Comunidades II:

Métricas da diversidade

Abordagem via Riqueza S

Categorias de diversidade

DIVERSIDADE DE INVENTÁRIO

(em função da escala e heterogeneidade) (Whittaker, 1972)

Diversidade de ponto		
(área homogênea	Diversidade Alfa com micro-hábitats diferenciados)	
(á	Diversida área com diferentes	ade Gama s hábitats)

Categorias de diversidade

DIVERSIDADE DE DIFERENCIAÇÃO

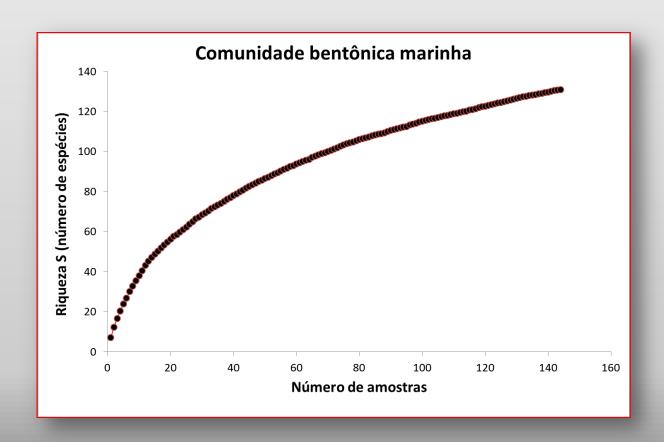
(em função da escala e heterogeneidade) (Whittaker, 1972)

Unidades Alfa		
	Diversidade Beta (entre unidades Alfa)	
		sidade Delta ades Gama)

I) <u>Descritores independentes das abundâncias específicas</u> (qualitativos).

* Riqueza S:

- número de espécies no espaço descrito.
- depende do tamanho da área observada (amostra).
- > pode ser apresentada na forma complexa:
 - espectros S x Área
 - espectros S x Número total de indivíduos na amostra
- em decorrência disso, a diversidade específica pode ser expressa em termos de atributos dos espectros tais como os parâmetros das funções matemáticas que os descrevem.


* Índices derivados de espectros:

Gleason
$$_{(1922)} = \frac{S}{\log N}$$

Marg alef
$$_{(1951)} = \frac{S-1}{\log N}$$

Menhinik
$$_{(1964)} = \frac{S}{\sqrt{N}}$$

Curva espécies x área - Dados diretos

Curva espécies x área - Dados diretos

Problema:

A relação Riqueza S (Y) x Área (X) não é linear.

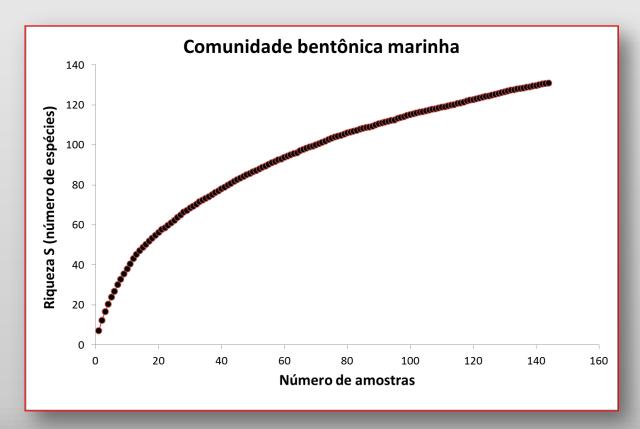
 O valor da riqueza é vinculado à área amostrada segundo diversas possíveis funções.

