs because more users will
have detected those that exist, more application software will be available, and
more experts will be available to help with any problems that arise. Similarly,
a Windows-based computer will be more attractive the more Windows users
there are. In addition, many computing aficionados would argue that the Unix
system is superior. Without necessarily taking a position on that matter, we
show what will happen if that is the case. Will individual choice lead to the
socially best outcome?

A diagram similar to Figures 12.6 through 12.8 can be used to show the
payoffs to an individual computer purchaser of the two strategies, Unix and
Windows. As shown in Figure 12.10, the Unix payoff rises as the number of Unix
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users rises, and the Windows payoff rises as the number of Unix owners falls {the
number of Windows users rises). As already explained, the diagram is drawn as-
suming that the payoff to Unix users when everyone in the population is a Unix
user (at the point labeled U) is higher than the payoff to Windows users when
everyone in the population is a Windows user (at W).

If the current population has only a small number of Unix users, then the
situation is represented by a point to the left of the intersection of the two payoff
lines at I, and each individual user finds it better to choose Windows. When there
is a larger number of Unix users in the population, placing the society to the
right of I, it is better for each person to choose Unix. Thus a mixed population of
Unix and Windows users is sustainable as an equilibrium only when the current
population has exactly I Unix users; only then will no member of the population
have any incentive to switch platforms. And even that situation is unstable, Sup-
pose just one person accidentally makes a different decision. If he switches to
Windows, his choice will push the population to the left of I, in which case oth-
ers will have an incentive to switch to Windows, too. If he switches to Unix, the
population point moves to the right of I, creating an incentive for more people
to switch to Unix. The cumulative effect of these switches will eventually push

the society to an all-Unix or an all-Windows outcome; these are the two stable
equilibria of the game.*

Users’
henefits
Benefits
from U
Benefits Unix
from
W ke Windows
H
f
;
f
'
|
- |
|
All Windows ! AllUnix

Number of Unix users

FIGURE 12,10 Payoffs in Operating-System-Chaice Game

"The tenn positive feedback may create the impression that it is a good thing, but in technical
language the term merely characterizes the process and includes no general value judgment about
the outcome. In this example, the same positive feedback mechanism could lead to either an all-
Unix outcotne or an all-Windows outcome; one outcome could be worse than the other.
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But which of the two stable equilibria will be achieved in this game? The
answer depends on where the game starts. If you look at the configuration of to-
day’s computer users, you will see a heavily Windows-oriented population. Thus
it seems that because there are so few Unix users (or so many PC users), the
world is moving toward the all-Windows equilibrium. Schools, businesses, and
private users have become locked in to this particular equilibrium as a result
of an accident of history. If it is indeed true that Unix provides more benefits to
society when used by everyone, then the all-Unix equilibrium should be pre-
ferred over the all-Windows one that we are approaching. Unfortunately, al-
though society as a whole might be better off with the change, no individual
computer user has an incentive to make a change from the current situation.
Only coordinated action can swing the pendulum toward Unix. A critical mass
of individual users, more than I in Figure 12.10, must use Unix before it becomes
individually rational for others to choose the same operating system.

There are many examples of similar choices of convention being rade by
different groups of people. The most famous cases are those in which it has been
argued, in retrospect, that a wrong choice was made. Advocates claim that steam
power could have been developed for greater efficiency than gasoline; it cer-
tainly would have been cleaner. Proponents of the Dvorak typewriter/computer
keyboard configuration claim that it would be better than the QWERTY
keyboard if used everywhere. Many engineers agree that Betamax had more
going for it than VHS in the video recorder market. In such cases, the whims of
the public or the genius of advertisers help determine the ultimate equilibrium
and may lead to a “bad” or “wrong” outcome from society’s perspective. Other
situations do not suffer from such ditficulties. Few people concern themselves
with fighting for a reconfiguration of traffic-light colors, for example.®

The ideas of positive feedback and lock-in find an important application in
macroeconomics. Production is more profitable the higher the level,of demand
in the economy, which happens when national income is higher. In turn, in-
come is higher when firmms are producing more and are therefore hiring more
workers. This positive feedback creates the possibility of multiple equilibria,
of which the high-production, high-income one is better for society, but indi-
vidual decisions may lock the economy into the low-production, low-income
equilibrium. The better equilibrium could be turned into a focal point by public
declaration—"the only thing we have to fear is fear itself”—but the government
can also inject demand into the economy to the extent necessary to move it to
the better equilibrium. In other words, the possibility of unemployment due

5Not everyone agrees that the Dvorak keyboard and the Betamax video recorder were clearly su-
perior alternatives. See two articles by S. J. Liebowitz and Stephen E. Margolis, “Network Externafity:
An Uncommen Tragedy,” Journal of Economic Perspectives, vol. 8 (Spring 1994), pp. 146-149, and
“The Fable of the Keys,” Journal of Law and Econornics, vol. 33 {April 1990}, pp. 1-25.
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to a deficiency of aggregate demand—as discussed in the supply-and-demand
language of economic theory by the British economist John Maynard Keynes
in his well-known 1936 book titled Employment, Interest, and Money—can
be seen from a game-theoretic perspective as the result of a failure to solve a
collective-action problem.®

B. The (lassics

The problem of collective action has been recognized by social philosophers and
economists for a very long time. The seventeenth-century British philosopher
Thomas Hobbes argued that society would break down in a “war of all against
all” unless it was ruled by a dictatorial monarch, or Leviathan {the title of his
book). One hundred years later, the French philosopher Jean-Jacques Rousseau
described the problem of a prisoners’ dilemma in his Discourse on Inequality. A
stag hunt needs the cooperation of the whole group of hunters to encircle and
kill the stag, but any individual hunter who sees a hare may find it better for
himself to leave the ciicle to chase the hare. But Rousseau thought that such
problems were the product of civilization and that people in the natural state
lived harmoniously as “noble savages.” At about the same time, two Scots
pointed out some dramatic solutions to such problems. David Hume in his
Treatise on Human Nature argued that the expectations of future returns of favors
can sustain cooperation. Adam Smith's Wealth of Nations developed a grand vision
of an economy in which the production of goods and services motivated purely
by private profit could result in an outcome that was best for society as a whole.”

“John Maynard Keynes, Employment, Interest, and Money (London: Macmillan, 1936). See also
John Bryant, “A Simple Ratjonal-Expectations Keynes-type Model,” Quarterly Journal of Econom-
fcs, vol. 98 (1983), pp. 525-528, and Russell Cooper and Andrew John, “Ceordination Faflures in a
Keynesian Model,” Quarterly Journal of Economics, vol. 103 (1988), pp. 441-463, for formal game-
theoretic models of unemployment equilibria.

