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I
Introduction

1.1 General introduction

The main aim of this work is to suggest to archaeologists that there is a
potential for more detailed and systematic study of spatial patterning in
archaeological data. The distribution map lies behind some of the most
central themes in archaeology such as trade, diffusion and culture. The
map of archaeological data also has a value for chronology. For example,
Clark (1957) has suggested that the degree of overlap between distribu-
tions of different cultural assemblages can give an indication of their
contemporaneity (cf. Willey and Phillips 1958, 32). “The distribution
map is one of the main instruments of archaeological research and
exposition, but because it is a commonplace of books and papers, do not
let us forget what it is trying to do — to accomplish and to demonstrate
the totality of information about some archaeological fact, to study the
total evidence in space regarding one aspect of the material remains of
the past’ (Daniel 1962, 80). ‘For the past thirty or forty years archaeolo-
gical distribution maps have been one of the main weapons in the
armoury of the prehistorian’ (Clark 1957, 153). However, the develop-
ment of spatial studies in archaeology has been slow. Early prehistorians
were mainly concerned with establishing chronological sequences and
they did not always concern themselves with the geographical extent
of the cultures they examined. ‘It was because of this that archaeologi-
cal mapping made little headway until well into the twentieth century.
... It was not until 1912 that Crawford first used distribution maps to
argue questions of cultural history’ (Clark i6id.). But it is only in the
last few years that systematic methods for the examination of archaeolo-
gical maps have begun to be used. Because of this past neglect, most of
the methods which have been used recently in archaeology and which
are employed in the study presented here have been introduced and
adapted from other disciplines, in particular geography and plant
ecology. “The distribution of artifacts in space is only now, through the
application of locational analysis, undergoing systematic study. All the
notions of random and regular spacing, of central place theory and
settlement hierarchy, and of correlations among distributions, have yet
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to be assimilated to prehistoric archaeology’ (Renfrew 19736, 250).
This work is an attempt to develop such systematic study, although the
field is very wide and one cannot hope to cover all aspects nor to solve
all the associated problems.

An appraisal of the role of spatial studies in archaeology is felt
necessary for three reasons. The first is that previous work in this field
has been limited in its aims and methods which were often uncritical
and did not aid detailed interpretation. Second, subjective assessments
of distributions can be dangerous, and third, some methods are needed
to handle the large amounts of distributional information that are now
becoming available.

As an illustration of the first point and as an example of the early
approach to distribution maps in archaeology, Fox’s study of The
personality of Britain (first edition 1932, revised 1943) may be considered.
Fox’s aim in this study was as follows. ‘I shall endeavour to express the
character of Britain in prehistoric and early historic ages, and to
indicate the effect of the environment she afforded on the distribution
and fates of her inhabitants and her invaders’ (Fox 1943, 10). “The
most convenient line of approach is to find out, by the study of distribu-
tion maps, where in this island early Man actually lived and laboured’
(ibid., 11). “The essay is concerned to establish principles and not to
present the prehistory of Britain® (ibid., 14).

The method employed to achieve this aim was the visual interpreta-
tion of a large collection of distribution maps of different periods.
General similarities between the distributions were sought. A major
difference, for example, was noted between distributions with a western
(for example megalithic monuments) and an eastern (for example
Beakers) bias. Such differences then had to be explained and inter-
preted. “The first question that arises is how these different distribu-
tions are to be explained. Must they be considered in isolation, or are
there underlying and constant factors to be taken into account in
framing any rational explanation of them? In these pages the existence
of such dominating factors will be made manifest’ (ibid., 14). It was

~ found that ‘geographical position and form suffice to explain, in large

measure, the two chief variations in distribution’ (ibid., 15). Thus,
southeast England is well situated for contact with and influences from
neighbouring parts of Europe, while the western British Isles absorbed
influences moving along the Atlantic routes. The physiography of
Britain also played a part, with the western and northern highland
zone being markedly different from the lowland zone. ‘It is easy to
understand why the major physical factors should exert so powerful an
influence on distributions. Lowland country, with its insignificant hills
and easy contours, is more easily overrun by invaders than highland.
The difficulties which mountainous country presents to an invader are
well known; moreover, the highlander lives a harder life and is less
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easily conquered, still less easily displaced, than the lowlander’
(tbid., 33). Differences in climate and the impact of these on man’s
economy were also seen to affect distributions. For example, ‘the
distribution of the “damp” oak woodland and Man’s dislike for it
explains many curious features in the prehistoric maps’ (ibid., 58).

In modern times, the aims of Fox’s study seem limited. In pursuit of
his desire to establish general principles, ‘a given distributional situa-
tion may be, as here, expressed in the simplest terms available, stripped
of those complexities which make the pattern of human life and activity
so interesting, and which it is the business of the prehistorian and
historian to elucidate’ (ibid., 14). ‘It is true that some of the massed
maps show, by a variety of symbols, the diversity of material which goes
to build a culture pattern; but usually it is the resultant pattern only
which is relevant to my purpose’ (ibid., 14). In addition, the visual
methods employed often seem uncritical. There is no detailed examina-
tion of the degree of correlation between maps nor of whether a
distribution indicates patterns of site destruction or fieldwork intensity,
an invasion, trade or social contact. An invasion hypothesis is usually
preferred although there is little discussion as to why this should be
so.

