Estudo comparativo de uma gerador síncrono de íma permanente de força contra eletromotriz trapezoidal e senoidal aplicados sistemas de geração de energia elétrica provenientes de energia eólica.

com forma de onda

Guilherme Henrique Favaro Fuzato Departamento de Engenharia Elétrica University of São Paulo - EESC São Carlos, Brasil guilherme.fuzato@gmail.com Itamar Santini Departamento de Engenharia Elétrica University of São Paulo - EESC São Carlos, Brasil ita.santini@gmail.com

reescrever: ligar a 1a. e última frase, deixar a 2a. por último.

Abstract— Este artigo apresenta uma comparação entre geradores síncronos com imã permanente de forca contra eletromotriz senoidal e trapezoidal aplicados a sistemas de geração de energia elétrica provenientes de energia eólica. Neste presente trabalho, utiliza-se um retificador trifásico não controlado conectado à um conversor CC-CA, o qual fornece energia a uma carga local. A topologia proposta dispensa o emprego de um conversor Back to Back para regular a tensão no barramento CC, sendo assim, o controle do conversor CC-CA é responsável por fornecer um nível de tensão constante para a carga. Tal topologia é utilizada para realizar a comparação entre os geradores de síncronce de íma permanente com base na análise do fator de potência medido nos terminais de cada máquina e ondulação obtido no barramento CC. O presente trabalho conclui que o gerador síncrono de ima permanente de força contra eletromotriz eescrevsenoidal apresenta um fator de potência inferior ao da trapezoidal, o que resulta em uma máquina maior de força contra eletromotriz senoidal quando comparada a uma trapezoidal submetidas a mesma condição de operação.

Keywords—Energia Eólica, Gerador síncrono de íma peramenente, fator de potência.

I. INTRODUCTION

tensão com valor eficaz constante

Durante os últimos anos o mercado de energia eólica tem apresentado um rápido crescimento. De acordo com a World Wind Energy Association (WWEA), a capacidade eólica mundial alcançada até junho de 2013 está em torno de 296 gigawatts, ainda de acordo com a (WWEA) a capacidade eólica mundial cresceu 5% nos últimos seis meses [1].

Durante as últimas décadas um importante desenvolvimento de máquinas com imã permanente vem sendo observado, devido à melhoria das características dos imãs e o desenvolvimento de novos componentes na área de eletrônica de potência. O imã permanente tem permitido eliminar a excitação externa, ané s coletores e aumentar a potência específica da máquina, beradores de imã permanente vêm recebendo bastante atenção, eles são amplamente utilizados em pequenos geradores eólicos e cada vez mais em grandes turbinas eólicas. Estes geradores podem ser utilizados com caixas de redução ou em modo de acoplamento direto. Neste artigo serão analisados os geradores ligados no modo de acoplamento direto. O modo de acoplamento direto permite reduzir elementos mecânicos, facilita a manutenção, apresenta alta confiabilidade e redução de perdas de potência [2].

Este artigo apresenta uma comparação entre dois geradores síncrono de imã permanente de força contra eletromotriz senoidal e trapezoidal, aplicados a conversão de energia eólica em elétrica. As simulações foram realizadas com o gerador acoplado a um retificador não controlado em ponte trifásica com filtro capacitivo para gerar a tensão no barramento CC que alimentará o conversor CC-CA, nas simulações utilizou-se uma carga linear conectada ao conversor CC-CA. O uso de um retificador trifásico não controlado implica na variação de tensão no barramento CC, dessa forma, o controle do conversor CC-CA se torna responsável por fornecer uma tensão constante para a carga, independente da variação de tensão no barramento CC. O emprego dessa topologia dispensa o uso de um conversor Back to Back. Todas as simulações foram realizadas utilizando o software PSIM[®].

II. DESCRIÇÃO DO SISTEMA

fator de

. extra para a regulação do barramento CC

Os sistemas analisados e compostos por um gerador síncrono de íma permanente (GSIP) de força contra eletromotriz senoidal ou trapezoidal de múltiplos pólos, permitindo assim a ligação direta entre o eixo da turbina eólica e o gerador, não havendo, portanto a necessidade de se utilizar uma caixa de engrenagens para elevar a velocidade retagional que é transferida para o eixo do gerador. A ligação no modo de acoplamento direto elimina consideráveis perdas mecânicas e torna o projeto mecânico mais simples.

angular do

discordo disso. O SmCo é muito bom, porém o que muda é o custo, portanto o fator crucial aqui é a redução de custo que os novos materiais proporcionam, no caso o NdFeB.