"The great old books cited in this paragraph have been reprinted many times in many different
versions. For each, we list the year of original publication and the details of one relatively easily ac-
cessible reprint. In each case, the editor of the reprinted version provides an introduction that cor-
veniently summarizes the main ideas. Thomas Hobbes, Leviathan; or the Matter, Form, and Power of
Commonwealth Ecelesiastical and Civil, 1651 (Everyman Edition, London: }. M. Dent, 1973): David
Hume, A Treatise of Human Nature, 1738 (Oxford: Clarendon Press, 1976); Jean-Jacques Rousseau,
A Discourse on Inequality, 1755 (New York: Penguin Books, 1984); Adam Smith, An Inquiry into the
Nature and Causes of the Wealth of Nations, 1776 (Oxford: Clarendon Press, 1976).
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The optimistic interpretation persisted, especially among many economists
and even several political scientists, to the point where it was automatically
assumed that if an outcome was beneficial to a group as a whole, the actions of
its members would bring the outcome about. This belief received a necessary
rude shock in the mid-1960s when Mancur Olson published The Logic of Col-
lective Action. He pointed out that the best collective outcome would not prevail
unless it was in each individual person’s private interest to perform his assigned
action—that is, unless it was a Nash equilibrium. However, Olson did not specify
the collective-action game very precisely. Although it looked like a prisoners’ di-
lemma, Olson insisted that it was not necessarily so, and we have already seen that
the problem can also take the form of a chicken game or an assurance game.?

Another major class of collective-action problems—namely, those concern-
ing the depletion of common-access resources—received attention at about
the same time. If a resource such as a fishery or a meadow is open to all, each
user will exploit it as much as he can, because any self-restraint on his part will
merely make more available for the others to exploit. As we mentioned above,
Garrett Hardin wrote a well-known article on this subject titled “The Tragedy of
the Commons.” Common-resource problems are unlike our irrigation-project
game, in which each person has a strong private incentive to free-ride off the
efforts of others. In regard to a common resource, each person has a strong pri-
vate incentive to exploit it to the full, making everyone else pay the social cost
that resuits from the degradation of the resource.

B. Modern Approaches and Solutions

Until recently, many social scientists and most physical scientists took a Hobbes-
ian line on the common-resource problem, arguing that it can be solved only by
a government that forces everyone to behave cooperatively. QOthers, especially
econoimists, retained their Smithian optimism. They argued that placing the re-
source in proper private ownership, where its benefits can be captured in the
form of profit by the owner, will induce the owner to restrain its use in a socially
optimal manner. He will realize that the value of the resource {fish or grass,
for example) may be higher in the future because less will be available, and
therefore he can make more profit by saving some of it for that future.
Nowadays, thinkers from all sides have begun to recognize that
collective-action problems come in diverse forms and that there is no uniquely
best solution to all of them. They also understand that groups or societies do
not stand helpless in the face of such problems, and they devise various ways to

SMancur Qlson, The Logic of Collective Action (Cambriclge: Harvard University Press, 1965).

A BRIEF HISTORY OF IDEAS 473

cope with them. Much of this work has been informed by game-theoretic analy-
sis of repeated prisoners’ dilermmas and similar games.”

Solutions to collective-action problems of all types must induce individual
persons to act cooperatively or in a manner that would be best for the group,
even though the person’s interests may best be served by doing something else—
in particular, taking advantage of the others’ cooperative behavior.'"® Humans
exhibit much in the way of cooperative behavior. The act of reciprocating gifts
and skills at detecting cheating are so common in all societies and throughout
history, for example, that there is reason to argue that they may be instincts.'! But
human societies generally rely heavily on purposive social and cultural customs,
norms, and sanctions in inducing cooperative behavior from their individual
members. These methods are conscious, deliberate attempts to design the game
in order to solve the collective-action problem.'? We approach the matter of
solution methods from the perspective of the type of game being played.

A solution is easiest if the collective-action problem takes the form of an
assurance game. Then it is in every person’s private interest to take the socially
best action if he expects all other persons to do likewise. In other words, the
socially optimal outcome is a Nash equilibrium. The only problem is that the
same game has other, socially worse, Nash equilibria. Then all that is needed to
achieve the best Nash equilibrium and thereby the social optimum is to make it

Prominent in this literature are Michael Taylor, The Possibility of Cooperation (New York: Cam-
bridge University Press, 1987); Elinor Ostrom, Governing the Commons (New York: Cambridge Uni-
versity Press, 1990}; and Matt Ridley, The Origins of Virtue (New York: Viking Penguin, 1996).

"The problem of the need to attain cooperation and its solutions are not unique to human so-
cieties. Examples of cooperative behavior in the animal kingdom have been explained by biologists
in terms of the advantage of the gene and of the evolution of instincts. For more, see Chapter 13 and
Ridley, Origins of Virtue,

"*See Ridley, Origins of Virtue, chaps. 6 and 7.

“The social sciences do not have precise and widely accepted definitions of terms such as cus-
tormand rnorsy nor are the distinctions among such terms always clear and unambiguous. We set out
some definitions in this section, but be aware that you may find different usage in other books. Our
approach is similar to those found in Richard Posner and Eric Rasmusen, “Creating and Enforcing
Norms, with Special Reference to Sanctions,” International Review of Law and Economics, vol, 19,
no. 3 {Septerber 1999}, pp. 369-382, and in David Kreps, “Intrinsic Motivation and Extrinsic Incen-
tives,” American Economic Review, Papers and Proceedings, vol. 87, no. 2 (May 1897), pp. 359-364;
Kreps uses the term rorm for all the concepts that we classify under different names.

Sociologists have a different taxonomy of norms from that of economists; it is based on the im-
portance of the matter (trivial matters such as table manners are called folkways, and weightier mat-
ters are cailed mores), and on whether the norms are formally codified as laws. They also maintain
a distinction between values and norms, recognizing that some norms may run counter to persons’
values and therefore require sanctions to enforce them. This distinetion corresponds to ours be-
tween customs, internalized norms, and enforced norms. The conflict between individuat values
and social goals arises for enforced norms but not for customs or conventions, as we label them, or
for internalized norms. See Donald Light and Suzanne Keller, Sociology, 4th ed. {New York: Knopf,
1987), pp. 57-60.
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a focal point—that is, to ensure the convergence of the players’ expectations on
it. Such a convergence can result from a social custom, or convention—namely,
a mode of behavior that finds automatic acceptance because it is in everyone's
interest to follow it so long as others are expected to do likewise. For example, if
all the farmers, herders, weavers, and other producers in an area want to get to-
gether to trade their wares, all they need is the assurance of finding others with
whom to trade. Then the custom that the market is held in village X on day Y of
every week makes it optimal for everyone to be there on that day."®

One complication remains. For the desired outcome to be a focal point,
each person must have confidence that all others understand it, which in turn
requires that they have confidence that all others understand. ... In other
words, the point must be common knowledge. Usually some prior social action
is necessary to ensure that this is true. Publication in a medium that is known
by everyone to be sufficiently widely read, and discussion in an inward-facing
circle so everyone knows that everyone else was present and paying attention,
are some methods used for this purpose,'*

Our analysis in Section 2 suggested that individual payoffs are often config-
ured in such a way that collective-action problems, particularly of large groups,
take the form of a prisoners’ dilemma. Not surprisingly, the methods for coping
with such problems have received the most attention.