Curva espécies (Y) x área (X)

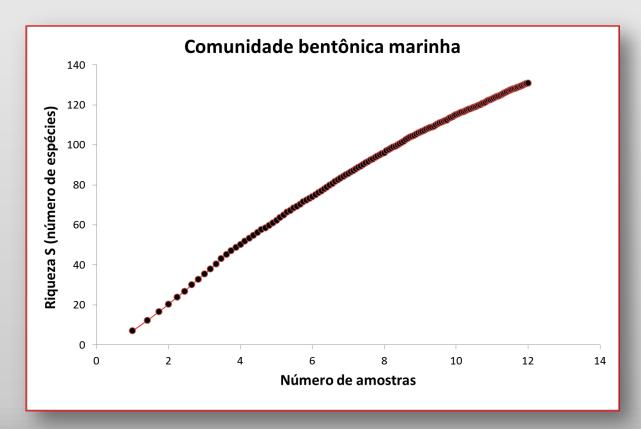
Solução: obter espectro linear cuja inclinação é constante em função da área

A relação espécies x área pode ser descrita por:

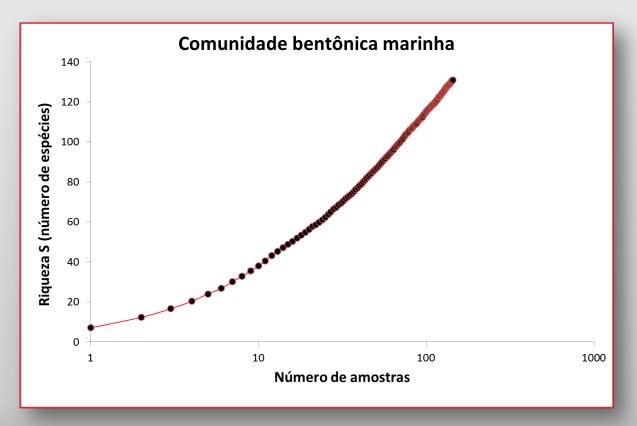
função potencial (y = axb) – lineariza com log-log

