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This paper studies the links between productivity, innovation and research at the firm level. 
We introduce three new features: (i) A stmctural model that explains productivity by innova- 
tion output, and innovation output by research investment: (ii) New data on French manufac- 
turing firms, including the number of European patents and the percentage share of innovative 
sales, as well as firm-level demand pull and technology push indicators; (iii) Econometric 
methods which correct for selectivity and simultaneity biases and take into account the statis- 
tical features of the available data: only a small proportion of firms engage in research activ- 
ities andlor apply for patents; productivity, innovation and research are endogenously deter- 
mined; research investment and capital are truncated variables, patents are count data and 
innovative sales are interval data. 
We find that using the more widespread methods. and the more usual data and model specifi- 
cation. may lead to sensibly different estimates. We find in particular that simultaneity tends 
to interact with selectivity, and that both sources of biases must be taken into account togeth- 
er. However our main results are consistent with many of the stylized facts of the empirical 
literature. The probability of engaging in research (R&D) for a firm increases with its size 
(number of employees), its market share and diversification, and with the demand pull and 
technology push indicators. The research effort (R&D capital intensity) of a firm engaged in 
research increases with the same variables, except for size (its research capital being strictly 
proportional to size). The firm innovation output, as measured by patent numbers or innova- 
tive sales, rises with its research effort and with the demand pull and technology indicators, 
either directly or indirectly through their effects on research. Finally, firm productivity corre- 
lates positively with a higher innovation output, even when controlling for the skill composi- 
tion of labor as well as for physical capital intensity. 

KEY WORDS: Research, Innovation, Patent, Productivity, Demand conditions, 
Technological opportunities. System of limited,dependent and qualitative variables, 
Asymptotic least squares 
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1. INTRODUCTION 
This paper proposes an original empirical approach to the problem of 
assessing both the innovation impacts of research and the productivity 
impacts of innovation and research. Building upon our own previous 
analyses, it is also an attempt to confirm and summarize our main find- 
ings in these analyses.' We consider a model summarizing the process 
that goes from the firm decision to engage in research activities to the 
use of innovations in its production activities. In specifying this model, 
we take advantage of new sources of data available for French manufac- 
turing firms, and in estimating it, we try to correct for various selectivi- 
ty and simultaneity biases that possibly affect many studies in the empir- 
ical literature (for two survey of two large parts of this literature, see 
Cohen and Levin, 1989, and Mairesse and Sassenou, 1991). 

More precisely, we introduce three new features in the analysis. 
Firstly, we explicitly account for the fact that it is not innovation input 
(R&D) but innovation output that increases productivity. Firms invest in 
research in order to develop process and product innovations, which in 
turn may contribute to their productivity and other economic perfor- 
mances. Our model thus includes three relationships: the research rela- 
tion linking research to its determinants, the innovation equation relating 
research to innovation output measures, and the productivity equation 
relating innovation output to productivity. The first relation corresponds 
in fact, as we shall see, to two equations, respectively accounting for the 
R&D investment decision and for its size. 

Second, in addition to the more'usual information on the firm current 
accounts, balance sheets and employment numbers, and in addition to 
the firm R&D expenditures collected by the annual Survey on Research, 
we use new data on innovation output in French manufacturing. These 
are the number of European patents applications which have been 
matched to the firm data, and the share of firm innovative sales (i.e., firm 
sales from the new products introduced in the last five year period), 
which we gathered from the 1990 French Survey on Innovation in man- 
ufacturing. From this survey, we also obtained two new indicators prox- 
ying for demand conditions and technological opportunities (or 
"demand-pull" and "technology push" indicators). Last, we have been 
able to construct a firm average market share variable and diversification 
index, based on detailed data by lines of business from the Annual Firm 
Survey. 

Thirdly, we estimate our model using econometric methods that can 

I See Cuneo and Mairesse (1984). Mairesse and Cuneo (1984). CrCpon and Mairesse (1993). 
Hall and Mairesse (1995). CrCpon and Duguet (1996). CrCpon, Duguet and Kabla (1996). 
CrCpon and Duguet (1997). All these studies like the present one concern French manufactur- 
ing and are based on firm level microdata. 
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deal with the many problems inherent to this model and to the nature of 
the data. Most studies on innovation are, for example, potentially affect- 
ed by selectivity biases. Only a minority of firms are engaged in (for- 
mal) R&D activities, so that studies restricted to these firms are prone to 
such biases. Also only relatively few firms have patents, and thus analy- 
ses limited to them may be similarly biased. In addition, patents being 
count data and the percentages of innovative sales being recorded as 
interval data, both require specific econometric methods to handle them. 
Finally, there is the major issue of the endogeneity of innovative input 
and output, and more generally of the simultaneity in our model. R&D 
is endogenous in the innovation equation and patents or innovative sales 
are endogenous in the productivity equation. The disturbances in the 
equations of our model, reflecting in part unobserved variables and firm 
effects, are also likely to be correlated. 

We treat all these estimation problems by relying on methods which 
do not seem to have been previously applied in the research and innova- 
tion literature. We take care of selection and of the specific nature of 
variables by using a generalized tobit specification for R&D investment, 
a heterogeneous count data specification for patents, and an ordered pro- 
bit specification for the interval data on innovative sales. Our model 
thus amounts to a system of non-linear equations with limited dependent 
and count data variables, and we deal with simultaneity in  this system by 
using a two-stage estimation procedure. In the first stage we estimate 
the reduced form equations parameters by appropriate maximization 
methods (M-estimation), and we rely in the second stage on the method 
of asymptotic least squares (ALS-estimation) to retrieve consistent esti- 
mates of the structural parameters. This procedure requires relatively 
few assumptions on the distributions of the disturbances and is flexible 
enough with modest computational cost. 

In order to be able to identify and estimate our model, we have of 
course to make some a priori assumptions on its overall structure and the 
specification of individual equations. As will be explained, these 
assumptions seem rather reasonable; however we cannot really test 
them. Clearly, the main drawback of our study in this respect is the 
cross-sectional nature of our data and estimates. 

The organization of our paper is as follows. To keep its exposition 
simple, we focus on the main points in the text, and give further expla- 
nations and results in three appendices. The definition of variables and 
the econometric specificatioli of the model are explained in section 2, the 
main results discussed in section 3, and some very brief concluding com- 
ments given in section 4. The construction of the sample and the defin- 
ition of variables are presented at some length in Appendix A, the esti- 
mation methods are detailed in Appendix B, and our estimates are com- 
pared with those based on the potentially biased more widespread meth- 
ods in Appendix C. 
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2. THE MODEL: DEFINITION OF VARIABLES AND ECONOMET- 
RIC SPECIFICATION 
Figure 1 lays out a schematic diagram showing the general structure of our 
modeL2 It consists of four equations, two for research, one for innovation and 
one for productivity, which we shall present in turn, each of them requiring a 
different econometric treatment. We consider in fact two .versions of the 
model, and for each a 'basic' and an 'extended' specification. In the first ver- 
sion of the model 'innovation output' is measured by the number of patents 
and in the second by the share of innovative sales. The extended specifica- 
tion includes the technology push and demand pull indicators as explanatory 
variables in the research and innovation equations and two indicators of skill 
composition as controls for 'labor quality' in the productivity equation, while 
the basic specification does not. 

Diversification LYZY 
I Research and Development I + 

Capital 

Innovations / Patents 

I + 
Productivitv I B! 

Figure 1. Diagram of the Model 

See Pakes and Griliches (1984) for a similar diagram. 
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2.1 The research equations 
To depict the firm research behavior, we rely on a generalized tobit model 
(Heckman, 1976,1979), with two equations, the first equation accounting for 
the fact that the firm is engaged in research activities (or that we observe that 
it is), and the second one for the magnitude or intensity of these activities. 

More precisely, we assume that there exists a latent dependent variable 
gf for the firm i given by a first equation: 

where xoi is a vector of explanatory variables, b, the associated coefficient 
vector and uoi an error term, and where gf expresses some decision criteri- 
on, such as the expected present value of the firm profit accruing to 
research investment. We observe that the firm invests in research if g,' is 
positive or larger than some constant threshold, overall or industry specific 
(provided xo contains a constant term or industry dummies, which is the 
case for all our equations in this analysis). Actually only a small propor- 
tion of French manufacturing firms engage in formal research activities and 
report R&D expenditures, though many more have some form of innova- 
tive activities. 

We then assume that a latent or true intensity of research kf for firm i is 
determined by a second equation: 

with k,' = ki,  the actual research capital per employee of firm i when this firm 
does research (that is when g,' is larger than the industry threshold), where 
both ki and k; are expressed in logarithms, and where x I i  is the vector of 
explanatory variables, b, the corresponding coefficient vector and u , ~  is a 
disturbance that summarizes omitted determinants and other sources of 
unobserved heterogeneity. Note that the explanatory variables in the two 
equations need not be the same, bLt that without good a priori reason to do 
otherwise we actually include the same set of variables ( x o  = x , )  in both 
equations. 

Finally, because kf is only observable when g,' is larger than the indus- 
try threshold, we have also to specify their joint distribution in order to get 
an estimable model. We thus assume the joint normality of the disturbances 
in the two equations (i.e., the generalized tobit model assumption): 

where oo and o, are the standard errors of uoi and u, ;  and p is their corre- 



lation coefficient. The first equation is in fact a probit equation which is 
not fully identifiable, and we can only estimate the parameter vector boloo 
which is 'equivalent to normalizing the standard error c0 = 1 .  

In the implementation of our model we prefer to use a stock measure of 
research rather than a flow measure, and we have estimated our actual 
research capital (per employee) variable ki for the firm based on the sum of 
firm i deflated and depreciated past R&D spending ('deflated in 1990 
prices' and 'depreciated' at a given 15 percent yearly rate, as described in 
Appendix A). We also experimented with using a flow measure for 
research, with little change to the results.3 

The explanatory variables we are able to measure are most of the ones 
usually considered in the literature on R&D determinants (in the 
'Schumpetarian tradition'): size, market share, diversification, and demand 
conditions and technological opportunities? More precisely, they are: 

xOi = xli = (Ii, sy.  di, 6:, S,?, Sj, 7;. 7,?, 72, SJ, Sf, . . . , S;*) 

where fi is employment, sp the average market share and di the equivalent 
number of industry segments, these three variables being expressed in log- 
arithms (like ki and kr the observed and latent research capital per employ- 
ee). The 6,'s and the r,'s, k = 1,2,3,  are two sets of demand pull and tech- 
nology push dummies. The Sf: are eighteen industry dummies equal to one 
if firm i belongs to industry j and zero o the r~ i se .~  

The average market share and the diversification index are computed 
from the firms' sales decomposition by lines-of-business, or product lines 
or industry segments, as given by the Firm Annual Survey. For each firm, 
we have the decomposition of sales into the different industry segments at 
the so called level 600 of the French industry classification (NAP 600). We 
first compute the firm's total sales for each industry segment at level 600 in 
which it operates, and then a market share for each of these industry seg- 
ments. Thus a diversified firm has several market shares, one per industry 
segment, and in order to get an overall market share indicator sy for the firm 

'This is not of course too surprising. our analysis being basically a cross-sectional one (and 
the cross-sectional correlations between the stock and flow measures of research being very 
high). 