The simplest method attempts to change people’s preferences so that the
game is no longer a prisoners’ dilemma. If individuals get sufficient pleasure
from cooperating, or suffer enough guilt or shame when they cheat, they will
cooperate to maximize their own payoffs. If the extra payoft from cooperation is
conditional—one gets pleasure from cooperating or guilt or shame from cheat-
ing if, but only if, many others are cooperating—then the game can turn into an
assurance game. In one of its equilibria, everyone cooperates because everyone
else does, and in the other, no one cooperates because no one else ¢oes. Then
the collective action problem is the simpler one of making the better equilib-
rium the focal point. If the extra payoff from cooperation is unconditional—
one gets pleasure from cooperating or guilt or shame from cheating regardiess
of what the others do—then the game can have a unique equilibrium where

“In his study of the emergence of cooperation, Cheating Monkeps and Citizen Bees (New York:
Free Press, 1999), the evolutionary biologist Lee Dugatkin labels this case “selfish teamwork.” He ar-
gues that such behavior is likelier to arise in times of crisis, because each person is pivotal at those
times. In a crisis, the outcome of the group interaction is likely to be disastrous for everyone if even
one person fails to contribute to the group’s effort to get out of the dire situation. Thus each person
is willing to contribute so long as the others do. We will mention Dugatkin’s full classification of al-
ternative approaches to cooperation in Chapter 13 on evolutionary games.

YSee Michael Chwe, Rational Ritual: Culture, Coordination, and Common Knowledge {Princeton,
NJ: Princeton: University Press, 2001), for a discussion of this issue and numerous examples and
applications of it.

A BRIEF HISTORY OF IDEAS 475

everyone cooperates. In many situations it is not even necessary for everyone to
have such payoffs. If a substantial proportion of the population does, that may
suffice for the desired collective outcome.

Some such prosocial preferences may be innate, hard wired in a biological
evolutionary process. But they are more likely to be social or cultural products.
Most societies make deliberate efforts to instill prosocial thinking in children
during the process of socialization in families and schools. Growth of such pref-
erences is seen in experiments on ultimatum and dictator games of the kind we
discussed in Chapter 3. When these experiments are conducted on children of
different ages, very young children behave selfishly. By age eight, however, they
develop a significant sense of equality. True prosocial preferences develop grad-
ually thereafter, with some relapses, finally to-an adult fair-mindedness. Thus a
long process of education and experience instills internalized norms into peo-
ple’s preferences.’

However, people do differ in the extent to which they internalize prosocial
preferences, and the process may not go far enough to solve many collective
action problems. Most people have sufficiently broad understanding of what
the socially cooperative action is in most situations, but individuals retain the
personal temptation to cheat. Therefore a system of external sanctions or pun-
ishments is needed to sustain the cooperative actions. We call these widely un-
derstood but not automatically followed rules of behavior enforced norms.

In Chapter 11, we described in detail several methods for achieving a co-
operative outcome in prisoners’ ditemma games, including repetition, penalties
(or rewards), and leadership. In that discussion, we were mainly concerned with
two-person dilemmas, The same methods apply to enforcement of norms in
collective-action problems in large groups, with some important modifications
or innovations.

We saw in Chapter 11 that repetition was the most prominent of these meth-
ods; so we focus the most attention on it. Repetition can achieve cooperative
outcomes as equilibria of individual actions in a repeated two-person prison-
ers’ dilemma by holding up the prospect that cheating will lead to a breakdown
of cooperation. More generally, what is needed to maintain cooperation is the
expectation in the mind of each player that his personal benefits from cheating
are transitory and that they will quickly be replaced by a payoff lower than that
associated with cooperative behavior. For players to believe that cheating is not
beneficial from a long-term perspective, cheating should be detected quickly,
and the punishment that follows (reduction in future payoffs) should be suffi-
ciently swift, sure, and painful.

YColin Camerer, Behavioral Game Theory {Princeton, NJ: Princeton University Press, 2003), pp.
65-67. See also pp, 63~75 for an account of differences in prosocial behavior along different dimen-
sions of demographic characteristics and across different cultures.
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A group has one advantage in this respect over a pair of individual persons.
The same pair may not have occasion to interact all that frequently, but each of
them is likely to interact with someone in the group all the time. Therefore B’s
temptation to cheat A can be countered by his fear that others, such as C, D, and
so on, whom he meets int the future will punish him for this action. An extreme
case where bilateral interactions are not repeated and punishment must be in-
flicted on one’s behalf by a third party is, in Yogi Berra’s well-known saying, “Al-
ways go to other people’s funerals. Otherwise they won't go to yours.”

But a group has some offsetting disadvantages over direct bilateral interac-
tion when it comes to sustaining good behavior in repeated interactions. The
required speed and certainty of detection and punishment suffer as the num-
bers in the group increase. One sees many instances of successful cooperation
in small village communities that would be unimaginable in a large city or state.

Start with the detection of cheating, which is never easy. In most real situa-
tions, payoffs are not completely determined by the players’ actions but are sub-
ject to some random fluctuations. Even with two players, if one gets a low payoff,
he cannot be sure that the other cheated; it may have been just a bad draw of
the random shock. With more people, an additional question enters the picture:
If someone cheated, who was it? Punishing someone without being sure of his
guilt beyond a reasonable doubt is not only morally'repulsive but also counter-
productive. The incentive to cooperate gets blunted if even cooperative actions
are susceptible to punishment by mistake.

Next, with many players, even when cheating is detected and the cheater
identified, this information has to be conveyed sufficiently quickly and accu-
rately to others. For this, the group must be small or else must have a good com-
munication or gossip network. Also, members should not have much reason to
accuse others falsely.

Finally, even after cheating is detected and the information spgead to the
whole group, the cheater’s punishment—enforcement of the social norm—has
to be arranged. A third person often has to incur some personal cost to inflict
such punishment. For example, if C is called on to punish B, who had previ-
ously cheated A, C may have to forgo some profitable business that he could
have transacted with B. Then the inflicting of punishment is itself a collective-
action game and suffers from the same temptation to “shirk,” that is, not to par-
ticipate in the punishment. A society could construct a second-round system of
punishments for shirking, but that in turn may be yet another collective-action
problem! However, humans seem to have evolved an instinct whereby people
get some personal pleasure from punishing cheaters even when they have not
themselves been the victims of this particular act of cheating.'® Interestingly, the

Bar evidence of such altruistic punishment instinct, see Ernst Fehr and Simon Géchier, “Altrais-
tic Punishment in Humans,” Nafure, vol. 415 (January 10, 2002), pp. 137-140.
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notion that “one should impose sanctions, even at personal cost, on violators of
enforced social norms” seems itself to have become an internalized norm."”

