
resolução do circuito pelo método padronizado grupo,

grupo, membros e apresentação do trabalho?

Primeiro passo

Primeiramente, representa-se o modelo do circuito.Logo em seguida assume-se aleatoriamente a direção da corrente em cada elemento e a DDP em seus polos

Trab. escr.: 4,0/5,0 Matlab: 0,0/3,0 Psim: 2,0/2,0 NOTA: 6,0

Segundo passo

Considerar algumas simplificações na resolução do circuito. Dentre elas, a mais fundamental vai ser considerar o numero de variáveis associadas ao LKC e LKT sendo relacionadas ao numero de ramos e nós especiais, não comuns; a fim de reduzir o numero de equações e variáveis.

Ademais, podemos considerar as seguintes relações de correntes e de tensão :

$$If = Ie$$

$$Ia = Ib = 4.5A$$

Ik = I1

Ih = Ii

Ig = 2A

$$Vf = 3v$$

$$Vd = 2,2v$$

$$Vk = 5v$$

Terceiro passo (LKC)

Em seguida, utiliza-se a Lei de kirchhoff das correntes; que relaciona as correntes que entram e saem de um determinado nó. Nela, o numero de equações a serem conseguidas (Nlkc) é o numero de nós essenciais (Ne) menos um. Dessa forma, chega-se a equações linearmente independentes.

Nlkc = Ne - 1, no caso: Nlkc= 5 - 1 = 4

Assim, considerado os nós dados, obtemos as seguintes equações:

- I) 2 I_i I_c + I_d = 0
- II) Ie +4.5 Ic = 0
- III) Ik Ij Ii = 0
- IV) -2 + If + Ih = 0

Quarto passo (LKT)

Utiliza-se agora a lei de kirchhoff das tensões; na qual, ao percorrer um caminho fechado, a soma das tensões com seus respectivos sinais (de acordo com a convenção passiva aqui) deve ser nula. Nela o numero de equações a serem conseguidas (Nlkt) é o numero de ramos essenciais (Nre) menos o numero de equações obtidas no passo anterior (Nlkc).

NIkt = Nre - NIkc, no caso: NIkt= 8 - 4 = 4

Assim, obtemos as seguintes equações :

C1: +3v - Ve - Vc + Vg = 0C2: -2,2 - Vc + Vd - 9 = 0

C3: Vh + Vi - Vj - Vg = 0

C4: Vj - 5 + Vl - 2,2 = 0

Quinto passo (ohm)

Nesse passo, utilizaremos a Lei de Ohm (U = R*I) para determinar uma relação entre a corrente e a DDP de cada elemento. O numero de equações almejadas para esse passo (Nohm) é o numero de equações encontradas no passo três (Nlkc) menos o numero de equações encontradas no quarto passo (Nlkt).

Nohm = Nlkc + Nlkt, no caso: Nohm = 4 + 4 = 8

Assim, obtemos:

Vh = 1 * Ih

 $V_i = 4 * I_j$

 $\vec{Vl} = 3 * Ik$

Va = 2 * 4.5 = 9v

Ve = 3 * If

Vc = 9 * Ic

Vi = 6 * Ih

Obs: nesse caso, foram considerados os seguintes valores de resistencia:

 $Rh = 1 \Omega$ $Rj = 4 \Omega$ $Rl = 3 \Omega$ $Ra = 2 \Omega$ $Re = 3 \Omega$ $Rc = 9 \Omega$ $Ri = 6 \Omega$

Ademais, pode-se extrair as seguintes relações referentes as tensões nas fontes de corrente:

$$Vb = -Ve + 3 + Vh + Vi - 5 + + Vl + 9 = 4 - 3Ie + Ih + 6Ii + 3Il$$

 $Vg = Ih + 6Ii - 7,2 + 3Il = Ih + 6Ii - 7,2 + 3Il$

Sexto passo

Nesse passo, desenvolveremos a equação matricial que relaciona as variáveis conhecidas e desconhecidas. Dessa forma, com o auxilio de um computador, por exemplo, será possível determinar as variáveis desejadas.

No método usado aqui, será feita a substituição das equações do passo cinco nas equações do passo quatro e adicionado as equações do passo três para completar um sistema com 9 variáveis. Em seguida, será feita uma matriz com as variáveis (no caso, as correntes).

Sistema resultante da substituição de 5 na 4, mais as equações do LKC:

Matrizes de variáveis:

$$I = [Ic, Id, Ie, If, Ih, Ii, Ij, Ik]$$

montando equação matricial:

$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 1 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 0 &$$

Sétimo passo

Por fim, ao resolvermos a equação matricial, teremos os valores das variáveis. Voltando ao passo dois, no qual definimos as simplificações, poderemos obter a corrente em todos os elementos do circuito. Como o objetivo é resolver o circuito, devemos encontrar a corrente, tensão e potência de cada elemento. Utiliza-se, assim, as seguintes relações:

$$\mathbf{U} = \mathbf{R} * \mathbf{I}$$

 $\mathbf{P} = \mathbf{R} * \mathbf{I}^2$
 $\mathbf{P} = \mathbf{I} * \mathbf{U}$
 $\mathbf{P} = (\mathbf{U}^2)/\mathbf{R}$

Assim, chegamos aos seguintes valores :

	POTENCIA(W)	DDP (V)	CORRENTE (A)
Α	+40,5	+9	+4,50
В	-185	+41,2	+4,50
С	+99,9	+30,0	+3.33
D	+3,65	+2,20	-1,66
E	+4,09	-3,50	-1,17
F	+3,51	+3,00	-1,17
G	-47,0	+23,5	+2,00
н	+10,03	+3,17	+3,17
1	+60,2	+19,0	+3,17
J	+0,43	-1,32	-0,33
К	-14,2	+5,00	+2,84
L	+24,2	+8,52	+2,84

GRUPO 8:

Gustavo selem de stefano - 9866402
Rodrigo Takashi Imafuko - 9866465
Leonardo Silva Dantas de Oliveira - 9807402
Igor Cordeiro Santa Barbara - 9807336
Gabriel Ferreira Salomão - 9807423
João Vitor Nazari Formagio - 9880173
João Vitor Prado de Almeida - 9807378

psim: funcionou não apresentou o arquivo txt com a rotina do matlab.

deveria