4 See in particular Cohen and Levin (1989). who discuss the importance of demand, tech- 
nological opportunity and appropriability as determinants of research and innovative activity. 
They consider them, however, mostly at the industry level, while we try to characterize them 
here at the firm level and introduce dummies to control for industry differences. 

In a previous paper, Crbpon, Duguet and Kabla (1996) also used an indicator of imitation 
measured at the sub-industry level as a proxy for (the lack ot) appropriability. We thought this 
proxy was somewhat too problematic and preferred not to include it in this new analysis. 

5 Note that these dummies replace the constant term, since for all i we have 12, S t  = I .  
Each industry is thus allowed to have a different intercept (i.e., a different threshold and a dif- 
ferent average research capital). 



as a whole, we compute a weighted average, where the weight of each seg- 
ment is its share in the total sales of the firm. Firm.diversification is usu- 
ally characterized by the Herfindahl index hi of its lines of business, where 
hi equals one when the firm is not diversified and decreases with increasing . 
diversification. We find it more telling, though, to use as our diversifica- 
tion index di the inverse of the Herfindahl index. This index di can be inter- 
preted as the equivalent number of industry segments if all the firm's seg- 
ments had the same size, and it is bounded between one, if the firm is not 
diversified, and the real number of different segments, when they have 
equal weights. 

The demand pull and technology push dummies a,, 4 and 4, and T,, 5. 
and r, are obtained from the 1990 Innovation Survey. They respectively 
express whether, in the opinion of the firm, demand and technology factors 
had a 'weak', 'moderate' or 'strong' influence on its innovative activities over 
the last five year period 1986-90, relative to an answer of 'no' inflbence.6 

2.2 The innovation equations 
The next equation in our model is an innovation function, whose exact for- 
mulation depends on whether we proxy innovation output by the number of 
patents ni or by the share of innovative sales t i .  

2.2.1 The patent equation 
Patents being observed as integer numbers, we specify the patent equation 
as a heterogeneous count data process with an expectation nT conditional on 
research and other variables given by: 

nf = E (ni I kf , x2;, u2;; a,, b 2 )  = exp (a, kf + x,  bz + u2;) (2a) 

where kf is our latent research variable, x,; is a vector of other explanatory 
variables (supposedly exogenous), and u,; ib the error or heterogeneity 
term, about which we do not need to make any specific distributional 
as~umption.~ Our patent variable, like our research capital variable, is also 
a stock measure; it is simply the total number of European patents applied 
for by the firm over the five year 1986-1990 period. The coefficient ,aK is 
the elasticity of the expected patent numbers relative to research capital, a 

6 Note that we keep only three dummies to characterize demand pull or technology push, the 
answer 'no' dummy adding up to one with them, and thus being redundant (exactly collinear) 
with the constant or the set of industry dummies. 

Actually, we estimate the patent equation (more precisely the corresponding reduced form 
equation) by maximizing the pseudo log likelihood function corresponding to the assumption 
of a negative binomial pseudo distribution (see Appendix B.  subsection B.2.2). 
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measure of the impacts or returns to research on innovation output, while 
b, is the vector of coefficients for x,. As exogenous variables x, we take: 

xz; = (l;, di, 6f ,  6:. 6i3, rii, 7!, ~ j ,  Sf ,  Sf, . . . , Sf8) 

with the same notations as above. Note that we thus explicitly assume that 
market share and diversification do not enter directly in the innovation 
equation, but only indirectly through research. This imposes some a priori 
structure on the model, which seems reasonable enough, and which helps 
identification by allowing us to take the two market share and diversifica- 
tion variables as instruments. By contrast, it does not seem unlikely that 
demand pull and technology push factors could affect innovation output 
both directly and indirectly. 

Including size in the equation also allows us to test whether the effect of 
firm size on innovation output passes completely through the size of the 
research activities, i.e., or whether there is 'constant returns to firm size'. 
For convenience sake, we normalize our patent equation so that ni and n: 
are in fact the actual and expected number of patents per employee (just as 
ki and kt* are the actual and latent research capital per employee), and hence 
the coefficient of 1; in the equation estimates the deviation to constant 
returns to firm size. 

2.2.2 The innovative sales equation 
The French Innovation Survey, on which we rely to construct the demand 
and technology indicators, also provides information on. .the percentage 
share of firm innovative sales.8 The firm is asked what is approximately 
the percentage share of its 1990 sales which comes from products launched 
in the market in the last five years 1986 to 1990, the firm having to answer 
on a four point scale 0-lo%, 10-30%, 30-70% and 70- 100%. The under- 
lying (unobserved) true share of sales ti' can be viewed as another innova- 
tion intensity variable, where innovation is measured by a number of sales 
weighted innovations (instead of the number of patents). Since the share is 
only known by intervals, we specify the innovative sales equation as an 
ordered probit model: 

where ti' is the underlying (unobserved) true share expressed in logarithm and 
the explanatory variables are the same as for the patent equation, and where 

There are in fact two questions in the Survey, one for total sales and one for export sales; 
in this study, we only use the former. 
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we assume that the error term u,; is normally distributed with mean zero and 
variance 03. Note that all the parameters are identifiable (including oi), 
since the threshold values are known. 

2 3  The productivity equation 
Our last relationship is the productivity equation, for which we take, as most 
usually done, an augmented Cobb-Douglas production function with physi- 
cal capital, employment, skill composition, and innovation output. In this 
equation innovation output is measured either by expected patents per 
employee In (nf) or by the latent share of innovative sdes ti', both in logs. We 
have 

where q, is the logarithm of labor productivity defined as log-value added 
per employee, and where the vector of the factors of productivity, other 
than innovation output, x,~ is: 

with ci being the logarithm of physical capital per employee (and physical 
capital the gross book value of fixed assets adjusted for inflation), and with 
Ei and A, being respectively the shares of engineers and administrators in 
the total number of employees. 

The coefficient a, is the elasticity of total factor productivity with 
respect to innovation output, while b3 consists of the following coefficients: 
the elasticity of scale (more precisely its deviation from unity), that of 
physical capital, and the skill composition parameters, reflecting percent- 
age differences in efficiency of skilled labor (engineers and administrators) 
relative to 'unskilled' labor? Note that by having expected patents instead 
of actual patents in the productivity equation, we do not restrict estimation 

9The precise interpretation of the skill composition parameters is the following. Assume that 
labor corrected for quality ('skill composition') should enter in the production function as: 

L' = f u L u  + ~ E L E  +fALA 
instead of uncorrected labor (total employment): 

L = L u + L , + L ,  
where subscript U stands for 'unskilled' production workers. subscript E for engineers. and 
subscript. A for administrators. 



to the subsample of firms with at least one patent, but use all the sample 
observations. Note also that we do not make a specific distributional 
assumption for the disturbance u , ~  in the productivity equation. 

2.4 The overall model and its estimation 
Taken together, the research,,innovation, and productivity equations form a 
recursive nonlinear system, for which we have two versions, one with 
patent counts and the other with the share of innovative sales. The first two 
equations are the same in the two versions: 

kf = x,,  b ,  + u , ~  (1) 

while the two last equations re respectively the following: 

Innf = In E (nilk,*,x2,u2) = aKkf + x,b2 9 u,, 

and: 

In both versions, we allow for arbitrary correlations among the disturbances 
uoi, u, , ,  uZi and u,,. In estimating this system of equations, we want to take 
account of the nature of the available data: research investment and hence 
research capital are truncated, patents are count data and innovative sales 
are interval data. We also endeavor to take into account the fact that 
research capital is endogenous in the innovation equations, and innovation 
output endogenous in the productivity equation. Thus we hope to avoid the 
potentially most serious selectivity and simultaneity biases. 

This of course argues for the use of some kind of simultaneous equations 
system estimator. Using maximum likelihood would be impossible. The 

Wecanwrite: L ' = f , ( L - L E - L A ) + f E L E + f A L A  
t' =f(/L{l + (f&/fU- l L +  (fA/f"- l)LA/L) 

InL'= I n f , + I n L + p , E + p , A  
and thus the coefficients of E and A in the production function are: 

b,E = (JQl JL)pE and b ,  = (JQI JL)P, 
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joint distribution of observable variables does not have a closed form, and 
numerical integration seems intractable (considering the number of inte- 
grals involved and the large size of the sample). We have to rely on anoth- 
er (possibly less efficient) method of estimation. We could have chosen the 
generalized method of moments (GMM), but preferred to implement the 
asymptotic least squares method (henceforth, ALS). 

Three arguments favor the ALS method.'') First, the efficiency compar- 
isons that have been made by Lee (198 1) for a number of models show that 
in a number of situations the asymptotic least squares method is more effi- 
cient in large samples.I1 Second, the computational cost is less: while opti- 
mal GMM requires at least two steps, each of them involving all the sam- 
ple observations, ALS requires two steps as well, but the second one only 
involves the number of auxiliary parameters estimated in the first step. 
Third, ALS can be easily generalized to more complicated systems, pro- 
viding an unified and tractable framework for the estimation of limited 
dependent variables systems.'* The application of the ALS method to our 
model is thoroughly explained in Appendix B. 

3. THE RESULTS 

3.1 Simple statistics 
Table 1 presents some simple statistics for the variables in our model for 
two samples of firms: the full sample of firms (N=6145) for which we 
could match the different data sources we use, and the subsample of those 
firms (N=4164), reporting in  the Innovation Survey that they have made, 
during the 1986-1990 period, some kind of innovation (either minor or 
major, new for the market or only for the firm, either product, process, 
organizational, or marketing). Only these firms were asked to answer the 
questions on the share of innovative sales, and on the importance of 
demand pull and technology push. Although the subsample of these firms, 
which we designate as the innovation sample, is about two thirds of the full 
sample in size, and its average characteristics are a little different from that 
of the full sample, the comparable estimations we performed on both sam- 
ples are quite close. We will only comment here on the main estimates we 

10 For details on this method of estimation, see GouriCroux; Monfort, and Trognon (1985) or 
Gourieroux and Monfort (1996). 