Norms are reinforced by observation of society’s general adherence to them,
and they lose their force if they are frequently seen to be violated. Before the
advent of the welfare state, when those who fell on hard economic times had
to rely on help from family or friends or their immediate small social group, the
work ethic constituted a norm that held in check the temptation to slacken one’s
own efforts and become a free rider on the support of others. As government
took over the supporting role and unemployment compensation or welfare
became an entitlement, this norm of the work ethic weakened. After the sharp
increases in unemployment in Europe in the late 1980s and early 1990s, a sig-
nificant fraction of the population became users of the official support system,
and the norm weakened even further.™

Different societies or cultural groups may develop different conventions and
norms to achieve the same purpose. At the trivial level, each culture has its own
set of good manners—ways of greeting strangers, indicating approval of food,
and so on. When two people from different cultures meet, misunderstandings
can arise. More important, each company or office has its own ways of getting
things done. The differences between these customs and norms are subtle and
difficult to pin down, but many mergers fail because of a clash of these “corpo-
rate cultures.”

Next, consider the chicken form of collective-action games. Here, the na-
ture of the remedy depends on whether the largest total social payoff is attained
when everyone participates (what we called “chicken version I” in Section
1.B} or when some cooperate and others are allowed to shirk (chicken ). For
chicken I, where everyone has the individual temptation to shirk, the problem
is much like that of sustaining cooperation in the prisoners’ dilemma, and all
the earlier remarks for that game apply here, too. Chicken I is different—easier
in one respect and harder in another. Once an assignment of roles between par-
ticipants and shirkers is made, no one has the private incentive to switch: if the
other driver is assigned the role of going straight, then you are better off swerv-
ing, and the other way around. Therefore, if a custom creates the expectation of

"Our distinction between internalized norms and enforced norms is similar to Kreps's distinc-
tion between functions (i) and (iv} of norms (Kreps, “Intrinsic Motivation and Extrinsic Incentives,”
p. 359). Society can also reward <lesirable actions just as it can punish undesirable ones. Again, the
rewards, financial or otherwise, can be given externally, or players’ payoffs can be changed so that
they take pleasure in doing the right thing. The two types of rewards can interact; for example, the
peerages and knighthoods given to British philanthropists and others who do good deeds for British
society are external rewards, but individual persons value them only because respect for knights and
peers is a British social norm.

PAssar Lindbeck, “Incentives and Social Norms in Household Behavior,” American Economic Re-
view, Papers and Proceedings, vol. 87, no, 2 (May 1997), pp. 370-377,
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an equilibrium, it can be maintained without further social intervention such as
sanctions. However, in this equilibrium, the shirkers get higher payoffs than the
participants do, and this inequality can create its own problems for the game;
the conflicts and tensions, if they are major, can threaten the whole fabric of the
society. Often the problem can be solved by repetition. The roles of participants
and shirkers can be rotated to equalize payoffs over time.

Sometimes the problem of differential payoffs in version II of the prisoners’
dilemma or chicken is “solved,” not by restoring equality but by oppression or
coercion, which forces a dominated subset of society to accept the lower payoff
and allows the dominant subgroup to enjoy the higher payoff. In many societies
throughout history, the work of handling animal carcasses was forced on par-
ticular groups or castes in this way. The history of the maltreatment of racial and
ethnic minorities and of women provides vivid examples of such practices. Once
such a system becomes established, no one member of the oppressed group can
do anything to change the situation. The oppressed must get together as a group
and act to change the whole system, itself another problem of collective action.

Finally, consider the role of leadership in solving collective-action problems.
In Chapter 11, we pointed out that, if the players are of very unequal “size,” the
prisoners’ dilemma may disappear because it may be in the private interests
of the larger player to continue cooperation and to accept the cheating of the
smaller player. Here we recognize the possibility of a different kind of bigness—
namely, having a “big heart.” People in most groups differ in their preferences,
and many groups have one or a few who take genuine pleasure in expending
personal effort to benefit the whole. If there are enough such people for the task
at hand, then the collective-action problem disappears. Most schools, churches,
local hospitals, and other worthy causes rely on the work of such willing volun-
teers. This solution, like others before it, is more likely to work in small groups,
where the fruits of their actions are more closely and immediately vigible to the
benefactors, who are therefore encouraged to continue,

. Applications

In her book Governing the Commons, Elinor Osirom describes several examples
of resolution of common-resource problems at local levels. Most of them require
taking advantage of features specific to the context in order to set up systems of
detection and punishment. A fishing community on the Turkish coast, for exam-
ple, assigns and rotates locations to its members; the person who is assigned a
good location on any given day will naturally observe and report any intruder who
tries to usurp his place. Many other users of common resources, including the
grazing commons in medieval England, actually restricted access and controlled
overexploitation by allocating complex, tacit, but well-understood rights to
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individual persons. In one sense, this solution bypasses the common-resource
problem by dividing up the resource into a number of privately owned subunits.

The most striking feature of Ostrom's range of cases is their immense vari-
ety. Some of the prisoners’ dilemmas of the exploitation of common-property
resources that she examined were solved by private initiative by the group of
people actually in the dilemma; others were solved by external public or govern-
mental intervention. In some instances, the dilemma was not resolved at all, and
the group remained trapped in the all-shirk outcome. Despite this variety, Os-
trom identifies several common features that make it easier to solve prisoners’
dilemmas of collective action: {1) it is essential to have an identifiable and stable
group of potential participants; (2) the benefits of cooperation have to be large
enough to make it worth paying all the costs of monitoring and enforcing the
rules of cooperation; and (3} it is very important that the members of the group
can communicate with each other. This last feature accomplishes several things.
First, it makes the norms clear—everyone knows what behavior is expected,
what kind of cheating will not be tolerated, and what sanctions will be imposed
on cheaters. Next, it spreads information about the efficacy of the detection of
the cheating mechanism, thereby building trust and removing the suspicion
that each participant might hold that he is abiding by the rules while others are
getting away with breaking them. Finally, it enables the group to monitor the ef-
fectiveness of the existing arrangements and to improve on them as necessary.
All these requirements look remarkably like those identified in Chapter 11 from
our theoretical analysis of the prisoners’ dilemma {Sections 2 and 3) and from
the observations of Axelrod’s tournaments (Section 6).

Ostrom’s study of the fishing village also illustrates what can be done if the
collective optimum requires different persons to do different things, in which
case some get higher payoffs than others. In a repeated relationship, the advan-
tageous position can rotate among the participants, thereby maintaining some
sense of equality over time.

Ostrom finds that an external enforcer of cooperation may not be able to
detect cheating or impose punishment with sufficient clarity and swiftness.
Thus the frequent reaction that centralized or government policy is needed to
solve collective-action problems is often proved wrong. Another example comes
from village communities or “communes” in late-nineteenth-century Russia.
These communities solved many collective-action problems of irrigation, crop
rotation, management of woods and pastures, and road and bridge construc-
tion and repair in just this way. “The village . . . was not the haven of commu-
nal harmony. . . . It was simply that the individual interests of the peasants were
often best served by collective activity.” Reformers of early twentieth-century
czarist governments and Soviet revolutionaries of the 1920s alike failed, partly
because the old system had such a hold on the peasants’ minds that they resisted




480 [CH. 12] COLLECTIVE-ACTION GAMES

anything new, but also because the reformers failed to understand the role that
some of the prevailing practices played in solving collective-action problems
and thus failed to replace them with equally effective alternatives.'