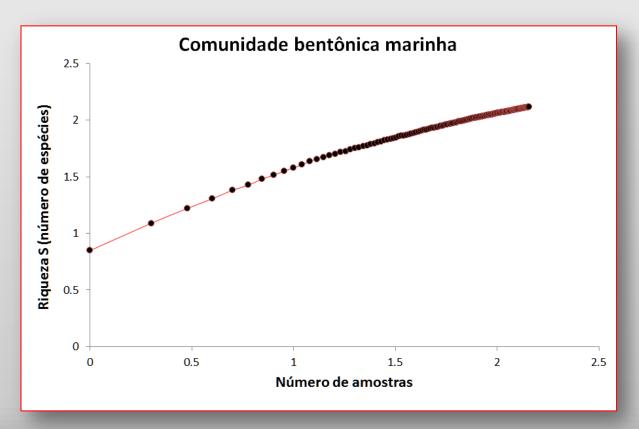

$$S=cA^z$$

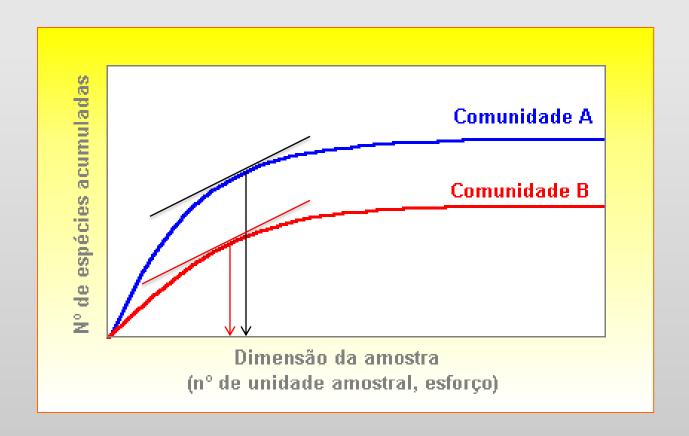
$$log(S) = log(c) + zlog(A)$$


função exponenciais (y = abx) – lineariza com semi-log

função de Michaelis-Menten (ax/(1+bx) – é assintótica

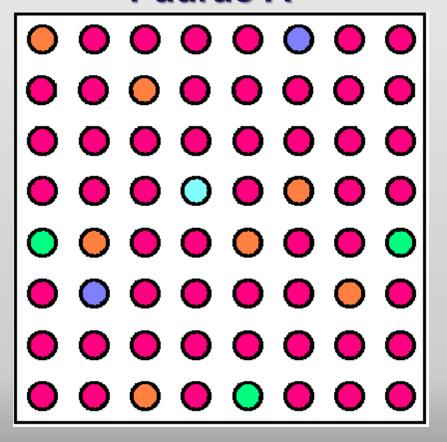

Curva espécies x área – Dados diretos


Curva espécies x área – Sqrt (X)

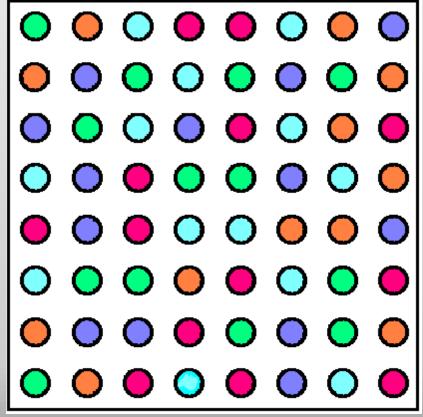


Curva espécies x área – Log₁₀ (X)

Curva espécies x área – Log₁₀ (X); Log₁₀ (Y)

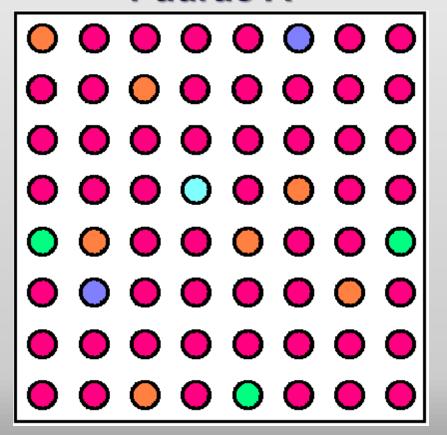


Comparações entre riquezas são possíveis somente se as representatividades das amostras das respectivas comunidades forem equivalentes.

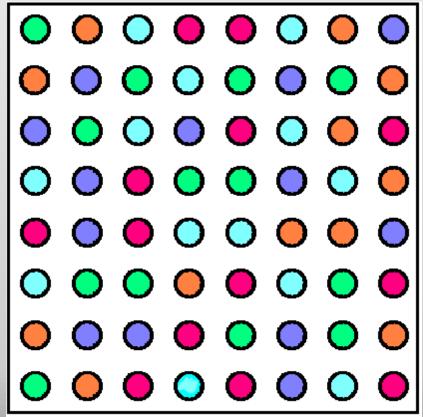

Abordagem via Índices

Riqueza aparente: qual o padrão mais rico?

Padrão A



Padrão B



Riqueza aparente: qual o padrão mais rico?

Padrão A

Padrão B

$$S = 5$$

$$S = 5$$

II) <u>Descritores dependentes das abundâncias específicas</u> (quantitativos).

Conceitos importantes

> Riqueza aparente:

- corresponde ao número de espécies que seriam necessárias para, ocorrendo em proporções exatamente iguais, produzir-se o valor numérico da diversidade efetivamente determinado para a amostra.
- > na prática, pode ser entendida como o número de espécies conspícuas, do ponto de vista do índice utilizado.

> Dominância:

- > situação em que uma ou poucas espécies de uma comunidade já acumulam grande parte dos indivíduos da mesma.
- ➤ a dominância numérica, relevante para as medidas de diversidade, pode refletir ou não a dominância ecológica de uma espécie sobre outras no sentido de alocar para si recursos que seriam em sua ausência alocados pelas demais espécies.

II) <u>Descritores dependentes das abundâncias específicas</u> (quantitativos).