11 Lee's study (1981) does not experiment with the generalized tobit and the count data mod- 
els. However, in all the cases he considers, including probit, simple tobit, censored models, 
and linear regression, ALS is more efficient. 

12 Note also that the Chamberlain's PI matrix method for panel data is in the ALS class (see 
Chamberlain 1982 and Crepon and Mairesse 1996). 
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get with the innovation sample, for which we have the innovative sales, 
demand and technology variables. In Appendix C, however, we document 
all estimates for both samples.'3 

Table 1. Descriptive Statistics for the Full and Innovation Samples 

Sample Full: 6145firms Innovation: 4164firms 
Sraristics Ql Me Q3 % QI Me Q3 % 
R&D capital per employee* 89.9 192.1 460.2 10.7 89.1 192.1 461.9 15.3 
K, (1990) 
Number of employees 39 69 183 100 43 85 242 100 
L, (1 990) 
Market share (%) 0.1 0.3 1.0 100 0.1 0.4 1.3 100 
S, x 100 (1985) 
Equivalent number of activities 1.2 1.6 2.0 27.4 1.2 1.6 2.0 29.8 
Dj(1985) ' 

Number of patent applications 1 2 5 11.6 1 2 6 16.1 
N, (1986-1990) 
Value added per employee* 184 231 322 100 196 243 314 100 
Q; ( 1990) 
Physical capital per employee* 104 182 322 100 123 208 353 100 
C, (1990) 

QI: first quartile. Me: median. Q3: third quartile. 
%: percentage of firms included in the computations. 
* Thousands of 1990 FRF. 

Of particular interest in Table 1 are the research and patents variables. 
Only about 11 percent of the firms in the full sample and about 15 percent in 
the innovation sample are R&D-doing firm, and only about 12 percent of the 
firms in the full sample and about 16 percent in the innovation sample have 
at least one patent, and half of these in fact having no more than two 
patents.14 It is also noteworthy that the overlap between R&D-doing and 

'3  Note that one can assume that the share of innovative sales is nil, or at least belongs to the 
smaller interval from 0% to lo%, for those firms which are in the full sample but not in the 
innovation sample (i.e., since they did not report any kind of innovation). This is what we do 
for the estimations for the full sample presented in Appendix C. 

l 4  This is of course in the precise sense we give to these expressions here. The R&D doing 
firms are those which have reported R&D expenditures at least three years in the 1986-1990 
five year period (and for which we have computed a R&D capital measure), and the patenting 
firms are those that have applied for European patents (one at least), over the same 1986-1990 
five year period. 
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patenting firms is about 50 percent in the two samples, i.e., half of the R&D- 
doing firms have patents and half of the patenting firms do R&D. 

Looking at the other variables, we see that. the innovating firms are 
slightly larger than those in the full sample, with a median number of 
employees of 85 versus 69, and are more productive and more capital inten- 
sive by about respectively 5 percent and 10 percent at the median. The 
firms in the two samples tend to have very low market shares, less than half 
a percent at the median, and to be not diversified, about 70 percent being in 
fact concentrated in one industry at the level 600 of the classification. Their 
shares of engineers and of administrators are in the same range, with a first 
quartile of about 2 percent and a third quartile of about 6 percent. 

The variables we use from the Innovation Survey are summarized in 
Figures 2, 3 and 4. Figure 2 shows the distribution of the answers to the 
question about the share of innovative sales that comes from products 

Percentage 
Simple Cumulated 

0 10 20 30 40 50 60 
Yo 

Figure 2. Share of Innovative Sales (Innovation Sample) 
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launched on the market between 1986 and 1990. From this figure one can 
see that the distribution is skewed, with close to 17 percent of the firms deriv- 
ing more than 30 percent of their sales from newly introduced products. 
Figures 3 and 4 show the breakdown of the answers to the two key questions 
about the influence of market demand conditions and technology develop- 
ments, on which our demand pull and technology push indicators are based. 
It is clear that a larger fraction of firms overall believe that market demand is 
a stronger force than technological opportunity, but it is still true that over 
half the firms view technology as at least moderately important in propelling 
them to innovate. The important thing about these two charts is that they 
show that we do have sizable variability in our two 'exogenous' indicators. 

Strongly 

Moderately 
24.6% 

Weakly 
9.7% 

59.6% 

Figure 3. Demand Pull Indicator (Innovation Sample) 

Strongly 
24.4% 

Moderately 
35.3% 

Weakly 

Figure 4. 

24.6% 

Technology Push Indicator (Innovation Sample) 
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The following two subsections of the paper present the results of estimating 
our model by the ALS method. We first present estimates for a simple specifi- 
cation (the basic model), comparing them, when possible, to the results found 
in the literature as recently summarized by Cohen and Klepper (1996, hence- 
forth CK96). We shall then present estimates for ai extended specification (the 
extended model), where we add the Innovation Survey demand pull and tech- 
nology push indicators in the research and innovation equations, and the two 
shares of engineers and administrators variables roughly controlling for skill in 
the productivity equation. 

3.2 The basic model: afirst look at the estimates 
The preferred ALS estimates of the mddel in its basic form are presented in 
Table 2 for the innovation survey sample. The other more conventional 
econometric estimates of the basic model, for both the innovation sample and 
the full sample, as well as for the subsamples of firms reporting R&D expen- 

Table 2. Basic Model (Innovation sample) 
Left-hand variables: 
Logarithm of research capital per employee (ki) 
Number of patents per employee+ (ni) 
Logarithm of innovation intensity (ti) 
Logarithm of value added per employee (qi )  
(standard errors between parentheses) 
Model R&D Patents Innovution 

Probir Tobit n; 9i 1; 4; 
R&D capital per employee - 0.881 - 0.43 1 - 
4 (0.111) (0.057) 
Number of patents per employee - - 0.130 - 
fl; (0.017) 
Share of innovative sales - 0.104 
ti (0.0 16) 
Market share 0.221 0.365 - 

(0.03 1) (0,054) Si 

Equivalent number of activities 0.294 0.300 - 
di (0.102) (0.134) 
Number of employees 0.398 -0.001 -0.021 -0.017 -0.033 0.011 
I; (0.038) (0.068) (0.059) (0.0 12) (0.029) (0.005) 
Physical capital per employee - 0.206 - 0.212 
Ci (0.007) (0.007) 

Optimal asymptotic least squares, with 18 industry dummies. 
Sample of 4164 manufacturing firms. 
+The patent equation is set up in terms of the number of patents per employee, and the coeffi- 
cient of the number of employees li thus measures the departure from constant returns to size. 
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ditures andfor having one or more patents, are shown and discussed in 
Appendix C. The two first columns of Table 2 give the estimates of the 
research equations (common to both the patent and the innovative sales ver- 
sions of our model), while the two middle columns give the estimates for the 
patent equation and the productivity equation with patents, and the two last 
columns give them for the innovative sales equation and the productivity 
equation with innovative sales. Columns 1 to 4 thus provide the estimates for 
the patent version of the model, and columns 1,2,5 and 6 the estimates for the 
innovative sales version. 

Looking first at the decision to engage in R&D (probit column) shows that 
the probability of doing R&D (and reporting it) increases significantly with the 
firm size (number of employees), and also with their market share and diversi- 
fication. The increase with size is familiar in the literature and corresponds to 
Cohen and Klepper (1996) stylized fact 1 .I5 The finding that market share and 
diversification, after controlling for size and sector, are associated with a high- 
er probability of undertaking R&D is newer, but very plausible too, agreeing 
with the Schumpeterian conjectures.'6 The order of magnitude of the estimates 
are such that a doubling of the number of employees or the equivalent number 
of activities or market share, for a firm at the median in our sample would aug- 
ment its probability of doing R&D by about 8 ,6  and 5 percent tespectively.17 

Looking then at the R&D intensity equation shows that the R&D inten- 
sity of the firms engaging in R&D does not depend on their size (i.e., the 
elasticity of R&D capital to size is one). This agrees similarly with CK96 
stylized facts 2 and 3.l8 Note however that this result holds only in the 
presence of the market share variable (i.e., if we do not include it, the esti- 
mated elasticity of R&D capital to size is of about 1.3). Contrary to size, 
market share and diversification appear to have a quite significant and large 
impact on the firm R&D effort, besides that on their decision to invest in 
research.lg A doubling of market share or of the equivalent number of 

I5 Cohen and Klepper (1996) 'STYLIZED FACT I: The likelihood of a firm reporting positive 
R&D effort rises with firm size and approaches one for firms in the largest size ranges' (p. 928). 

l6 See Crepon, Duguet and Kabla (1996) for similar results. However, they used total sales as 
the firm size variable, which most likely explains why they tend to find much lower (or even 
negative) estimates for the market share variable, and higher estimates for size. 

l7 We have: [0.40 ln(2)J 030 = 0.08; 10.29 ln(2)] 0.30 = 0.06 and 10.22 in(2)] 0.30 = 0.05. 
where 030 is the density of the normal distribution at the median value for the right hand side 
of the probit (0.76). 

In Cohen and Klepper (1996) 'STYLIZED FACT 2: Within industries, among performers of R&D. 
R&D rises monotonically with firm size across all firm size range ...' (p. 928) and 'STYLIZED 
FACT 3: Among R&D reporting firms, in most industries there is no evidence of a systematic 
relationship between firm size and the elasticity of R&D with respect to firm size across the full 
range of firm sizes. Also, in most industries it has not been possible to reject the null hypothe- 
sis that R&D varies proportionately with size across the entire firm size distribution' (p. 929). 

l9 By contrast to ours, most past studies did not find clear effects of either market share or 
diversification (Cohen and Levin, 1989). 



RESEARCH, INNOVATION AND PRODUCTIV~TY 131 

activities for an R&D doing firm in our sample would correspond to an 
increase of about 20 to 25 percent of its R&D capital-labor rati0.2~ 

Considering next the patent equation and the innovation intensity equa- 
tion, we find that, once the differences in R&D effort are taken into account, 
there is no significant impact of the fm size on its innovation output, be it 
the average number of patents per employee or the percentage of innovative 
~ales.2~ Since all three R&D intensity, patent and innovation intensity equa- 
tions exhibit constant returns to scale, we can also state that the numbers of 
patents and (sales weighted) innovations per dollar of R&D do not differ sig- 
nificantly with the firm size (or the scale of their R&D programs). This result 
is at variance with CK96 stylized fact 4F2 Note however that we also find 
decreasing returns for the patent equation when we limit the analysis to the 
firms with positive numbers of patents and exclude the many firms with zero 
patents (see Table 5 in Appendix C).u 

Whereas firm size has no impact, that of R&D intensity is quite strong: for 
patents the elasticity of the firm R&D capital intensity is about 0.9 (not sig- 
nificantly different from unity), and it is of about 0.4 for innovative sales. A 
10 percent increase of R&D intensity will thus have an impact of the same 
order of magnitude on the firm total number of patents and of nearly 5 per- 
cent on its innovative sales (or total number of sales weighted innovations). 