The difference between small and large groups is well illustrated by Avner
Greif’s comparison of two groups of traders in countries around the Mediter-
ranean Sea in medieval times. The Maghribis were Jewish traders who relied on
extended family and social ties. If one member of this group cheated another,
the victim informed all the others by wriling letters. When guilt was convincingly
proved, no one in the group would deal with the cheater. This system worked
well on a small scale of trade, But as trade expanded around the Mediterranean,
the group could not find sufficiently close or reliable insiders to go to the coun-
tries with the new trading opportunities.

In contrast, the Genoese traders established a more official legal system. A
contract had to be registered with the central authorities in Genoa. The victim of
any cheating or violation of the contract had to take a complaint to the authori-
ties, who carried out the investigation and imposed the appropriate fines on the
cheater. This system, with all its difficulties of detection, could be more easily
expanded with the expansion of trade.®® As economies grow and world trade
expands, we see a similar shift from tightly linked groups to more arm’s-length
trading relationships, and from enforcement based on repeated interactions to
that of the official law. ,

The idea that small groups are more successful at solving collective-action
problems forms the major theme of Olson's Logic of Collective Action (see
footnote 8) and has led to an insight important in political science. In a democ-
racy, all voters have equal political rights, and the majority’s preference should
prevail. But we see many instances in which this does not happen. The effects
of policies are generally good for some groups and bad for others. To get its pre-
ferred policy adopted, a group has to take political action—Ilobbying, publicity,
campaign contributions, and so on. To do these things, the group must solve a
collective-action problem, because each member of the group may hope to shirk
and enjoy the benefits that the others’ efforts have secured. If small groups are
better able to solve this problem, then the policies resulting from the political
process will reflect their preferences, even if other groups who fail to organize
are more numerous and suffer greater losses than the successful groups’ gains.

“Orlando Figes, A People's Tragedy: The Russian Revolution 1891-1924 (New York: Viking Pen-
guin, 1997), pp. 89-90, 240-241, 729-730. See also Ostrom, Governing the Commons, p. 23, for other
instances where external, government-enforced attempts to solve common-resource problems
actually made them worse.

®avner Greif, “Culturai Beliefs and the Organization of Society: A Historical and Theoretical
Reflection on Collectivist and Individualist Societies,” Journal of Political Economy, vol. 102, no. 5
(October 1994), pp. 912-950.
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The most dramatic example of policies reflecting the preferences of the
organized group comes from the arena of trade policy. A country’s import re-
strictions help domestic producers whose goods compete with these imports,
but they hurt the consumers of the imported goods and the domestic compet-
ing goods alike, because prices for these goods are higher than they would be
otherwise. The domestic producers are few in number, and the consumers are
almost the whole population; the total dotlar amount of the consumers' losses
is typically far-bigger than the total dollar amount of the producers’ gains. Politi-
cal considerations based on constituency membership numbers and economic
considerations of dollar gains and losses alike would lead us to expect a con-
sumer victory in this policy arena; we would expect to see at least a push for the
idea that import restrictions should be abolished, but we don't. The smaller and
more tightly knit associations of producers are better able to organize for politi-
cal action than the numerous, dispersed consumers.

More than 70 years ago, the American political scientist E. E. Schatisch-
neider provided the first extensive documentation and discussion of how pres-
sure politics drives trade policy. He recognized that “the capacity of a group for
organization has a great influence on its activity,” but he did not develop any
systematic theory of what determines this capacity.* The analysis of Olson and
others has improved our understanding of the issue, but the triumph of pres-
sure politics over economics persists in trade policy to this day. For example,
in the late 1980s, the U.S. sugar policy cost each of the 240 million people in
the United States about $11.50 per year for a total of about $2.75 billion, while
it increased the incomes of about 10,000 sugar-beet farmers by about $50,000
each, and the incotnes of 1,000 sugarcane farms by as much as $500,000 each,
for a total of about $1 billion. The net loss to the U.S. economy was $1.75 bil-
Hion.* Each of the unorganized consumers continues to bear his small share of
the costs in silence; many of them are not even aware that each is paying $11.50
a year too much for his sweet tooth.

If this overview of the theory and practice of solving collective-action prob-
lems seems diverse and lacking a neat summary statement, that is because the
problems are equally diverse, and the solutions depend on the specifics of each
problem. The one general lesson that we can provide is the importance of letting
the participants themselves devise solutions by using their local knowledge of the
situation, their advantage of proximity in monitoring the cooperative or shirk-
ing actions of others in the community, and their ability to impose sanctions on
shirkers by exploiting various ongoing relationships within the social group.

3 E, B, Schattschneider, Politics, Pressures, and the Tariff (New York: Prentice-Hall, 1935); see es-
pecially pp. 285-286.

% Stephen V. Marks, “A Reassessment of the Empirical Evidence on the U.S. Sugar Program,” in
The Economics and Politics of World Sugar Policies, ed. Stephen V. Marks and Keith B, Maskus (Ann
Arbor: University of Michigan Press, 1993}, pp. 79~108.
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Finally, a word of caution. You might be tempted to come away from this
discussion of collective-action problems with the impression that individual
freedom always leads to harmful outcomes that can and must be improved by
social norms and sanctions. Remember, however, that societies face problems
other than those of collective action; some of them are better solved by indi-
vidual initiative than by joint efforts. Societies can often get hidebound and
autocratic, becoming trapped in their norms and customs and stifling the inno-
vation that is so often the key to economic growth. Collective action can become
collective inaction.”

In the chicken variant of collective-action problems discussed in earlier sec-
tions, we looked only at the pure-strategy equilibria. But we know from Chapter
7 that such games have mixed-strategy equilibria, too. In collective-action prob-
lems, where each participant is thinking, “It is better if I wait for enough others
to participate so that I can shirk; but then again, maybe they won't, in which
case I should participate,” mixed strategies nicely capture the spirit of such vac-
illation. Our last story is a dramatic, even chilling application of such a mixed-
strategy equilibrium. ‘

In 1964 in New York City (in Kew Gardens, Queens), a woman named Kitty
Genovese was killed in a brutal attack that lasted more than half an hour. She
screamed through it all and, although her screams were heard by many people
and more than 30 actually watched the attack taking place, not one went to help
her or even called the police.

The story created a sensation and found several ready theories to explain
it. The press and most of the public saw this episode as a confirmation of their
belief that New Yorkers—or big-city dwellers or Americans or people more
generally—were just apathetic or didn't care about their fellow human beings.

However, even a little introspection or observation will convince you that
peaple do care about the well-being of other humans, even strangers. Social sci-
entists offered a different explanation for what happened, which they labeled
pluralistic ignorance. The idea behind this explanation is that no one can be
sure about what is happening or whether help is really needed and how much.
People look to each other for clues or guidance about these matters and try to
interpret other people’s behavior in this light. If they see that no one else is doing

® David Landes, The Wealth and Poverty of Nations (New York: Norton, 1998), chaps. 3 and 4,
makes a spirited case for this effect.
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anything to help, they interpret it as meaning that help is probably not needed,
and so they don't do anything either. This explanation has some intuitive appeal
but is unsatisfactory in the Kitty Genovese context. There is a very strong pre-
sumption that a screaming woman needs help. What did the onlookers think—
that a movie was being shot in their obscure neighborhood? If so, where were
the lights, the cameras, the director, other crew?