O gerador fornece energia para uma carga ilhada por meio de um conversor CA/CC/CA, o primeiro estágio do conversor é um retificador em ponte completa trifásico não controlado com um filtro capacitivo. O barramento CC fornece energia para um conversor CC-CA controlado que alimenta uma carga ilhada, conforme Figura 1.

III. MODELOS DOS SUBSISTEMAS

A. Modelo da velocidade do vento

É interessante conhecer a modelagem da velocidade do vento, para se obter uma simulação condizente com a realidade, existem modelos probabilísticos 4 que levam em conta a variação da velocidade do vento com o tempo e com a altura em relação ao solo [3] e [4]. Conforme abordado em [4], a velocidade do vento é modelada pela soma de quatro componentes, conforme equacionado em (1).

$$v_w(t) = v_b(t) + v_r(t) + v_g(t) + v_n(t)$$
(1)

Onde v_b é a componente base (constante) do vento, v_r é a componente em rampa, v_g é a componente que representa as rajadas e v_n é a componente de ruído de base, conforme representado na Figura 2.

Figura 2 - Componentes do vento

Em determinadas regiões de operação, a velocidade angular do rotor pode ser representada de maneira constante. As pequenas variações na velocidade do vento não são refletidas no eixo do rotor devido à inércia da turbina, além disso, podese considerar o controle do <u>Pitch</u> das pás, o qual limita a velocidade de operação da turbina.

No presente trabalho_j considerou-se apenas a velocidade base do vento tomada como constante.

B. Modelo da turbina eólica

A dinâmica da transformação de energia na turbina eólica é bem conhecida pela relação apresentada na equação (2) de acordo com [5], [6], [7]e [8]

$$P_w = C_p \frac{1}{2} \rho A v_w^3 \tag{2}$$

Onde P_w é a potência extraída do vento, ρ é a densidade do ar, C_p é o coeficiente de potência, v_w é a velocidade do vento que passa pelo rotor e A é área de ação das pás da turbina ($A = \pi R^2$, onde R é o raio da pá em metros).

O torque aerodinâmico é dado pela relação entre a potência extraída do vento e a velocidade do rotor da turbina de acordo com a equação (3).

$$\tau_w = \frac{P_w}{\omega_w} \tag{3}$$

Devido ao fato de se trabalhar em modo de acoplamento direto, o torque mecânico transmitido para o gerador τ_{wg} foi considerado neste presente trabalho igual ao torque aerodinâmico.

O coeficiente de potência C_p possui um valor máximo de 0,593 [8], ou seja, consegue-se extrair no máximo 59,3% da potência do vento (limite de Betz), devido as perdas aerodinâmicas. O coeficiente de potência pode ser aproximado através da equação (4), em função do ângulo de Pitch θ e a relação de velocidade de ponta λ . Conforme definido em [7], tem-se que:

$$C_{p}(\lambda,\theta) = C_{1}(C_{2}\frac{1}{\beta} - C_{3}\theta - C_{4}\theta^{x} - C_{5})e^{-C_{6}\frac{1}{\beta}}$$
(4)

Os coeficientes $C_1 - C_6$ e x são dependentes do tipo de rotor utilizado na turbina eólica, estes dados geralmente são dados pelo fabricante da turbina, porém muitos fabricantes recomendam utilizar $C_p = 0,45$ como uma simplificação usual. O parâmetro $1/\beta$ é definido em [5], como representado na equação (5).

$$\frac{1}{\beta} = \frac{1}{\lambda + 0,08\theta} - \frac{0,035}{1 + \theta^3}$$
(5)

Onde θ é o ângulo de pitch, que é o ângulo entre o plano de rotação e a seção transversal da corda da pá e λ é definido de acordo com a equação (6).

$$\lambda = \frac{\omega_w R}{v_w} \tag{6}$$

Onde \mathcal{O}_W é a velocidade angular do rotor, R é o raio da pá e V_w é a velocidade do vento através das pás.