Finally, the estimates of the productivity equation confirm the results we 
are accustomed.to find in cross-sectional regressions when knowledge cap- 
ital is simply proxied by an R&D capital variable (see Table 7 in Appendix 
C).24 We find constant returns to scale and a physical capital elasticity of 
about 0.2, while the estimated elasticity of knowledge capital is 0.13 when 
proxied by the number of patents and is 0.10 when proxied by the share of 
innovative sales or the number of sales weighted innovations.25 

We have: 0.36 ln(2) = 025 and 0.30 ln(2) = 0.21. *' This is true even when the market share variable is not included in the R&D equation. 
22 Cohen and Klepper (1996) ' S n u z ~ o  FAC~ 4: Among R&D performing firms, the number 

of patents and innovations per dollar of R&D decreases with firm size and/or the level of R&D, 
and among all firms, smaller firms account for a disproportionately large number of patents and 
innovation relative to their size' (p. 930). 

Bound, Cummins, Griliches, Hall and Jaffe (1984). who include non-patentees in their large 
sample of U.S. manufacturing firms, find as we do. constant returns to size in their patents to 
R&D relationship. 

z4 See Table 7 in Appendix C. Ex;~mples of such results for France can also be found in Cuneo 
and Mairesse (1984). Mairesse and Cuneo (1985). Crepon and Mairesse (195'3). Hall and Mairesse 
(1995). Mairesse and Hall (195'6). For a general survey, see Mairesse and Sassenou (1991). 

'J As explained in Appendix A, our labor, physical capital and value added variables are cor- 
rected for R&D double counting. Our estimated elasticities of knowledge capital are thus not 
affected by downward biases due to such double counting and should not be given an excess . 
return interpretation. as usually done when corrections cannot be made. These biases are main- 
ly due to the lack of correction of the labor variable (the employees working in research activi- 
ties being included in the total number of employees) and tend to be much more severe for cross- 
sectional estimates such as ours. 
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3 3  The extended model: a further look at the estimates 
The ALS estimates of the model in its extended version are given in Table 3, 
in the same format as for the basic version, but with six additional rows in the 
research and innovation equations for the weak, moderate and strong types 
of answers which define our demand pull and technology push indicators 
(relative to the no answers), and with two other rows in the productivity 
equation for our two skill composition variables: the shares of engineers 
and administrators (relative to the other categories of employees). With the 
exception of the elasticity of knowledge capital (proxied by patents or inno- 
vative sales) in the productivity equation, all previous estimates of the basic 
specification are practically unchanged by the inclusion of these new vari- 
ables. Thus we shall not comment again on these estimates, but shall only 
discuss the new ones. 

Both market demand and technological opportunities, as measured here 
by our two indicators based on the firm's own assessment, appear to have 
positive effects on the firm R&D engagement and on its intensity (in addi- 
tion to the market share, diversification and size variables). These effects 
tend to increase across types of answers, as should be expected, from weak 
to moderate and from moderate to strong. However, although all twelve 
effects (three types of answers of the two indicators in the two research 
equations) are indeed positive, only five of them are statistically different 
from zero (at the conventional 5 percent level of confidence): one for the 
strong demand pull dummy in the probit equation, and the four others for 
the moderate and strong technology push dummies in both the probit and 
tobit equations. 

These significant effects are very sizable, and specially so in comparison 
to that of the other variables. Consider for example an interquartile differ- 
ence in market share (from 0.1 percent to 1.0 percent), such difference, 
'other things equal', would imply a 15 percent higher probability of doing 
R&D for a firm at the median of our sample, and a 80 percent higher R&D 
capital intensity for an R&D doing firm: these effects are about the same size 
than the respective effects of a 'strong' technology push. A similar interquar- 
tile difference in the equivalent number of firm lines of business (from 1 to 
2) corresponds to a 6 percent higher R&D probability and a 20 percent high- 
er R&D capital intensity: these effects are roughly two third and one third of 
the respective effects of a 'moderate' technology push, which are themselves 
about two third of the effects of a 'strong' technology push.26 

The estimated effects of the demand pull and technology push indicators 
on patenting are very different from their effects on R&D. The effects of 

26 The computation of these different effects both on the R&D doing probability and R&D 
capital intensity is similar to that already detailed in footnotes 17 and 20 for the basic specifi- 
cation of the model. 



Table 3. Extended Model (Innovation sample) 

Left-hand variables: 
Logarithm of research capital per employee (ki) 
Number of patents per employeet (no 
Logarithm of innovation intensity (ti) 
Logarithm of value added per employee (qi) 
(siandard errors between parentheses) 
Model R& D Patents Innovation 

Probit Tobit ni 4i ti 4i 
R&D capital per employee 1.078 - 0.304 - 
ki (0.166) ( 0 . m )  
Number of patents per employee - 0.089 - 
"i (0.015) 
Share of innovative sales - 0.065 
'i (0.015) 
Market share 0.221 0.356 ' - 
si (0.03 1) (0.053) 
Equivalent number of activities 0.302 0.333 - 
' i  (0.103) (0.142) 
Number of employees 0.387 -0.043 -0.066 -0.014 -0.002 0.007 
' i  (0.040) (0.066) (0.073) (0.007) (0.028) (0.004) 
Physical capital per employee 0.194 - .0.198 
ci (0.007) (0.007) 
Engineers/Personnel 1.614 - . 1.649 
Ei (0.123) (0.123) 
~dministrators/~ersonnel 1.744 - 1.765 
F; (0.143) (0.142) 
Demand pull: 
- weak (6, j) 0.261 0.377 -0.071 - -0.040 - 

(0.192) (0.308) (0.332) (0.150) 
-moderate (4 j )  0.191 0.342 -0.068 - 0.164 - 

(0.170) (0.277) (0.315) (0.137) 
-strong (4,) 0.343 0.412 0.074 - 0.399 - 

(0.164) (0.272) (0.304) (0.133) 
Technology push: - weak (7, J 0.173 0.173 -0.237 - 0.229 - 

(0.120) (0.207) (0.254) (0.089) 
- moderate (T, j) 0.322 0.604 -0.540 - 0.268 - 

(0.1 13) (0.198) (0.255) (0.092) 
- strong (r,J 0.444 0.907 -0.483 - 0.333 - 

(0.1 17) (0.202) (0.277) (0.105) 

Optimal asymptotic least squares, with 18 industry dummies. 
Sample of 4164 manufacturing firms. 
t The patent equation is set up in terms of the number of patents per employee, and the coef- 
ficient of the number of employees li thus measures the departure from constant returns to 
size. 
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the three demand pull dummies are statistically insignificant (and small) 
and the effects of the technology push dummies are negative, with both the 
'moderate' and 'strong' effects being large and just significant at the 5 per- 
cent confidence level. Such results are a little surprising. They are, how- 
ever, conditional on a given R&D intensity, since the patents equation con- 
trols for firm differences in R&D capital intensity, and thus do not mean 
that the total effects of demand and technology are negative or negligible. 
These total effects are about equal to the sum of the estimated coefficients 
in columns 2 and 3 of Table 3, the R&D capital elasticity estimated in the 
patents equation being close to one. Adding these two columns together 
shows that the total effects of market demand and technological opportuni- 
ties on patenting are in fact similar; they are insignificant for the moderate 
and weak values of both indicators, but significant and large for their 
'strong' value, with an order of magnitude of one more patent for a firm 
with two patenkZ7 

The fact that innovative output is not always patented or patentable, and 
all product patents are not exploited, is one reason for considering the inno- 
vative sales variable besides the number of patents. Indeed, in contrast to 
the effects found on patenting, both demand pull and technology push indi- 
cators have positive effects on innovative sales, and significantly so for the 
'strong' demand pull dummy and all three technology push dummies. 
These direct effects are for most of them larger than the indirect ones going 
through increased R&D investment.28 The direct and indirect effects of a 
'strong' demand pull thus correspond to respective increases of about 5 and 
1 percent of the share of innovative sales for a firm with a (nearly) median 
share of 10 percent.Z9 The comparable figures for a 'strong' technology 
push are of about 4 and 3 percent.m 

Our two skill composition variables enter very significantly the produc- 
tivity equation, with a large positive coefficient of about 1.7 for both. This 
implies that the productivity of engineers and that of administrators are at 
the margin much higher, by a factor of 2.7, than the productivity of the 
other categories of employees; these differences, as might be expected, are 
actually roughly consistent with the corresponding differences in wages 
and labor costs. The important point is that the estimated elasticities of 
knowledge capital decrease by one third when we include controls for 

2' These are computed as: 2[exp(0.41 + 0.07)- 1 1  = 1.2 and 2[exp(0.91 - 0.48)- 1 1  = 1 . I .  
z8 Note that the estimated R&D capital elasticity is of about 0.30 in the innovative sales 

equation (0.45 in the basic version) while is it is slightly above one in the patents equation 
(0.90 in the basic version). 

29 These are computed as 10[exp(0.40)-1]= 4.9 and IO{exp[(0.41)(0.30)] -I} = 1.3 respec- 
tively 

mThese are computed as 10[exp(0.33)-11 = 3.9 and IO{exp[(0.91)(0.30)] -1) = 3.1 respec- 
tively. 



skill.3~ The estimated elasticity of the number of patents in the last five 
year is about 0.09 (instead of 0.13). and that of the last five year sales 
weighted number of innovations about 0.06 (instead of 0.10). This 
means, for example, that an interquartile difference in the number of 
patents (from 1 to 6) corresponds to a 16 percent higher productivity, or 
roughly one third of the interquartile range of productivity.32 Similarly a 
difference in innovative sales from the lowest share interval to the high- 
est share (say from 10 to 70 percent) corresponds to a 13 percent higher 
productivity, or roughly one fourth of the productivity interquartile range. 

4. CONCLUSION 
In this paper we have tried both to summarize and confirm the main results 
of previous studies, which intended to assess the innovation .impacts of 
research and the productivity impacts of innovation and research. We have 
introduced three new features in the analysis concerning the model, the data 
and econometric methods. We consider a four equations model that relates 
productivity to innovation output, innovation output to research, and 
research to its determinants. We take advantage of new data on French 
manufacturing firms: the number of European patents and the percentage 
share of innovative sales, as well as an average market share variable, a 
diversification index, and two indicators proxying for the influence of 
'demand pull' and 'technology push' factors on research and innovation. 
We use appropriate econometric methods taking into account selectivity 

3' This is also what we find when we proxy knowledge capital by an R&D capital variable. 
See Mairesse and Cuneo (1985) and Cripon and Mairesse (1993). 