A better explanation would recognize that although each onlooker may ex-
perience strong personal loss from Kitty’s suffering and get genuine personal
pleasure if she were saved, each must balance that against the cost of getting
involved. You may have to identify yourself if you call the police; you may then
have to appear as a witness, and so on. Thus, we see that each person may pre-
fer to wait for someone else to call and hope to get for himself the free rider’s
benefit of the pleasure of a successful rescue,

Social psychologists have a slightly different version of this idea of free rid-
ing, which they label diffusion of responsibility. In this version, the idea is that
everyone might agree that help is needed, but they are not in direct commu-
nication with each other and so cannot coordinate on who should help. Each
person may believe that help is someone else’s responsibility. And the larger the
group, the more likely it is that each person will think that someone else would
probably help, and therefore he can save himself the trouble and the cost of get-
ting involved.

Social psychologists conducted some experiments to test this hypothesis.
They staged situations in which someone needed help of different kinds in dif-
ferent places and with different-sized crowds. Among other things, they found
that the larger the size of the crowd, the less likely was help to come forth.

The concept of diffusion of responsibility seems to explain this finding, but
not quite completely. It claims that the larger the crowd, the less likely is any
one person to help. But there are more people, and only one person is needed to
act and call the police to secure help. To make it less likely that even one person
helps, the chance of any one person helping has to decrease sufficiently fast to
offset the increase in the total number of potential helpers. To find out whether
it does so requires game-theoretic analysis, which we now supply.?*

We consider only the aspect of diffusion of responsibility in which action is
not consciously coordinated, and we leave aside all other complications of in-
formation and inference. Thus we assume that everyone believes the action is
needed and is worth the cost.

M Tor a fuller account of the Kitty Genovese story and for the analysis of such situations from
the perspective of social psychology, see John Sabini, Social Psychology, 2nd ed. {New York: Nor-
ton, 1995}, pp. 39-44. Qur game-theoretic model is based on Thomas Palfrey and Howard Rosen-
thal, “Participation and the Provision of Discrete Public Goods,” journal of Public Economics, vol. 24
(1984}, pp. 171-193.
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Suppose N people are in the group. The action brings each of them a benefit
B. Only one person is needed to take the action; more are redundant. Anyone
who acts bears the cost C. We assume that B > C; so it is worth any one person’s
while to act even if no one else is acting. Thus the action is justified in a very
strong sense.

The problem is that anyone who takes the action gets the value B and pays
the cost C for a net payoff of (B — C), whereas he would get the higher payoff
B if someone else took the action. Thus each person has the temptation to let
someone else go ahead and to become a free rider on another’s effort. When all
Nrpeople are thinking thus, what will be the equilibrium or outcome?

If N = 1, the single person has a simple decision problem rather than a
game. He gets B — > 0 if he takes the action and 0 if he does not. Therefore he
goes ahead and helps.

If N> 1, we have a game of strategic interaction with several equilibria. Let us
begin by ruling out some possibilities. With N > 1, there cannot be a pure-strategy
Nash equilibrium in which all people act, because then any one of them would
do better by switching to free ride. Likewise, there cannot be a pure-strategy
Nash equilibrium in which no one acts, because given that no one else is acting
{remember that under the Nash assumption each plaver takes the others’ strate-
gies as given), it pays any one person to act. '

There are Nash equilibria where exactly one person acts; in fact, there are
N such equilibria, one corresponding to each member. But when everyone
is making the decision individually in isolation, there is no way to coordinate
and designate who is to act. Even if members of the group were to attempt such
coordination, they might try to negotiate over the responsibility and not reach a
conclusion, at least not in time to be of help. Therefore it is of interest to examine
symmetric equilibria in which all members have identical strategies.

We already saw that there cannot be an equilibrium in which all N people
follow the same pure strategy. Therefore we should see whether there can be an
equilibrium in which they all follow the same mixed strategy. Actually, mixed
strategies are quite appealing in this context. The people are isolated, and each
is trying to guess what the others will do. Each is thinking, Perhaps I should call
the police . . . but maybe someone else will . . . but what if they don't . .. 2 Each
breaks off this process at some point and does the last thing that he thought of
in this chain, but we have no good way of predicting what that last thing is. A
mixed strategy carries the flavor of this idea of a chain of guesswork being bro-
ken at a random point.

So suppose Pis the probability that any one person will not act. If one par-
ticular person is willing to mix strategies, he must be indifferent between the
two pure strategies of acting and not acting. Acting gets him (B ~ C) for sure.
Not acting will get him 0 if none of the other (N — I) people act and B if at least
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one of them does act. Because the probability that any one person fails to act
is P and because they are deciding independently, the probability that none of
the (N — 1) others acts is P¥"!, and the probability that at Ieast one does act is
(1 — P¥Y). Therefore the expected payoff to the one person when he does not
actis

0 x PNVl B(1 — PNy = B(1 — pNYy,
And that one person is indifferent between acting and not acting when
B— C= B(1 ~ P""") orwhen PV = (JBor P= {C/B)V/¥1,

Note how this indifference condition of one selected player determines the
probability with which the other players mix their strategies.

Having obtained the equilibrium mixture probability, we can now see how it
changes as the group size N changes. Remember that C/B < 1. As Nincreases from
2 to infinity, the power 1/(N — 1) decreases from 1 to 0. Then (/B raised to this
power—namely, P—increases from C/Bto 1. Remember that Pis the probability
that any one person does not take the action. Therefore the probability of action
by any one person—namely, (1 ~ P)—falls from 1 — C/B= (B~ C)/Bto 0.%

In other words, the more people there are, the less likely is any one of them
to act. This is intuitively true, and in good conformity with the idea of diffusion
of responsibility. But it does not yet give us the conclusion that help is less likely
to be forthcoming in a larger group. As we said before, help requires action by
only one person. Because there are more and more people, each of whom is less
and less likely to act, we cannot conclude immediately that the probability of at
least one of them acting gets smaller. More calculation is needed to see whether
this is the case.

Because the N persons are randomizing independently in the Nash equilib-
rium, the probability Q that not even one of them helps is

Q= P" = (C/B)NND,

As N increases from 2 to infinity, N/(N - 1) decreases from 2 to 1, and then Q
increases from (C/B)* to C/B. Correspondingly, the probability that ar least one
person helps—namely (1 - Q)—decreases from 1 - {C/B)? to 1 - C/B.2®

So our exact calculation does bear out the hypothesis: the larger the group,
the less likely is help to be given at all. The probability of provision does not,

#Consider the case in which B = 10 and = 8. Then Pequals 0.8 when N = 2, rises to 0.998 when
N = 100, and approaches | as N continues to rise. The probability of action by any one person is
1 — P, which falls from 0.2 to 0 as N rises from 2 toward infinity.