<u>Índices de diversidade mais comuns</u>

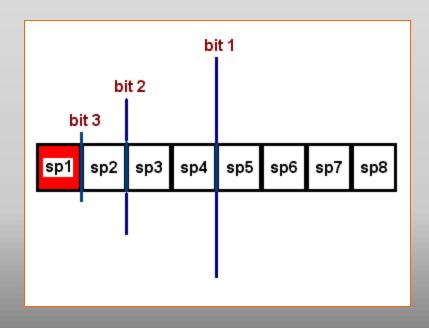
Índices de Shannon-Wiener e de equitatividade de Pielou: (1949):

Índice de Simpson:

$$C_{\text{Simpson}} = 1/\lambda_{\text{Simpson}}$$
 $\lambda_{\text{Simpson}} = \sum_{i=1}^{S} p_i^2$

II) <u>Descritores dependentes das abundâncias específicas</u> (quantitativos).

Índice de Shannon-Wiener (1949)


- > seus pressupostos nem sempre são atendidos:
 - todas as espécies da comunidade precisam estar incluídas na amostra.
 - as proporções entre abundâncias das espécies na amostra precisam ser boas estimativas das correspondentes na comunidade.
- usando-se a base 2 no logaritmo, o valor é dado em bits (nats e decits são as correspondentes às bases natural e 10), que independe daquela que se refere às abundâncias.

II) <u>Descritores dependentes das abundâncias específicas</u> (quantitativos).

Índice de Shannon-Wiener (1949)

➤ o valor numérico do índice de Shannon expressa a quantidade mínima de decisões binárias necessária para individualizar uma espécie, em média.

Exemplo:

$$S = 8$$

$$p_1 = p_2 = ... = p_8 = 1/8 = 0,125$$

$$0,125 \times lg_2 0,125 = 0,125 \times (-3) = -0,375$$

$$H' = -(8 \times -0.375) = 3 \text{ bits}$$

$$3 = \lg_2 8$$
 : $H' = \lg_2 S$

II) <u>Descritores dependentes das abundâncias específicas</u> (quantitativos).

Expressão de Hill (1973) para H'

- → dada a dificuldade de interpretação de valores em bits, Hill propôs apresentar H' na forma exponencial 2^{H'}.
- ➤ na versão exponencial (Shannon-Hill) o índice volta à métrica da riqueza, passando a ter sentido de riqueza aparente.
- no caso do exemplo anterior, seria mesmo de se esperar que a riqueza aparente fosse a própria riqueza S já que todas as espécies estavam igualmente representadas:

$$H'_{\text{máximo}} = \lg_2 S \implies 2^{H'} = S_{\text{real}}$$

$$2^{H'(calculado)} = S_{aparente}$$

II) <u>Descritores dependentes das abundâncias específicas</u> (quantitativos).

<u>Índices de dominância e de diversidade de Simpson (1949)</u>

- \succ o índice de diversidade de Simpson relaciona-se com o λ de Simpson, que nada mais é que uma medida de dominância.
- ο λ de Simpson corresponde à probabilidade de 2 indivíduos sorteados ao acaso na comunidade serem de uma mesma espécie, não importando qual:

ind₁ e ind₂ devem ser ambos da sp₁ ou sp₂ ou ou sp_S

essa probabilidade, para cada espécie i, é dada por p_i²; para o conjunto das espécies, o resultado é dado por uma somatória de S parcelas:

$$\lambda_{Simpson} = \sum_{i=1}^{S} p_i^2$$

II) <u>Descritores dependentes das abundâncias específicas</u> (quantitativos).

Índice de diversidade de Simpson (1949) – versões 1- λ e $1/\lambda$.

- se a diversidade for definida como a probabilidade de 2 indivíduos sorteados ao acaso na comunidade serem de duas espécies distintas então seu valor numérico seria 1- λ, ou seja, o oposto da dominância.
- > se por outro lado a diversidade for definida como o **inverso** da dominância, então seu valor seria dado por 1/λ.