The decrease in the estimated elasticity of knowledge capital reflects its positive correlation 
with skill. This correlation raises a delicate problem of interpretation of whether knowledge 
capital and skill are substitutable factors as the Cobb-Douglas specification assumes (within 
the limits of an approximation) or complementary factors. If the first hypothesis is approxi- 
mately true. our lower estimates (when controlling for skill composition) are the appropriate 
ones. If  the second hypothesis is more relevant and in the extreme case where knowledge cap- 
ital and skill are perfect complements. our higher estimates (when not controlling for skill 
composition) would be the right ones. However this would mean that increases in firm 
research efforts and knowledge capital do not by themselves result in increased productivity. 
but must be accompanied by related increases in skill (not to mention other likely conditions 
in reality). On the basis of the cross-sectional information available to us, it does not seem 
reliable enough to estimate the degree of substitutability between knowledge capital and skill 
using a more general production function than the Cobb-Douglas. In Cripon Mairesse (1993). 
we estimate a translog production function but do not view it as a better approximation of the 
'true average production function'. Instead we consider that including the square and cross- 
product terms (in the logs of the factors) is a convenient way to account for some heterogene- 
ity in the firm production function (by allowing between-firm differences in factor elasticities 
and expressing simply these differences as linear functions in the logs of the factors). 

32 The interquartile range of log-productivity for the innovation sample is of 
0.47=log(314/196) or 47 percent (see Table 1). 
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and simultaneity, as well as the statistical nature of the data: only a small 
proportion of firms engage in research activities and/or apply for patents; 
productivity, innovation and research are endogenously determined; 
research investment and capital are truncated variables, patents are count 
data and innovative sales are interval data. 

We find that using the more widespread methods, and the more usual 
data and model specification, may lead to appreciably different estimates. 
We find in particular that simultaneity tends to interact with selectivity, and 
that both sources of biases must be taken into account together. However, 
our main results are consistent with many of the stylized facts of the empir- 
ical literature. The probability of engaging in research (R&D) for a firm 
increases with its size (number of employees), its market share and diver- 
sification, and with the demand pull and technology push indicators. The 
research effort (R&D capital intensity) of a firm engaged in research 
increases with the same variables, except for size (its research capital being 
strictly proportional to size). The firm innovation output, as measured by 
patent numbers or innovative sales, rises with its research effort and with 
the demand pull and technology indicators, either directly or indirectly 
through their effects on research. Finally, firm productivity correlates pos- 
itively with an higher innovation output, even when controlling for the skill 
composition of labor as well as for physical capital intensity. 

In order to identify and estimate our model, we have made a number of 
assumptions on its overall structure and the specification of the individual 
equations, which seem rather reasonable. We have assumed for example 
that the market share and diversification variables only belong to the 
research equations (not to the innovation and productivity equations), and 
are exogenous in the model.33 The main problem of our analysis arises 
from the cross-sectional nature of our data and estimates. We know in par- 
ticular that time-series type estimates of R&D capital elasticity in the patent 
equation and in the productivity equation are much smaller and even not 
significant (see for example CrCpon and Duguet 1997 for the patent equa- 
tion and Cuneo and Mairesse 1984 or Hall and Mairesse 1995 for the pro- 
ductivity equation). It is not clear actually which type of estimates sh&ld 
be preferred. As a general rule cross-sectional estimates tend to be much 
less fragile than time-series ones, and indeed our cross-sectional estimates 
in this study seem quite pla~sible.3~ One should of course, as usual, do 

33 Likewise we have assumed that our demand pull and technology push indicators do not 
belong to the productivity equation and that our skill indicators only belong to this equation. 
all four variables being exogenous. 

"Time-series estimators control for firm correlated effects, which can take care of fixed or 
slowly changing omitted variables, while cross-sectional estimators may be affected by the 
potentially severe biases arising from such correlated effects.. Conversely, biases from mea- 
surement errors in variables or timing errors which will be negligible for cross-sectional esti- 
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more investigations to go farther and deeper, and in particular one should 
try to gather firm panel data, which will be richer than our mainly cross- 
sectional data here, and to implement a dynamic model, which could give 
a better description of the complex relations between research, innovation 
and productivity. 

A. APPENDIX: DATA CONSTRUCTION 
We have constructed our data set by merging various sources of informa- 
tion, using the firm national identification code SIREN (for 'Systsme 
Informatique de Rtpertoire des ENtreprises'). 

A.1 Accounting and employ~nent data 
The information on the firm current accounts and balance sheets, and on 
the number of employees, comes primarily from the SUSE files 
('Systeme UnifiC de Statistiques d'Entreprises'). From them, we mainly 
extracted the firm value added, its fixed assets gross bookvalue (at the 
beginning of year) and its total number of employees (average over the 
year), and we simply computed our labor, productivity and physical cap- 
ital intensity variables as li = number of employees, qi = value added per 
employee, and ci = physical capital per employee. Physical capital is the 
fixed assets gross bookvalue, approximately adjusted for inflation on the 
basis of an estimated average age of fixed assets derived from the net to 
gross book value ratio (see for example CrCpon and Mairesse, 1993). 
These variables are taken in logarithms in our model. Table I in the text 
shows that the 'median firm' in the innovation sample has 85 employees, 
a value added per employee of 243 thousands 1990 FRF (FRench Franc); 
and a physical capital per employee of 208 thousands 1990 FRF (a cur- 
rent approximation being l US Dollar = 5 FRF). These numbers are.5 to 
15 percent lower for the median firm in the full sample. 

The information on the distribution of employees by occupational cat- 
egories is taken from the 'EnquGte sur la Structure des Emplois' (ESE). 
Based on previous work' and some experiments, we only kept here two 
main indicators of the'importance of management in the firm: the shares 
Ei and Ai of engineers and administrators (administrative executives) in 

mators will tend to be much magnified in the time dimension of the data and to strongly affect 
time-series estimators. It is also more problematic to assume that a variable is exogenous or 
predetermined in the cross-sectional dimension of the data than in its time dimension, but dif- 
ficult in the two dimensions to find instruments which will be both relevant and good. For a 
discussion of these issues in the context of the identification and estimation of the production 
function. see Mairesse (1990) and Griliches and Moiresse (1997). 
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total employment (see CrCpon and Mairesse, 1993). Table 1 in the text 
shows that the median shares of engineers and administrators are about 3 
to 4 percent for the 65 to 80 percent of the firms which actually have engi- 
neers and/or administrators among their personnel. 

The average firm inarket share variable and diversification index are 
computed from the detailed information provided by the 'EnquEte Annuelle 
d'Enterprisesl (EAE).'This is the main annual firm survey in France, which 
among other information gives the decomposition of the firm sales in its 
different lines of business, or industry segments at the 'level 600' of the 
French industrial classification (NAP 600 in the 'Nomenclature des 
ActivitCs et Produits'). We have in fact only considered the decomposition 
of domestic sales for the 227 different 'level 600' industry segments per- 
taining to manufacturing. " 

Let S,,, be the sales of firm i for its product k in the industry segment or 
market k, Si = SiL and Sk = SjVk are respectively the overall sales 

k I 

of firm i (over all its products) and the overall sales on market k (over all 
firms)." The market share s, of firm i on market k and the share of product 
k in firm i total sales are thus equal to: 

sia = Sis ISk and bi, = Sik IS, 

Note that we have bik = I for each firm i, but that we have not sk = sik 
k I 

for each market k, since we though indeed more appropriate to compute the 
firm product market shares, relative to the total of sales in this market Sk for 
all the firm available in the EAE data files, and not only for those firms that 
we could keep in our samples, after merging all the data sources we used. 

Then for each diversified firm i we defined the weighted average mar- 
ket share s~ and the diversification index di as: 

7 = ~ b j k x s j k  and ~ = h j = ~ b ~ k  
~r di k 

with d, being the inverse of the Herfindahl concentration index hi of the 
firm sales. For a non diversified firm (i.e., with only one k), we of course 
have sy. = si and di = hi = 1. For a diversified firm with n product lines 

35 The decomposition for non manufacturing sales is also available, but it  seems of a lesser 
quality, and we did not use it. 

'6 More precisely, the decomposition of sales is given for the firm total and export sales, and 
hence by difference for the firm domestic sales, and we thought preferzble to use the decom- 
position of total sales to construct the diversification index, and that of domestic sales to con- 
struct the average market share variable. Hence, in fact Si, denotes here the total sales of firm 
i for its product k in the computation of d,,  and the domestic sales of firm i for its product k in 
the computation of sy. 
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of equal weights (i.e., biYk = I/n with k = I ,  ..., n), we have: sp = si,, for 
all k (= 1, ..., n), and di = n (or hi = l ln).  The diversification index di for 
the firm i can be interpreted as the equivalent number of product lines with 
equal sales, such as its sales Herfindahl concentration index would the 
same as the one observed hi. The,higher the di ,  the higher the diversifica- 
tion of the firm (and the lower the hi and the concentration of its sales). 

In the model we introduce both variables sp and di in logarithms and we 
have measured them. In the year 1985, making it more plausible to assume 
that they are predetermined in the estimation. We can see in Table 1 that 
only about 30 percent of the firms are diversified at the industry level 600, 
and only 25 percent of these have an equivalent number of product lines of 
2 or more (see third quartile Q3). We can also see that most of firms have 
very small market shares, only 25 percent having a market share higher 
than 1 percent (see Q,). 

Note finally that we include in all the equations of the model a full 
set of 18 industry dummies (or 17 plus the constant): St ,  S f ,  .. . St* with zfj, S;=l. These are defined at a higher level of classification ('level 40' 
of the NAP) than the average market share and diversification variables, on 
the basis of the firm main industrial activity (with the highest market share). 

A.2 Research and Development data 
The Research and Development (R&D) data come from the annual firm 
research expenditures survey conducted by the 'Ministhe de la Recherche' 
since 1974. For this study, we kept mainly the information on the firm total 
R&D which we 'convert' in 1990 prices using an overall manufacturing 
R&D deflator.37 From the firm total deflated R&D expenditures series, R, 
for firm i in year t ,  we simply compute the R&D capital K, (at the begin- 
ning of year t), by the so-called 'permanent inventory method', i.e.. by the 
following iterative formula: 

which assumes a geometric depreciation of R&D capital at the constant rate 6. 
Consistently with previous studies on French manufacturing (see for exam- 
ple Cuneo and Mairesse, 1984, or CrCpon and Duguet, 1997). we adopt a 
depreciation rate 60f 15%. For the firms which have regularly invested in 
R&D since 1974, we take Ki(,,, = 5 x Ria,, as starting value. This assumes 
an R&D constant pre-sample growth rate yof 5% (i.e., Ki(,,, = Ri(,,)/(y+ a). 