®With the same sample values for B (10) and € (8), this result implies that increasing N from 2 to
infinity increases the probability that not even one person helps from 0.64 to 0.8. And the probabii-
Ity that at least one person helps falls from 0.36 to 0.2,
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however, reduce to zero even in very large groups; instead it levels off at a
positive value—namely, (B — C)/B—which depends on the benefit and cost of
action to each individual,

We see how game-theoretic analysis sharpens the ideas from social psychol-
ogy with which we started. The diffusion of responsibility theory takes us part
of the way-—namely, to the conclusion that any one person is less likely to act
when he is part of a larger group. But the desired conclusion—that larger groups
are less likely to provide help at all-—needs further and more precise probability
calculation based on the analysis of individual mixing and the resulting interac-
tive {game) equilibrium.

And now we ask, did Kitty Genovese die in vain? Do the theories of plural-
istic ignorance, diffusion of responsibility, and free-riding games still play out
in the decreased likelihood of individual action within increasingly large cit-
les? Perhaps not. John Tierney of the New York Times has publicly extolled the
virtues of “urban cranks.” They are people who encourage the civility of
the group through prompt punishment of those who exhibit unacceptable
behavior—includinglitterers, noise polluters, and the generally obnoxious boors
of society. Such “cranks” are essentially enforcers of a cooperative norm for
society. And as Tierney surveys the actions of known “cranks,” he reminds the
rest of us that “[nJew cranks must be mobilized! At this very instant, people
are wasting time reading while norms are being flouted out on the street. . . .
You don't live alone in this world! Have you enforced a norm today?” In other
words, we need social norms and some people who have internalized the norm
of enforcing norms.

Multiplayer games generally concern problems of collective action. fhe general
structure of collective-action games may be manifested as a prisoners’ dilemma,
chicken, or an assurance game. The critical difficulty with such games in any
form is that the Nash equilibrium arising from individually rational choices may
not be the socially optimal outcome—the outcome that maximizes the sum of
the payoffs of all the players.

In collective-action games, when a person’s action has some effect on the
payoffs of all the other players, we say that there are spillovers, or externali-
ties. They can be positive or negative and lead to individually driven outcomes

¥John Tierney, “The Boor War; Urban Cranks, Unite—Against All Uncivil Behavior. Eggs Arc a Last
Resort,” New York Times Magazine, January 5, 1997,
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that are not socially optimal. When actions create negative spillovers, they are
overused from the perspective of society; when actions create positive spill-
overs, they are underused. The additional possibility of pesitive feedback exists
when there are positive spillovers; in such a case, the game may have multiple
Nash equilibria.

Problems of collective action have been recognized for many centuries and
discussed by scholars from diverse fields. Several early works professed no hope
for the situation, but others offered up dramatic solutions. The most recent
treatments of the subject acknowledge that collective-action problems arise in
diverse areas and that there is no single optimal solution. Social scientific analy-
sis suggests that social custom, or convention, can lead to cooperative behavior.
Other possibilities for solutions come from the creation of norms of acceptable
behavior. Some of these norms are internalized in individuals’ payoffs; others
must be enforced by the use of sanctions in response to the uncooperative be-
havior. Much of the literature agrees that small groups are more successful at
solving collective-action problems than large ones.

In large-group games, diffusion of responsibility can lead to behavior in
which individual persons wait for others to take action and free ride off the ben-
efits of that action. If help is needed, it is less likely to be given at all as the size of
the group available to provide it grows.

KEY TERMS -~
coercion {(478) marginal social gain (461)
collective action (446) nonexcludable benefits (447)
convention {474) nonrival benefits (447)
custom (474) norm (473)
diffusion of responsibility (483) oppression (478)
external effect (461) pluralistic ignorance (482)
externality (461) positive feedback (468)
free rider (449) pure public good (447)
internalize the externality (467) sanction (473)
locked in (470) social optimum (449)
marginal private gain (461) spillover effect (461)
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wiwevses SOLVED EXERCISES oo o

51. Suppose that 400 people are choosing between Action X and Action Y, The

relative payoffs of the two actions depend on how many of the 400 people
choose Action X and how many choose Action Y. The payoffs are as shown
in the following diagram, but the vertical axis is not labeled, so you do not
know whether the lines show the benefits or the costs of the two actions.

?

Action X Action Y

1] Number using Action X

(a} You are told that the outcome in which 200 people choose Action X is
an unstable equilibrium. If 100 people are currently choosing Action X,
would you expect the number of people choosing X to increase or de-
crease over time? Why?

(b} For the graph to be consistent with the behavior that you described in
part (a), should the lines be labeled as indicating the costs of benefits of
Action X and Action Y? Explain your answer,

52. A group has 100 members. Each person can choose to participate or not

participate in a common project. If x of them participate in the project,

then each participant derives the benefit p(n) = 5, and each of the {100 — 1)

shirkers derives the benefit s(n) = 4 + 3n.

() Is this an example of a prisoners’ dilemma, a game of chicken, or an
assurance game?

(b} Write the expression for the total benefit of the group.

(¢) Show, either graphically or mathematicaily, that the maximum total
benefit for the group occurs when n = 74.

(d) What difficulties will arise in trying to get exactly 74 participants and
allowing the remaining 26 to shirk?

(e) How might the group try to overcome these difficulties?

EXERCISES 48a%

83. Consider a small geographic region with a total population of 1 million peo-

54

v

§5.

ple. There are two towns, Alphaville and Betaville, in which each person can
choose to live. For each person, the benefit from living in a town increases
for a while with the size of the town (because larger towns have more ame-
nities and so on), but after a point it decreases (because of congestion and
so on). If x is the fraction of the population that lives in the same town as
you do, your payoff is given by

xif0=x=04
06 -05xif04<x=1.

(a) Draw a graph like Figure 12.10, showing the benefits of living in the two
towns, as the fraction living in one versus the other varies continuously
from Oto 1.

{b) Equilibrium is reached either when both towns are populated and their
residents have equal payoffs, or when one town—say Betaville—is
totally depopulated, and the residents of the other town (Alphaville} get
a higher payoff than would the very first person who seeks to populate
Betaville. Use your graph to find all such equilibria.

(c) Now consider a dynamic process of adjustment whereby people grad-
ually move toward the town whose residents currently enjoy a larger
payoff than do the residents of the other town. Which of the equilibria
identified in part {b) will be stable with these dynamics? Which ones will
be unstable?

Suppose an amusement park is being built in a city with a population of

100. Voluntary contributions are being solicited to cover the cost. Each citi-

zen is being asked to give $100. The more people contribute, the larger the

park will be and the greater the benefit to each citizen. But it is not possible
ta keep out the noncontributors; they get their share of this benefit anyway.

Suppose that when there are n contributors in the population, where 7 can

be any whole number between 0 and 100, the benefit to each citizen in mon-

etary unit equivalents is #* dollars.

(a) Suppose that initially no one is contributing. You are the mayor of the
city. You would like everyone to contribute and can use persuasion on
some people. What is the minimum number whom you need to per-
suade before everyone else will join in voluntarily?

(b) Find the Nash equilibria of the game where each citizen is deciding
whether to contribute.