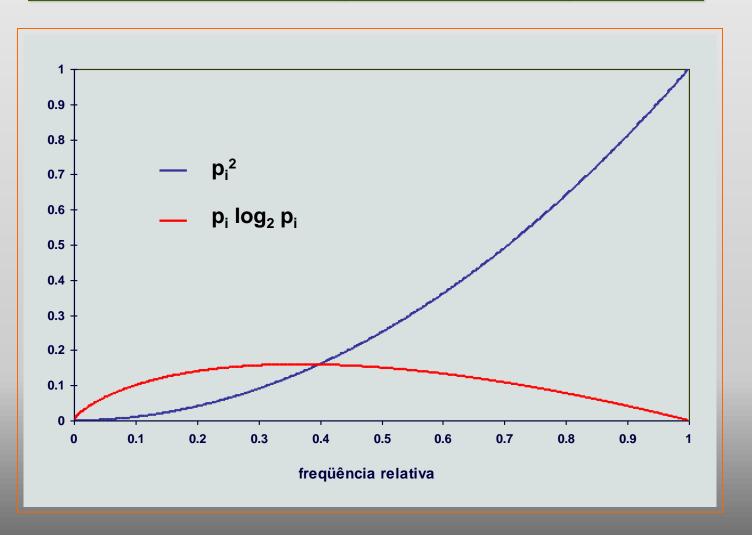
Exemplo:

S = 8

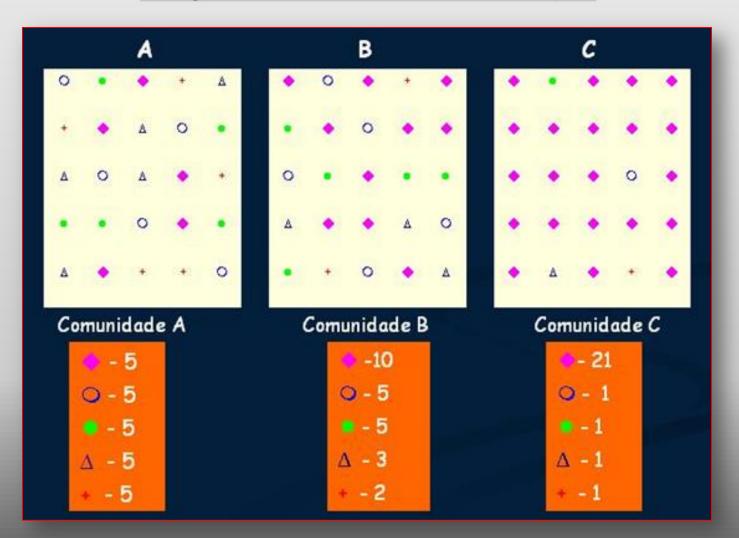
$$p_1 = p_2 = ... = p_8 = 1/8 = 0,125$$

 $\lambda = 8 \times (0,125)^2 = 0,125$
 $1 - \lambda = 1 - 0,125 = 0,875$
 $1 / \lambda = 1 / 0,125 = 8$

II) <u>Descritores dependentes das abundâncias específicas</u> (quantitativos)


<u>Índice de diversidade de Simpson (1949)</u>

 \succ no exemplo, onde a dominância é nula, o valor de λ (0,125 = 1/8) não é 0, e sim 1/S.


- no caso da diversidade 1 / λ, seu valor (8) corresponde exatamente ao que se espera da riqueza aparente quando as espécies estão igualmente representadas.
- > 1 / λ (C, de Simpson) pode então ser interpretado como uma medida de riqueza aparente.

II) <u>Descritores dependentes das abundâncias específicas</u> (quantitativos).