The inadequacy of early studies of distributions of artifacts can also be
seen in the common aim to establish prehistoric trade routes. An example
is the work of Sprockhoff (1930) discussed by Stjernquist (1966, 8-g).
Sprockhoff’s network of trade routes for the Bronze Age is shown in
fig.1.1. Two methods were combined to produce this map. One was to
map out finds of imported goods and finds from hoards. These hoards
were not discussed in detail but were assumed to be trade hoards. This
method was combined with one in which the author used verifiable
stretches of mediaeval trade routes. An assumption was made that the
network of trade routes had not changed much during the period from
the Bronze Age to the Middle Ages. De Navarro (1925) also con-
structed ‘trans-continental trade routes’. In his case these werederived
from the distribution of amber finds. In these and other studies

none of the scholars engaged on the problems concerning trade
routes has tried to analyse the distribution maps in greater detail.
The trade routes have been drawn with the intention of indicating
the principal direction of the flow of goods. There is no detailed
analysis of the economic and topographical conditions, although
the topographical aspects have been taken into account in studies
of limited areas. The conclusions drawn, however, presuppose the
opinion that places where finds of imported objects have been
made mark a trade route. There is an underlying hazy conception
of what this means and from the literature one can see that there is
a confusion in thought between the views on the goods as evidence
of a trade route and the goods as evidence of a market [Stjernquist
1966, 14].
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Fig.1.1. Trade routes for the Bronze Age (after Sprockhoff).
Source: Stjernquist 1966.

A second reason for developing spatial studies in archaeology results
from the subjectivity involved in map interpretation. ‘It has been shown
that the ability of the map-user to discriminate and evaluate the infor-
mation contained in the map is not free from subjective elements and
that the more information contained in a map the more ambiguity and
uncertainty there is likely to be as regards the interpretation to be put
upon it’ (Harvey 1969, §77). It is possible, however, to measure some
aspects of map information and to develop more rigorous methods of
map interpretation. ‘Until the recent introduction of a statistical
definition of spatial uniformity based on nearest neighbour analysis, . . .
it was difficult rigorously to measure dot-patterns. The more traditional
“eye-ball” methods are not really satisfactory’ (Garner 1967, 310).

The subjectivity of map interpretation may not be immediately
apparent and it is perhaps worth providing some examples (see also
p- 31). In fig.1.2 to 1.5 points have been allocated at random to a
bounded area (point co-ordinates obtained from a random numbers
table). By allowing a certain flexibility in the approach to these
distributions we can identify structure even though the pattern is
random. For example, if the points are considered as sites, in fig.1.2
circles can be drawn around certain of the site points (cf. the approach
followed by Stanford 1972). Some pairing and clustering might be
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Fig;.l.2. Points placed at random in a bounded area. Circles
suggest spheres of influence around ‘sites’.

suggested, with an otherwise fairly even scatter of single sites. Depend-
ing on the context, a number of hypotheses could be put forward to
explain this ‘structured’ pattern. For example, the pairings and
clusters might be seen to indicate those sites which have moved location,
the circles reflecting the area of land used up by these shifting agricul-
turalists (cf. Clarke 1972, 25). Alternatively, the regularly spaced
single sites might be seen as major service centres with peripheral
clustering of minor sites in areas of least competition from the main
centres.

In fig.1.3 we can test a hypothesis that the points in part of the study
area are regularly spaced by placing over them a network of hexagons
whose orientation and size we are allowed to alter at will (cf. Clarke
1968, 508—9). We notice that one site occurs in most hexagons and
therefore conclude that the hypothesis of regular spacing is correct.
Since it is the hexagon shape which has been used we might even
invoke aspects of central place theory to explain the distribution. An
‘advantage’ of archaeological data is its incomplete nature. In cases
where the model does not fit we introduce this factor. For example,
empty cells might be said to predict where further sites will be found or
to suggest where they have been destroyed. Hexagon cells containing
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Fig.1.3. Hexagons placed over a random distribution to suggest
regular spacing.

two rather than one site could be explained by suggesting that the sites
are not precisely contemporaneous. '

If a hypothesis of clustering of sites is preferred, contours can be
drawn around the same pattern of sites as in fig.1.4. This time (fig.1.5)
agglomeration is suggested, not regularity.

These examples serve to underline the dangers of a non-rigorous
approach to map analysis and interpretation when, as with archaeolo-
gical data, little is known of the spatial process which produced the
pattern.