Figura 3 - Pitch

mecânica, proveniente C. Modelo do gerador

O gerador pode ser considerado como um sistema que transforma a energia do vento, em energia elétrica, partindo-se das tradicionais equações que descrevem as máquinas síncronas de imã permanente, equacionadas em (7) e (8).

$$\begin{bmatrix} v_{an} \\ v_{bn} \\ v_{cn} \end{bmatrix} = R_s \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} + L \frac{d}{dt} \begin{bmatrix} i_a \\ i_b \\ i_c \end{bmatrix} + \omega \frac{d}{dt} \begin{bmatrix} \phi_{ra} \\ \phi_{rb} \\ \phi_{rc} \end{bmatrix}$$
(7)

$$L = \begin{bmatrix} L_s & M_s & M_s \\ M_s & L_s & M_s \\ M_s & M_s & L_s \end{bmatrix}$$
(8)

Onde:

Van, Vbn e Vcn são as tensões das fases a, b e c.

 i_a , i_b e i_c são as correntes das fases a, b e c de estator respectivamente.

 ϕ_{ra} , ϕ_{rb} e ϕ_{rc} são os fluxos produzidos no rotor.

- R_s : resistência nas fases do estator.
- L_s : auto-indutância dos enrolamentos de uma fase.

 M_s : indutância mútua entre os enrolamentos das fases.

 ω : velocidade angular rotórica em radianos elétricos por segundo. usar portugues

As tensões internas (Back EMF) produzidas na máquina são dadas por (9). A diferença entre a Back EMF produzida por uma máquina senoidal e trapezoidal, deve-se ao fato de como os enrolamentos se encontram distribuídos no estator, na máquina senoidal os enrolamentos se encontram distribuídos de maneira senoidal, enquanto que na máquina trapezoidal os enrolamentos são distribuídos de forma que haja uma interação de fluxo magnético constante entre os imãs e os enrolamentos do estator a cada 120° por fase usualmente [9].

$$\begin{bmatrix} e_a \\ e_b \\ e_c \end{bmatrix} = \omega \frac{d}{dt} \begin{bmatrix} \phi_{ra} \\ \phi_{rb} \\ \phi_{rc} \end{bmatrix}$$
 melhorar: não é só a distribuição dos condu-
tores dos enrolamentos de estator, mas tam-
bém da forma de magnetização dos ímãs,
geometria do rotor e forma de colocação dos
ímãs.

s ímãs, slocação dos

A potência mecânica no eixo da máquina é dada por (10).

$$P_m = \omega_m T_{el} \tag{10}$$

Sendo:

$$\omega_m = \frac{\omega}{Z_p} \tag{11}$$

 \mathcal{O}_m : velocidade mecânica do rotor em rad/s.

 T_{el} : torque eletromagnético no rotor.

 Z_p : número de pares de polos.

A equação que descreve o torque eletromagnético é dada por (12).

$$T_{el} = z_{P} \left(\mathbf{i}_{a} \frac{d}{dt} \phi_{ra} + \mathbf{i}_{b} \frac{d}{dt} \phi_{rb} + \mathbf{i}_{c} \frac{d}{dt} \phi_{rc} \right)$$
(12)
o formato dessa eguação não está legal.

IV. RESULTADOS

as simulações. Para realizar a simulação foi utilizado o modelo do GSIP de Back EMF senoidal encontrado em [10]. Para que fosse possível simular para ambos os casos, trapezoidal e senoidal, utilizou-se os parâmetros listados na Tabela I. Para o gerador trapezoidal foi utilizado um ângulo de condução na áreaplana de 120° por fase. reescrever

Tabela I - Parâmetros do GSIP

	tabela com linhas muito espaçadas
Parâmetro	Valor
n_p	48
f_N	17.6 Hz
R_S	0,0224 Ω
$L_S - M_S$	1.5028 mH
ψ_{f}	5,3445 Wb

As simulações foram realizadas considerando uma velocidade angular no eixo do gerador constante equivalente ao valor nominal do gerador.

Foi também utilizada uma carga local resistiva, a qual foi alimentada à uma tensão de 380 V pelo conversor CC-CA operando em controle de tensão.

No presente trabalho foram analisados o fator de potência e a ondulação no barramento CC para as condições de simulação citadas anteriormente. Os resultados obtidos se encontram na Tabela II para o GSIP trapezoidal, e na Tabela III para o GSIP senoidal.