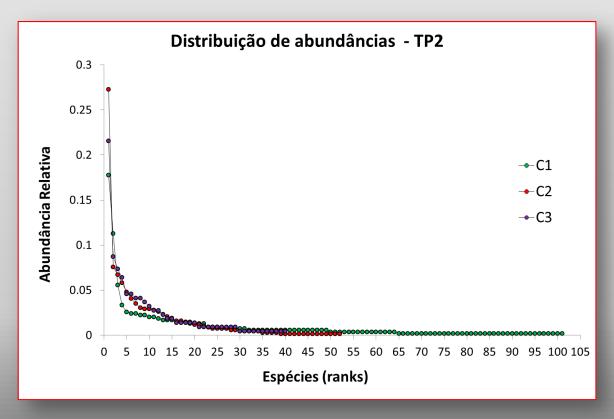
<u>Índices de diversidade e importância dada a espécies raras</u>

II) <u>Descritores dependentes das abundâncias específicas</u> (quantitativos).

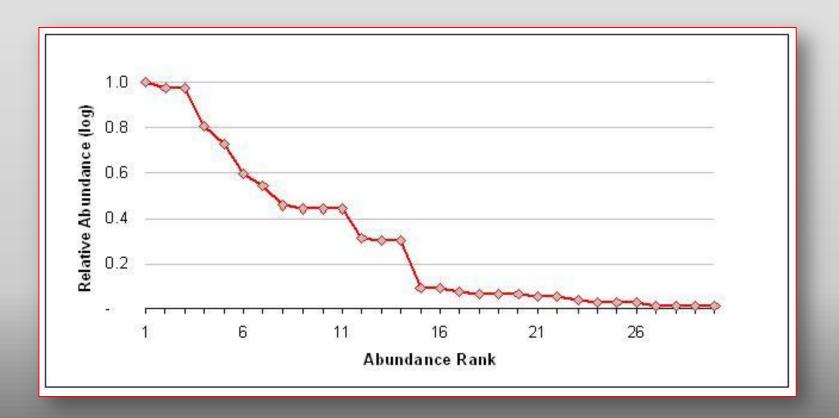
II) <u>Descritores dependentes das abundâncias específicas</u> (quantitativos).

II) <u>Descritores dependentes das abundâncias específicas</u> (quantitativos).

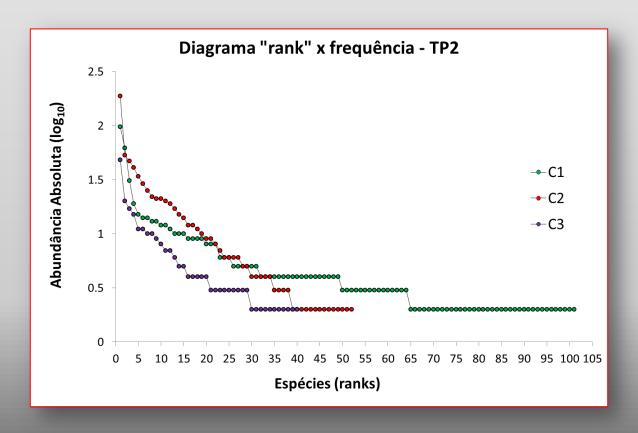
	Α	В	С
S =	5	5	5
H' =	2.3219	2.1161	0.9543
2 ^{H'} =	5	4.3353	1.9377
J' = H'/H' _{max} =	1	0.9113	0.4109
1 - J' =	0	0.0886	0.5890
λ =	0.20	0.26	0.71
1/λ =	5.00	3.8344	1.4045


II) <u>Descritores dependentes das abundâncias específicas</u> (quantitativos).