Put the idea of Keynesian unemployment described at the end of Section
3.D into a properly specified game, and show the multiple equilibria in a di-
agram. Show the level of production {national product) on the vertical axis
as a function of a measure of the level of demand {national income) on the
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horizontal axis. Equilibrium is reached when national product equals na-
tional income-—that is, when the function relating the two cuts the 45° line.
For what shapes of the funciion can there be multiple equilibria? Why might
you expect such shapes in reality? Suppose that income increases when cur-
rent production exceeds current income, and that income decreases when
current production is less than current income. In this dynamic process,
which equilibria are stable and which ones unstable?

Write a brief description of a strategic game that you have witnessed or par-
ticipated in that includes a large number of players and in which individual
players’ payoffs depend on the number of other players and their actions.
Try to illustrate your game with a graph if possible. Discuss the outcome of
the actual game in light of the fact that many such games have inefficient
outcomes. Do you see evidence of such an outcome in your game?

- UNSOLVED EXERCISES =

Figure 12.5 illustrates the payoffs in a general, two-person, collective-action

game. There we showed various inequalities on the algebraic payoffs (p(1),

etc.) that made the game a prisoners’ dilemmma. Now you are asked to find

similar inequalities corresponding to other kinds of games:

(a} Under what condition(s) on the payoffs is the two-person game a
chicken game? What further condition(s) make the game version I of
chicken (as in Figure 12.3)?

() Under what condition{s) on the payoffs is the two-person game an
assurance game?

U2, A class with 30 students enrolled is given a homework assignment with

five questions. The first four are the usual kinds of problems, totalling to 90
points. But the {ifth is an interactive game for the class. The question reads:
“You can choose whether to answer this question. If you choose to do so, you
merely write ‘T hereby answer Question 5." If you choose not to answer Ques-
tion 5, your score for the assignment will be based on your performance on
the first four problems. If you choose to answer Question 5, then your scor-
ing will be as follows: If fewer than half of the students in the class answer
Question 5, you get 10 points for Question 5; 10 points will be added to your
score on the other four questions to get your total score for the assignment.
If half or more than half of the students in the class answer Question 5, you
get —10 points; that is, 10 points will be subtracted from your score on the
other questions.”

EXERCISES 421

{a) Draw a diagram illustrating the payoffs from the two possible strategies,
‘Answer Question 5” and “Don’t Answer Question 5,” in relation to the
number of other students who answer it. Find the Nash equilibrium of
the game.

(b) What would you expect to see happen in this game if it were actually
played in a college classroom? Why? Consider two cases: (i) the students
make their choices individually with no communication; and (ii) the
students make their choices individually but can discuss these choices
ahead of time in a discussion forum available on the class Web site.

U3. There are two routes for driving from A to B. One is a freeway, and the other

consists of local roads. The benefit of using the freeway is constant and equal
to 1.8, irrespective of the number of people using it. Local roads get con-
gested when too many people use this alternative, but if not enough people
use it, the few isolated drivers run the risk of becoming victims of crimes.
Suppose that when a fraction x of the population is using the local roads, the
benefit of this mode to each driver is given by

1+ 9x— 1055

(a) Draw a graph showing the benefits of the two driving routes as functions
of x, regarding x as a continuous variable that can range from 0 to 1.

(b) Identify all possible equilibrium traffic patterns from your graph in part
(a). Which equilibria are stable? Which ones are unstable? Why?

(c) What value of x maximizes the total benefit to the whole population?

U4. Suppose a class of 100 students is comparing two careers—lawyer or en-

gineer. An engineer gets take-home pay of $100,000 per year, irrespec-

tive of the numbers who choose this career. Lawyers make work for each

other, so as the total number of lawyers increases, the income of each law-
yer increases—up to a point. Ultimately, the competition between them
drives down the income of each. Specifically, if there are N lawyers, each

will get 100N — N? thousand dollars a year. The annual cost of running a

legal practice {office space, secretary, paralegals, access to online refer-

ence services, and so forth) is $800,000. Therefore, each lawyer takes home
100N — N2 — 800 thousand dollars a year when there are N of them.

{a) Draw a graph showing the take-home income of each lawyer on the ver-
tical axis and the number of lawyers on the horizontal axis. (Plot a few
points—say, for 0, 10, 20, . .., 90, 100 lawyers. Fit a curve to the points,
or use a computer graphics program if you have access to one.)

(b) When career choices are made in an uncoordinated way, what are the
possible equilibrium outcomes?




492 [CH. 12] COLLECTIVE-ACTION GAMES

(c) Now suppose the whole class decides how many should become law-
yers, aiming to maximize the total take-home income of the whole class.
What will be the number of lawyers? (If you can, use calculus, regarding
N as a continuous variable. Otherwise you can use graphical methods or
a spreadsheet.)

US5. A group of 12 countries is considering whether to form a monetary union.

They differ in their assessments of the costs and benefits of this move, but
each stands to gain more from joining, and lose more from staying out,
when more of the other countries choose to join. The countries are ranked
in order of their liking for joining, 1 having the highest preference for joining
and 12 the least. Each country has two actions, IN and QUT. Let

Blin)=22+n-1i

be the payoff to country with ranking i when it chooses IN and r others have
chosen IN. Let

Sthm=i-n

be the payoff to country with ranking { when it chooses OUT and » others

have chosen IN. .

(a) Show that for country 1, IN is the dominant strategy.

(b) Having eliminated OUT for country 1, show that IN becomes the domi-
nant strategy for country 2,

{¢) Continuing in this way, show that all countries will chcose IN.

(d} Contrast the payoffs in this outcome with those where all choose QUT.
How many countries are made worse off by the formation of the union?

U6. (Optional, computer or graphing calculator required.) Exercise U2 asks

for an asymmetric pure-strategy Nash equilibrium to the game where
30 students decide whether or not to answer the fifth question on their
homework assignment. But a symmetric equilibrium—where all players
employ the same strategy—also exists in mixed strategies. Suppose each
player chooses to answer Question 5 with probability P, and not to answer
it with probability 1 — P. This kind of equilibrium can be found following
a procedure similar to that discussed in Section 6, that is, by showing that
an individual student is indifferent between answering the question and
not answering the question. However, this specific problem is more compli-
cated, because the expected payoff to answering the question depends on
the probability that 0 out of 29 of the other students decide to answer the
question, the probability that 1 out of 29 of the other students decide to
answer the question, the probability that 2 out of 29 of the other students de-
cide to answer the question, and so on. These probabilities are given by the
binomial distribution, which you can look up either in a probability texthook
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or online. Remember that each of the other 29 students will individually

answer Question 5 with probability P.

(a) Using the binomial distribution, construct an indifference equation that
can be solved for the value of P.

(b) Because the indifference equation found in part (a) includes a very
high-order polynomial, it may be impossible to solve the equation ana-
lytically. Instead, find the approximate solution numerically, using soft-
ware such as Microsoft Excel, MATLAB, or Mathematica. For example,
you can do this in Excel by guessing a value of Pin one cell, then setting
up a formula in another cell that gives the expected value of answering
the question. Change the value in the first cell to zero in on the correct
value of P. What is the equilibrium value of P?