We computed this R&D deflator based on the decomposition of the ovbrall Manufacturing 
R&D spending (for all the Manufacturing films in the survey), in its labor, materials and phys- 
ical investment components, and on the corresponding wage and prices indices. 



For the firms which have engaged in R&D in a latter year T, the starting 
value at the beginning of this year is zero (K,, = 0). Note however that we 
consider here that a fm has engaged consistently in R&D activities if it has 
reported R&D expenditures for a least three years in the period 1986-1990, 
which is the relevant period for our innovative sales variable and our demand 
pull and technology push indicators (see below); we have only computed the 
fum R&D capital in this case.38 Actually the choice of starting value and that 
even of the depreciation rate in the computation of R&D capital has little con- 
sequence on the estimated elasticities of interest in our model, for such cross- 
sectional estimates as ours. It affects however the absolute value of R&D 
capital (such as the sample median or average) ahd hence the estimated 
impact of a given difference in R&D investment or capital (in dollar terms). 

We have also used the information on research employees, and on the 
physical investment and materials components of total R&D expenditures, 

, also available in the annual survey, to correct our labor, physical capital and 
value added variables for R&D double counting. The number of employees 
working in research activities is deducted from the total number of employ- 
ees; the gross book value of fixed assets'used in research activities (estimat- 
ed on the basis of the physical investment component) is similarly subtract- 
ed from the total gross book value of fixed assets. The accounting value 
added measure is also corrected by adding back R&D expenditures (materi- 
als) which are expensed out in the firm standard current accounts. As dis- 
cussed in particular in Cuneo and Mairesse (1984) and Hall and Mairesse 
(1995), the estimated elasticities of knowledge capital (either patents, innov- 
ative sales or R&D capital) in the productivity equation are thus not affected 
by R&D double counting biases, and thus should not be given an excess 
return interpretation, as usually done when the corrections cannot be made. 

To summarize, g, is a research dummy equal to 1 if firm i has reported 
R&D for at least three years in the period 1986-1990.0 otherwise; and k, is 
the log of R&D capital at the beginning of year 1990 for an R&D doing 
firm i (if g, = 1). We see in Table 1 that relatively few firms are consistently 
engaged in R&D, even in the innovation sample. Only about 15% of the 
firms in this sample are R&D doing'firms with a median R&D capital of 
about 190 thousand '1990 FRF'. 

A.3 Patent data 
The patent numbers come from the European PATent (EPAT) data base. 
Since the firm ID codes SIREN were not available in this data base. it has 

'8 Note also that for the few R&D doing firms which had a one or two years of intemption 
in reporting to the research survey, we simply interpolate their R&D expenditures for these 
years. 
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been necessary to carefully match SIREN and firm 11ames.3~ We have taken 
as our patent variable ni the total numbers of patents applied by the firm i 
during the five year period 1986- 1990. We have considered the number of 
patents applied rather than the number of patents granted, which is often 
viewed as a more appropriate measure of innovation output. However 
these two measures should be practically equivalent for our cross~sectional 
type estimates. 

As in the case of R&D, Table 1 shows that relatively few firms have 
applied for an European patents in five years, even in the innovation sam- 
ple. About 16% of the firms in this sample have applied for at least a patent 
in the 1986-1990 period, with a median number of patents of two and a 
third quartile of six. Also only about half of them (50%) are R&D per- 
formers, and conversely half of the R&D firms have applied for at least a 
patent in five years. For similar numbers in U.S. manufacturing, see Bound 
et al. (1984). 

A.4 Innovation data 
The information on the share of innovative sales and on the demand condi- 
tions and technological opportunities is provided by the 1990 Innovation 
survey performed by SESSI (Service des Statistiques Industrielles).~ 
Actually this information is based on questions that are only asked in the 
survey to the 'innovating firms', which make up our innovation sample. 
The innovating firms are those which answered 'yes' to at least one of the 
following eight questions: did you performed in the five last years (between 
January 1st of 1986 and December 31 of 1990) an innovation of the fol- 
lowing type: (i) product improvement; (ii) new product for the market; (iii) 
product imitation (i.e., new for the firm but not for the market); (iv) tech- 
nological breakthrough; (v) process improvement; (vi) packaging innova- 
tion (explicitly excluded from i, ii and iii in the questionnaire); (vii) orga- 
nizational innovation linked to the introduction of technological change 
and (viii) marketing innovation. About 60% of the French manufacturing 
firms have innovated according to this definition (a little more in our own 
sample which consists of slightly larger firms in average). 

The Innovation survey which was conducted in 1991 for all manufac- 
turing firms with more than 20 employees, achieved an excellent coverage 
(all firms of more than 500 employees and more than 80% of the sales of 

3P This work has been performed at INSEE by J.-C. Bussy, C. Carpentier. P. Corbel and I. 
Kabla (1996). with the collaboration of INPI (Institut National de la PropriCtC Industrielle). 
See INSEE studies in Economics and Statistics na l .  (1996). which.also present a number of 
studies using the matched EPAT data set. " For a presentation of the survey and its questionnaire, see Fnnqois (1991). 
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the smaller firms). Our own full sample (N = 6145) corresponds to rough- 
ly one third of the firms actually surveyed; this is reasonable considering 
we had to match several different data sources.41 Detailed information on 
the 1990 Innovation survey can be found in Fran~ois (1991) and Auzeby 
and Fransois (1992), and studies using it in SESSI (1994). 

The share of innovative sales is based on a question asking innovating 
firms what percentage of their 1990 sales percentage of sales is imputable to 
new products launched between 1986 and 1990. Firms answered on an inter- 
val scale: 0-1096, 10-30%. 30-70% and more than 70%. We can see from 
Figure 2 that more than the half of innovating firms have less than 10% of 
innovative sales, while less than 3% have more than 70% of innovative sales. 

The firm level demand pull and technology push indicators are respec- 
tively based on the two following questions: 'Do you consider that in your 
firm innovation is determined through the impetus given by the market 
(relationships with customers, competitors)?' and 'Do you consider that in 
your firm innovation is determined by technology specific dynamics?'. 
Firms answered on a four point scale: 'no', 'weakly', 'moderately' and 
'strongly'. Figures 3 and 4 show that the market demand plays a moderate 
or strong role for about 85% of innovating firms while technology plays 
such a role for about 60% of them. 

B. APPENDIX: METHOD OF ESTIMATION 
The key idea of the method of estimation is to estimate reduced form coef- 
ficients in each of the equation of the model separately, and infer from these 
auxiliary parameters the structural form parameters of the model using a 
minimum distance estimator or so called Asymptotic Least Squares 
method, henceforth ALS (see Malinvaud 1970, Gourieroux, Monfort and 
Trognon 1985, Gourieroux and Monfort 1996, chapter 9). The intuition is 
the same as that of indirect least squares, although ALS is more general. 
We have thus two estimation problems: first, estimating the reduced form 
parameters and their joint covariance matrix; then, estimating the structur- 
al form parameters in a consistent (and efficient) way. The first problem is 
solved by interpreting the maximum likelihood and pseudo maximum like- 
lihood estimators of the reduced form equations as specific M-estimators 
(i.e., Maximization-estimators, see Gourieroux and Monfort 1996, chapter 
8). The second problem comes down to writing explicitly the relationships 
between the structural and reduced form parameters (or the parameters of 
interest and auxiliary parameters). 

4 '  We also had to do a very modest amount of cleaning to eliminate of few 'outliers', which 
is necessary when analyzing firm level micro data (see Hall and Mairesse. 1995, for some 
details). 



RESEARCH, INNOVATION AND PRODUCTIVITY ': 143 

B. I Reduced form estimation 
Once we have written the reduced form of the model, the estimation pro- 
blem becomes that of a series of single equation, and we can apply the esti- 
mation method which is most appropriate for each equation, i.e., a maximum 
likelihood or pseudo maximum likelihood method. We can thus write: 

where y, is the reduced form parameter in equation k and Lk denotes the 
likelihood or pseudo likelihood function. The problem remains to estimate 
the joint covariance matrix of the f k  's. We can solve it by considering that 
our estimators can also be defined globally by: 

3 
f E arg max ~ ( y )  with y = 

7 

Maximizing L according to ygives exactly the maximum likelihood and 
pseudo maximum likelihood estimators. This property arises from the sep- 
arability of L (y) with respect to the f k  's.42 These estimators can be inter- 
preted as M-estimators. Under the usual regularity conditions for M-estiz 
mators: 

with asymptotic~covariance matrix: 

and 

where y, denotes the true value of parameter y, and the expectations are 
taken with respect to the distributions of the exogenous variables (index Z) 
and of the endogenous variables (index 0). 

The I matrix and the J matrix can be estimated by their sample coun- 
terparts: 

42 If such separability does not hold, we can always assume that it does by reparametrizing 
in the fmt step of the estimation (changing the names of the reduced form parameters in each 
equation so that they be different), and imposing the cross-equations constraints only in the 
second step. The method is thus quite general. 
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where N is the sample size. Note that since the objective ftnction is s e p  
arable, the off-diagonal terms (the cross derivatives) in J (and J )  are 
equal to zero. 

Finally, we can use as the estimator of the covariance matrix of the esti- 
mated reduced form parameters: 

Through (and i ), the correlations between the perturbations of the dif- 
ferent equations of the model are taken into account, without making spe- 
cific distributional assumptions on their joint distribution. 

B.2 Actual implementation 

B.2.1 The research equations 
The research equations are already reduced fonn equations that we direct- 
ly estimate by maximum likelih0od.~3 If we denote the reduced form first 
order parameters: q, = bo and ~c, = b,, we have y, = (q,, q, cl, p)'. with oo 
normalized to 1. 