Abordagem via Espectros


Distribuição de abundâncias das espécies: um exemplo

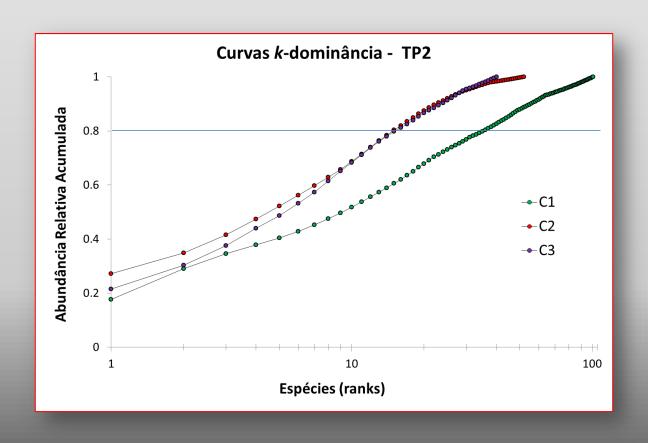
Espécies são ordenadas em sequência, da mais abundante para a mais rara, ao longo da abcissa, com abundâncias absolutas ou relativas.


1. curvas rank-abundância:

Espécies são ordenadas em sequência, da mais abundante para a mais rara, ao longo da abcissa, com abundâncias absolutas ou relativas log-transformadas na ordenada.

1. curvas rank-abundância: um exemplo

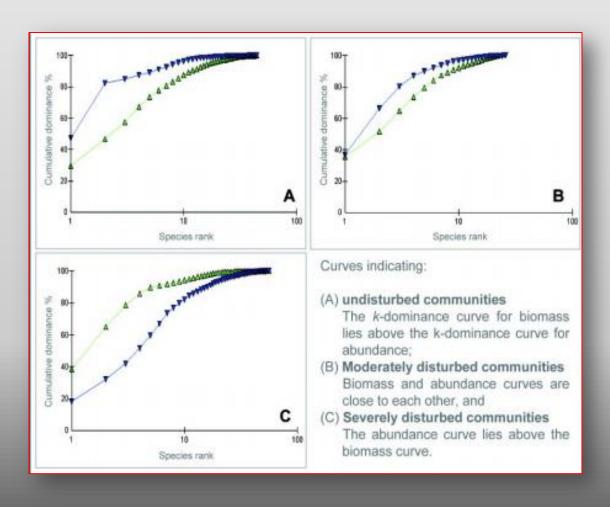
Espécies são ordenadas em sequência, da mais abundante para a mais rara, ao longo da abcissa, com abundâncias absolutas ou relativas log-transformadas na ordenada.


2. curvas de k-dominância (curvas de Whittaker):

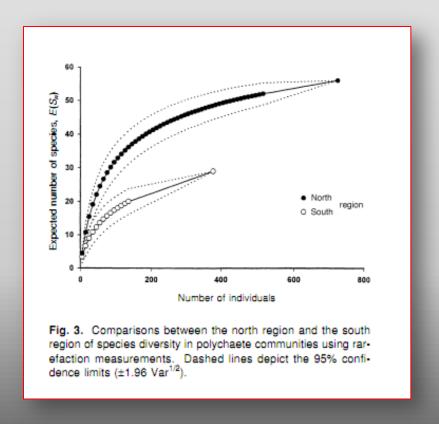
Espécies são ordenadas em sequência, da mais abundante para a mais rara, ao longo da abcissa, com abundâncias relativas acumuladas na ordenada. A escala na abcissa pode ou não ser logarítmica.

2. curvas de k-dominância (curvas de Whittaker): um exemplo

As curvas mais altas têm maior dominância. Não podem ser comparadas facilmente curvas que se intersectam.


2. curvas de k-dominância: outro exemplo

As curvas mais altas têm maior dominância. Não podem ser comparadas facilmente curvas que se intersectam (dados: nematoda na plataforma continental).


3. curvas ABC (Abundance-Biomass Curves)

São duas curvas de k-dominância superpostas, porém uma relativa a números e outra a biomassas.

4. curvas de rarefação:

Plota-se o número acumulado de espécies em função do número acumulado de indivíduos, podendo-se padronizar as duas variáveis como porcentagens do total final. Curva mais diagonal indica maior diversidade.

Próxima aula:

Comunidades III:

Fatores que afetam a diversidade