As formas de onda no barramento CC se encontram na Figura 4 para o GSIP trapezoidal e na Figura 6 para o GSIP senoidal. Por conseguinte pode-se visualizar as formas de onda de corrente e tensão obtidas em uma das fases do gerador, a qual representa as três fases do gerador por se tratar de um sistema simétrico e equilibrado, se encontram na Figura 5 para o GSIP trapezoidal e na Figura 7 para o GSIP senoidal.

Tabela II - Resultados GSIP Trapezoidal

Parâmetro	Valor
PF _{trap}	0,91
Ondulação no barramento CC	17,3V

O gerador de Back EMF Senoidal foi simulado utilizando as mesmas condições do gerador de Back EMF Trapezoidal.

Figura 4 - Tensão no Barramento CC - Trapezoidal

Figura 5 - Tensçao e Corrente na Fase A - GSIP Trapezoidal

Para a GSIP senoidal foram obtidos os seguintes resultados:

Tabela III - GSIP Senoidal

Parâmetro	Valor
PF _{sen}	0,72
Ondulação no barramento CC	85,6 V

Figura 6 - Tensão no Barramento CC - Senoidal

Figura 7 - Tensão e corrente na Fase A - GSIP Senoidal

O percentual de potência aparente que o GSIP de Back EMF senoidal fornece a mais quando comparada ao GSIP de Back EMF trapezoidal pode ser expresso de acordo com a equação (13).

$$n = 1 - \frac{S_{sen}}{S_{trap}} = 1 - \frac{2.60E4}{2.05E4} = 27\%$$
(13)

V. CONCLUSÃO

Ao analisar os resultados obtidos, percebe-se que o GSIP de Back EMF senoidal apresenta um fator de potência menor e uma maior ondulação no barramento CC para as mesmas condições de operação que o GSIP trapezoidal. O fator de potência menor do GSIP senoidal, nos permite concluir que para suprir a mesma quantidade de potência ativa drenada pelo conversor CC-CA a carga local, o GSIP senoidal envia uma potência aparente maior quando comparada ao GSIP trapezoidal.

Contudo, pode-se afirmar que é necessário uma máquina senoidal 27% maior para suprir a mesma quantidade de potência ativa quando comparada à uma máquina trapezoidal. E a tenão do barramento CC? O que pode-se concluir?

- VI. REFERENCES
- [1] World Wind Energy Association, "Half-Year Report," The World Wind Energy Association, 2013.
- [2] R. S. Semken, M. Polikarpova, P. Röyttä, J. Alexandrova, J. Pyrhönen, J. Nerg, A. Mikkola and J. Backman, "Direct-drive permanent magnet generators for highpower wind turbines: benefits and limiting factors," *IET Renewable Power Generation*, vol. 6, no. 1, pp. 1-8, 2012.
- [3] M. I. Mgwatu and R. R. M. Kainkwa, "Establishing a Probrabilitic Model of Extrapolation Wind Speed Data for Wind Energy Prediction," *International Science*, vol. 70, pp. 232-238, 2012.
- [4] P. M. Anderson and A. Bose, "Stability Simulation Of Wind Turbine Systems," *IEEE Transactions on Power Apparatus and Systems*, Vols. PAS-102, no. 12, pp. 3791-3795, 1983.

- [5] Z. Lubosny, Wind Turbine Operation in Electric Power Systems, Berlin: Springer, 2003.
- [6] T. Ackermann, Wind Power in Power Systems, New York: John wiley & Sons, 2005.
- [7] S. Heier, Grid Integration of Wind Energy Conversion Systems, New York: John Wiley & Sons, 1998.
- [8] J. L. Rodriguez, J. C. Burgos and S. G. Arnalte, Sistemas Eolicos de Produccion de Energia Electrica, Madrid: Editorial Rueda S.L., 2003.
- [9] T. J. E. Miller, Brushless Permanent-Magnet and Reluctance Motor Drives, New York: Oxford, 1989.
- [10] H. Huang, C. Mao, J. Lu and D. Wang, "Small-signal modelling and analysis of wind turbine with direct drive permanent magnet synchronous generator connected to power grid," *IET Renewable Power Generation*, vol. 6, no. 1, pp. 48-58, 2012.