B.2.2 The patent equation 
The reduced form of the patent equation is given by: 

E (n, I k,', x,,, u,,; cr,, b,) = exp (xIikl aK + x2b2 + aKu,, + u,) 

which can also be written as: 

where Z, is the vector of exogenous variables, grouping xIi and xzi variables 
without replication so that z, is full column rank (of dimension rt). % is the 
corresponding reduced form parameter vector, and v, = aflli + uzi the 
reduced form error term. This is a count data model with heterogeneity term 
exp (v,,). Note that even if the structural equation is not heterogeneous, the 
reduced form equation will be (which is a general argument in favor of het- 
erogeneous count data models). We do not need any specific distributional 
assumption on u, to estimate this model, only that the expectation of exp 

43 This is done with a SAS-IML program (% TOBITGEN), based on a Newton-Raphson 
algorithm with Levenberg-Marquardt mmcations and analytical second order derivatives 
(see Crkpon-Duguet 1995, and Crepon-Duguet-Kabla, 1996). 
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(v,;) is constant (overall or by industry) and its variance finite, and can apply 
the pseudo maximum likelihood method (see Gourieroux, Monfort and 
Trognon 1984). Based on our previous experience, we used a pseudo log 
likelihood function based on the negative binomial pseudo distribution.& 

5.23 The innovative sales equation 
The latent reduced form of the innovative sales equation is given by: 

which we can write as: 

Since u, and u2 are both assumed to be normal v,; = a, uIi + u2; is also nor- 
mal and we can estimate this equation as a ordered probit model. Since our 
observed indicator corresponds to known intervals of the underlying share 
of innovative sales t,', y, = ( R ; ,  02)' is fully identifiable. 

8.2.4 The productivity equation 
In the first version of the model with patents, the reduced form of the pro- 
ductivity equation can be written as: 

and in the second version with innovative sales as: 

Both reduced form equations can thus written as: 

or: 

"The negative binomial pseudo log likelihood is concave with respect to the parameter $ 
so that the maximum is unique. We carried on the estimation using a SAS-IML program 
(%PMVBNEG). based on a Newton-Raphson algorithm with analytical second order deriva- 
tives (see Crepon and Duguet 1995 and 1997). 
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We simply estimate these equations by ordinary least squares (OLS), with 
a robust covariance matri~.~S 

B 3  Structural form estimation 

B 3 . 1  The relation between the reduced form and structural form para- 
meters 
The patent equation can be written under the two equivalent forms: 

Taking the logarithms of both expressions gives: 

where 

We can define the two exclusion matrices J,, and J2, (made of zeroes and 
ones) simply indicating if the variable in z2 are in x ,  or x,: 

J2, such as z, J2, = x, 
( r 2 r l )  

J,, such as z, J,, = x2 
(r242) 

and write: 

Since z ,  is full column rank, this implies: 

45 The OLS estimator can be viewed as a pseudo-maximum likelihood estimator with a nor- 
mal pseudodistribution. 
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with 

The same relation applies for the innovative sales equation, since: 

The productivity equation can now be written as: 

or: 

with: 

B.3.2 Asymptotic least squares 
The estimates of the reduced form parameters a being consistent and 
asymptotically normal, we can apply ALS to estimate our structural Para- 
meters p, where: 

~ = ( k )  and n=[:i) 

The true values of the P and a are assumed to be such that we have the exact 
relation: g (p, n) = 0. 

In the traditional ALS terminology the structural parameters P are al- 
so called the interest parameters and the reduced form parameters a the 
auxiliary parameters. The basic idea of ALS is to use the estimate 2 of a . - 
obtained in a first step and compute in a second step an estimate P of P such 
that g p,a is as 'close to zero' as possible. That is, we solve the program: ( -  -1 

8 = arg min (P, 2) "Pig (p, 2) 
B 

A 

where Y is a metric. Whatever Y,  P is consistent if I? is consistent, and 
it is asymptotically efficient for Y given by: 
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dg dg' Y = V, [,(p, i)] = (a i ) ~  dx (P? 13) 

where l2 = Vas (k) is the covariance matrix of 2 .  Since we need an esti- 
mate of p to estimate the optimal metric Y *, we can estimate b in two steps. 

In the first step, we can use for Y the Euclidean metric ( Y = Id ), and 
estimate /? as: 

j = arg min g (P, *)'g(P, 2) 
LJ 

In our case, this is simply OLS applied to: 

with H = J 2 ,  J ,  H = ( J  2 1 J )  H = diag (&) and resid- 

ual w = g (p, 2 ). We thus have: 

and the asymptotic distribution of P is: 

with 

dg' dg dg' dg --fi-- 
dp h' ax da, 

where all derivatives quantities are taken at the m e  values of (p, n). 
Replacing p, nand Q by their consistent estimates p, 2 and b , we are 

now able to compute an estimates +* such that: 

with 

In the second step, we can then compute the corresponding optimal ALS 
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estimator p* such that: 

Pa = arg min g ( ~ ,  2 ) ' ~  *-lg(p, i) 
B 

which in our case reduces to GLS applied to equation 2. We thus have: 

and the asymptotic distribution of a* is: 

where C* can be estimated by: 

C. APPENDIX: AN ASSESSMENT OF BIASES LIKELY TO ARISE IN 
INNOVATION AND PRODUCTIVITY STUDIES 
We have tried in this study to correct for selectivity and simultaneity bias- 
es and to take into account the specific features of the data, by using appro- 
priate econometric methods. However, it is of interest to assess the magni- 
tude of these biases and the effects of neglecting to consider,the nature of 
the data, when we use more widespread methods. The following subsec- 
tions thus present a series of estimates, which we obtained using ordinary 
least squares (OLS), two stages least squares (2SLS). maximum likelihood 
(ML) or pseudo maximum likelihood (PML), and first and second steps 
asymptotic least squares (ALS) estimators. We only present these estimates 
for the basic specification of the equations in our model, but for both the 
full and innovation samples, and when appropriate for the subsamples of 
R&D doing firms or patenting firms or both. Depending on the equation 
and samples or subsamples, these estimators fail to take into account selec- 
tivity, andfor simultaneity, and/or the specific nature of R&D, patents or 
innovative sales variables. 

C. I The research equations 
Table 4 compares the OLS estimates of the research intensity equation for 
the subsarnples restricted to the R&D doing firms (with positive R&D 
expenditures) to the corresponding ML estimates for our generalized tobit 
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Table 4. Research and Development Equations 

- probit part 0.412 0.244 0.323 0.398 0.221 0.294 
(0.038) (0.030) (0.097) (0.038) (0.03 1) (0.102) 

- tobit part -0.005 0.378 0.321 -0.001 0.365 0.300 
(0.067) (0.053) (0.142) (0.068) (0.054) (0.146) 

Dependent variable: logarithm of research capital per employee (ki) 
(standard errors between parentheses) 

657 firms 636 firms 

OLS -0.198 0.232 0.136 -0.188 0.231 0.130 
(0.056) (0.046) (0.13 1) (0.056) (0.047) (0.134) 

A11 regressions include 18 industry dummies. 
' Correlation among the residuals. 6 = 0.698 (0.074). 

Sample Full 
Variable li si di 

Correlation among the residuals, 6 = 0.709 (0.074). 

Innovation 
' i  si 4 

specification (the tobit part) for the full and innovation samples (with both 
R&D and non R&D doing f m s ) .  While the ML and OLS estimates are 
about the same for both samples or subsamples (for the right and left pan- 
els of the Table), they do significantly differ between themselves. If we had 
considered only the evidence conveyed by OLS for the R&D firms we 
would have concluded that the fum R&D intensity decreases significantly 
with its size and is independent of diversification. Actually we found quite 
the opposite: fm R&D intensity does not depend on size and increases 
significantly with diversification. 

Generalized robit: 6145 firmsa 4164 firms 
(maximum likelihood) 

C.2 The patent equation 
Table 5 compares the different types of estimates of the patent equation we 
can consider on the complete samples (full and innovation samples), posi- 
tive R&D subsamples, positive patents subsamples and both positive R&D 
and patents subsamples. The PML estimators (assuming a negative bino- 
mial pseudo distribution of the disturbances) can be computed in all cases, 
while the OLS and 2SLS estimators can be only for the positive patents 
subsamples (i.e., of f m s  with at least one patent). Note that we include an 
R&D dummy in the equation when we consider these estimators for a sam- 
ple or subsample with non R&D firms. We also present both the first step 
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Table 5. Patent Equation 

Dependent variable: number of patents per employeet (n ; )  
(standard errors between parentheses) 

Asymptotic least squares 0.854 -0.042 * 0.745 -0.049 * 
@st step: OLS) (0.240) (0.069) (0.25 1) (0.072) 

Sample Full 
Variable ' i  I i  gi 

Asymptotic least squares 1.055 -0.05 1 * 0.979 -0.065 * 
(second step: GLT) (0.149) (0.069) (0.155) (0.071) 

innovation 
ki ' i  gi 

Positive patents 712 firms 669 firms 
Ordinary least squares 0.426 -0.493 0.310 0.427 -0.481 0.298 

(0.042) (0.029) (0.078) (0.043) (0.03 1) (0.082) 

All observations 6145 firms 4164 firms 
Pseudo maximum likelihood 0.410 0.1 18 1.334 0.421 0.076 1.203 
(negative binomial) (0.075) (0.055) (0.169) (0.074) (0.057) (0.164) 

Two stages least squares 1.154 -0.3 13 -0.806 1.158 -0.255 -1 .I39 
(0.735) (0.205) (1.256) (0.799) (0.269) (1.691) 

Pseudo maximum likelihood 0.385 -0.325 0.291 0.385 -0.319 .0.281 
(negarive binomial) (0.052) (0.042) (0.1 15) (0.052) (0.043) (0.116) 

Positive R&D 657 firms 636 firms 
Pseudo maximum likelihood 0.485 0.005 * 0.487 0.005. * 
(negarive binomial) (0.073) (0.070) (0.073) (0.070) 

Positive Patents and R&D 341 firms 332 firms 
Ordinary least squares 0.442 -0.357 * 0.443 -0.361 t 

(0.05 1) (0.047) (0.052) (0.047) 

Two stages least squares 0.466 -0.358 * 0.467 -0.362 * 
(0 2 1 2) (0.047) (0.2 15) (0.048) 

Pseudo maximum likelihood 0.412 -0.248 * 0.415 -0.255 * 
(negative binomiul) (0.05 1 ) (0.046) (0.052) (0.05 1) 
AN regressions include 18 industry dummies. 
Instruments for 2SLS: l i .  si, di and the 18 industry dummies. 
'The patent equations is set up in terms of the number of patents per employee. and the coef- 
ficient of the number of employee li thus measures the departure from constant returns to size. 

and second steps ALS estimates for the complete samples. Note that the 
second steps ALS estimates are estimated independently of the productivi- 
ty equation and thus can differ from our preferred ones. Comparing them 
in Table 2 and Table 5 for the innovation sample, we can verify that they 
are in fact quite close. 

As in the case of the research intensity equation we see that the same 
estimates vary very little across the full and innovation samples or sub- 
samples. By contrast the different types of estimates can differ significant- 
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ly between themselves. Both our findings that patents do not depend on 
size, but are strongly related to R&D intensity with an elasticity of about 
one, are at variance with the other estimates (other than ALS). The OLS 
and PML estimates indicate a much. lower R&D elasticity of about 0.4 in 
all cases and a negative dependence on size for all the subsamples with pos- 
itive patents, while the 2SLS are too imprecise to let us say much about 
them. Ignoring both selectivity (the fact that most of the firms do not 
patent) and simultaneity thus result in large downward biases. The fact that 
OLS, 2SLS and PML are about the same for the positive patents subsam- 
ples tend to show that selectivity is a more severe problem.46 The fact the 
PML and ALS estimates differ for the complete samples (coupled with the 
inaccuracy of the 2SLS estimates for the subsamples) seem also to indicate 
that simultaneity (the endogeneity of R&D) interacts with selectivity. 
Simultaneity can be dealt with only if selectivity is taken into account. 

C3 The innovative sales equation 
Table 6 shows the different types of estimates of the innovative sales equa- 
tion that we have been able to compute on the complete samples and posi- 
tive R&D subsamples. Since only the 'innovating' firms had to declare their 
share of innovative sales (see Appendix A, subsection A.4), in order to com- 
pute these estimates for the full sample and the corresponding positive R&D 
subsample (in the left panel of the Table), we assumed that in fact the per- 
centage share of innovative sales of the 'non innovating' firms lies in the 
first interval from 0 to 10%. Note also that in order to compute the OLS and 
2SLS estimates, we have simply assumed that the value of the innovative 
sales variable was equal to the interval center, that is 5%, 20%, 50% and 
85%. Despite such invention of the missing or exact values of our equation 
right hand side variable, the corresponding estimates for the full and inno- 
vation samples and subsamples remain close as in the case of the other equa- 
tions, and the OLS estimates do not differ significantly from the ML ordered 
probit estimates, nor the 2SLS, which again are very imprecise!' 

As for the patent equation, the OLS and ML estimates indicate a much 
lower R&D elasticity than our ALS estimates, of about 0.1 instead of 0.3 or 
0.4, and the 2SLS estimates are so inaccurate that they do not statistically 
differ from zero. Likewise the OLS, 2SLS and ML estimates are about 

* Clearly what matters is to take into account the zero patents, not the fact that the number 
of patents are count data. 
a Comparing our preferred estimates in Table 2 to the corresponding second step ALS esti- 

mates (i.e., estimated independently o f  the productivity equation) on the innovation sample in 
Table 6, shows that they are a little different, although not statistically so  considering their 
standard errors: the estimated R&D capital elasticity is about 0.4 in Table 2 as against about 
0.3 in Table 6. 
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Table 6. Innovative sales Equation 

Two stages least squares* 4.615 0.053 1.630 2.803 0.064 0.780 
(4.328) (0.290) ( 1.89 1) (3.359) (0.327) (2.009) 

Dependent variable: logarithm of share of innovative sales ( t i )  
(standard errors between parentheses) 

Asymptotic least squares 0.434 0.048 * 0.260 0.016 * 
Ifirsr step: OLS) (0.162) (0.044) (0.119) (0.031) 

Sample Full 
Variable ki li gi 

Asymptotic least squares 0.461 0.047 * 0.280 0.015 * 
(second step: GLS) (0.090) (0.044) (0.066) (0.03 1) 

Positive R&D 657 firms 636 firms 

Innovation 
' i  li gi 

Ordinary least squares* 0.107 0.049 a 0.121 0.043 * 
(0.033) (0.030) (0.033) (0.030) 

All observations 6145 firms 4164 firms 
Ordinary least squares* 0.1 11 0.096 0.430 0.1 14 0.060 0.306 

(0.025) (0.0 10) (0.039) (0.029) (0.01 3) (0.046) 

Two stages least squares* 0.108 0.049 * 0.094 0.044 * 
(0.168) (0.030) (0.169) (0.030) 

Maximum likelihoodt 0.128 0.053 t 0.142 0.046 * 
(0.036) (0.032) (0.036) (0.032) 

All regressions include 18 industry dummies. 
Instruments for 2SLS: l i ,  si .  di and the 18 industry dummies. 
* The logarithm of the interval center was taken as the dependent variable. 
Ordered probit estimates (with known thresholds). 

equivalent (both for the complete samples and positive R&D subsamples), 
but differ markedly from our preferred ALS estimates (on the complete 
samples). Again this suggests that simultaneity interacts with selectivity 
and that the two must be taken care of together. 

C.4 Productivity equation 
The last three Tables 7, 8 and 9 present the different types of estimates for 
the productivity equation, respectively using as proxy for knowledge capi- 
tal, the more usual R&D capital variable and our two newer innovation out- 
put variables: the number of patents and innovative sales (number of sales 
weighted innovations). What we see in these Tables largely confirm the 
remarks we just made as concerns the research and innovation equations, 
though with some exceptions. 
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Table 7. Productivity Regression with Research Capital 

Dependent variable: logarithm of value added per employee (qi) 
(standard errors between parentheses) 

Sample Full Innovation 
Variable 

I 

All observations 6145 firms 4164 firms 
Ordinary least squares 0.1 19 0.213 0.009 0.159 0.1 19 0.207 0.007 0.158 

(0.0 10) (0.005) (0.004) (0.0 10) (0.010) (0.006) (0.005) (0.0 16) 
Two stages least squares 9.679 -0.073 0.306 -0.343 7.219 -0.174 0.360 -0.801 

(I 1.052) (0.284) (0.593) (3356) (10.475) (0.485) (0.8 12) (4.141) 
Asymptotic least squares 0.065 0.204 -0.027 * 0.048 0.207 -0.030 * 
(first step: OLS) (0 .O 1 4) (0 .OM) (0.007) (0.028) (0.007) (0.008) 
Asymptotic least squares 0.1 19 0.206 -0.019 * 0.149 0.207 -0.034 * 
(second step: GLT) (0.0 14) (0.006) (0.007) (0.0 19) (0.007) (0.007) 

Positive R&D 657 firms 636 firms 
Ordinary least squares 0.154 0.096 0.009 * 0.155 0.098 0.007 * 

(0.012) (0.021) (0.011) (0.012) (0.022) (0.011) 
Two stages least squares 0.407 -0.046 0.025 * 0.419 -0.062 0.023 * 

(0.098) (0.061) (0.015) (0.103) (0.068) (0.016) 

All regressions include 18 indusrry dummies. 
Instruments for ZSLS: l i ,  c; ,  s;, di and the 18 industry dummies. 

Table 8. Productivity Regression with Patents 

Dependent variable: logarithm of value added per employee (9;) 
(standard errors between parentheses) 

Two stages least squares 0.866 0.047 0.436 * 0.769 0.079 0.373 * 
10.492) 10.1 14) 10.239) (0.448) (0.010) (0.212) 

Sample Full 
Variable ni ci 1; g, 

All regressions include 18 industry dummies. 
instruments for 2SLS: l i .  c,, s;. di and the 18 industry dummies. 

Innovation 
ni C, 1; gi 

All observations 6145 firms 4164 firms 
Ordinaryleastsquares 0.040 0.219 0.016 0.089 0.044 0.217 0.014 0.094 

(0.011) (0.005) (0.004) (0.015) (0.011) (0.007) (0.005) (0.015) 
Two stages least squares 3.197 0.171 0.208 0.417 1596 0.207 0.102 0.457 

(1.132) (0.028) (0.136) (0.688) (0.556) (0.017) (0.092) (0.426) 
Asymptotic least squares 0.066 0.208 -0.026 * 0.1 13 0.207 -0.025 * 
(first step: OLS) (0.02 1) (0.006) (0.007) (0.029) (0.007) (0.009) 
Asymptotic least squares 0.142 0.208 -0.026 * 0.166 0.207 -0.030 * 
(second step: GLS) (0.020) (0.006) (0.0 10) (0.027) (0.007) (0.0 12) 

Positive Patents 712 firms 669 firms 
Ordinary least squares 0.055 0.213 0.045 * 0.056 0.214 0.038 * 

(0.012) (0.020) (0.012) (0.013) (0.020) (0.012) 
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Table 9. Productivity Regression with Innovative sales 

Dependent variable: logarithm of value added per employee ( q i )  
(standard errors between parentheses) 

R o  stages least squares* 0.643 0.165 -0.059 0.773 0.196 -0.044 
(0.094) (0.013) (0.014) (0.154) (0.016) (0.017) 

Asymptotic least squares 0.057. 0.208 -0.03 1 0.228 0.207 -0.034 
first step: OLS) (0.050) (0.006) (0.008) (0.12 1) (0.007) (0.0 10) 

Sample Full 
Variable ti Ci li 

Asymptotic least squares 0.308 0.209 -0.047 0.542 0.207 -0.043 
(second step: GLS) (0.05 1)  (0.006) (0.014) (0.1 16) (0.007) (0.017) 

Innovation 
!i Ci ' i  

All regressions include 18 industry dummies. 
Instruments for 2SLS: l i ,  c i .  si,  di and the 18 industry dummies. 
* The logarithm of the interval center was taken as the right-hand variable. 

All observations 6145 firms 4164 firms 
Ordinary least squares* 0.035 0.219 0.018 0.035 0.220 0.019 

(0.005) (0.005) (0.004) (0.005) (0.007) (0.004) 

The estimates of the same type are about the same in,the full and inno- 
vation samples and in the positive R&D or positive patents subsamples. 
The second step ALS estimates, which are estimated independently of the 
research equations, are close enough to our preferred estimates in Table 
2. There is, however, the surprising exception of the estimated innova- 
tive sales elasticity: about 0.5 in Table 9 (for the innovation sample), 
which is too large, as compared to the more reasonable 0.1 in Table 2. 
This is also one of the only two cases where we find significant differ- 
ences between our first step and second step ALS estimates: a smaller 0.2 
first step estimates of innovative sales elasticity as against the 0.5 too 
large second step e~timate.~"he 2SLS estimates tend to be very impre- 
cise and to give implausible values of all parameters, and in particular 
much too high values of the elasticity of knowledge capital. As they do 
for the R&D elasticity in the patent and innovative sales equations, the 
OLS estimates tend to indicate a smaller elasticity of knowledge capital 
than the ALS estimates. This is the case when knowledge capital is mea- 
sured in terms of number of patents and innovative sales (number of sales 
weighted innovations), but surprisingly not so when we use the usual 
R&D capital measure. As before this points to the need to take into 

4R The second case is that of the AI-S estimates of R&D capital elasticity in Table 7: the first 
step estimates are about 0.05 in the full and innovation samples, as compared to about 0.10 in 
the full sample or about 0.15 in the innovation sample for the second step estimates. 
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account explicitly for both selectivity and simultaneity. 
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