Developments in the spatial analysis of archaeological data are
needed for a third reason. Recently, large bodies of distributional
information have been collected which are difficult to examine without
some advance in the available techniques. For example, for one phase
of the northwest German early Bronze Age, Bergmann (1970) collected
over 112 distribution maps of different artifact types. On each of these,
different symbols were used to indicate the context of discovery.
Handling the similiarities and variations between all this information is
not easy, and a reappraisal (p. 211) identified additional patterning to
that noticed in the visual sorting. In a study of 542 middle Bronze Age
palstaves in southern England (Rowlands and Hodder, unpublished),
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Fig.1.4. Hexagons placed over a random distribution to suggest
regular spacing.

the spatial structure of the many palstave types in each of four typologi-
cal groupings of the material was to be examined for two divisions of
the palstaves. To produce the large number of necessary maps would
have been time consuming, difficult to present in a published form, and
extremely difficult to interpret. By using some of the techniques to be
discussed in this work, the problem became manageable.

In response to the need for a development in spatial studies, recent
archaeological work has been advancing in two main ways. The first
development is an attempt to describe and analyse distributions in a
more rigorous way in order to obtain greater precision and reliability.
. Examples of this approach are the work of Whallon (1973; 1974) and
Dacey (1973). These and other examples will be discussed in the
following chapters. With more characteristics of the distributions
defined there is a better basis for interpretation. In general a quantita-
tive and/or statistical approach is involved. Because of the difficulties in
using statistical tests on archaeological data (which will be discussed
below), the rigour which is achieved in this way may be more apparent
than real. However, some rigour is sometimes found in attempts to use
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Fig.1.5. An impression of clustering in a random pattern.

clearly defined and repeatable analytical procedures. A second recent
change is a greater emphasis on the process leading to the form of an
archaeological pattern. This was an area of interest for Fox, but there
was no real attempt to distinguish invasion from other mechanisms.
With better techniques we can hope to differentiate different processes
such as, for example, different types of diffusion. Anomalies in spatial
trends might be related to varying social conditions etc. Indeed, along
these lines Renfrew (1969; 1972b) has made some generalisations about
trade from regression curves, and Hogg (1971) has modelled the
process of dispersal of Iron Age coins.

One difficulty which will become apparent during the course of this
study is that of inferring process from form. One spatial pattern may be
produced by a variety of different spatial processes (Harvey 1968;
King 1962) and it must be part of the task to determine the possible
range of the variety. Ways of differentiating between alternative
hypotheses about the same spatial form will be examined (p. 88) but
often one must look to non-spatial evidence to corroborate or disprove
theories about spatial processes. As an example of the difficulty the
distribution of sites can be considered. It will be shown that the form of
many locational patterns is comparable to a Poisson distribution. This
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suggests that the settlements are located as a random and independent
process. Much locational theory suggests quite the opposite.

It is known that the probability of a store locating in any area is
conditional upon a number of factors, not the least important of
which is the relative location of other stores. Therefore, a simple
model such as the Poisson law hardly is suggested by theory, and
while it may serve as a convenient first approximation of the
location pattern, it reduces to simplicity a situation which already
has been acknowledged as a complex one. Besides, it is almost
certain that other probability models could be found which would
fit the observed facts equally well, and unless there is theory to
guide us in our choice, one model may appear no better than the
others [King 1969, 43].

The interpretation of random patterns will be discussed in section 4.1.

One approach that will continually be used 'to model spatial patterns
is to use random or stochastic processes. This method has been widely
found to be useful in modelling human behaviour and it has already
begun to be used in archaeology (Isaac 1972, 178; Thomas 1972). Its
use for examining spatial patterns should perhaps be explained. We
expect non-random spatial patterns because we know that individual
behaviour is not random but is constrained and determined by, for
example, kinship factors in the exchange of goods and physical factors
in the location of sites. However, it will be found that non-random
behaviour is often not apparent in the spatial patterns. Many of the
observed archaeological patterns have a form which is similar to
patterns produced by a random process. If the form of the pattern is
similar to the end result of a random process, this does not necessarily

mean that the process which produced the observed pattern was

random. It is possible, however, that, given a ‘satellite view’, aggregate
human behaviour is often best simulated by a random process, or by
very simple models incorporating a strong random element. This view
has been put forward by Curry (1964; 1967) and developed by, for
example, Cliff and Ord (1973; 1974). According to Curry, ‘every
decision may be optimal from a particular point of view and yet the
resulting actions as a whole may appear as random. Lack of informa-
tion, social ties, and so on will change an economic optimising solution
but not the randomness formulation’ (1964, 138). It is possible to
consider behaviour as rational when all the constraints of a decision are
known, and this is the level at which social anthropologists are able to
work in studying human interaction (for example Barnes 1972).
However, espécially in a dynamic framework, there is such a large
number of decisions being taken, rarely coincident in time and being
separately motivated under differing circumstances and degrees of
information, that comprehension of rationality on a wide scale is
impossible. Thus, ‘men, motivated by various ideas, act so that from
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the point of view of the locational structure as a whole their actions
appear as random’ (Curry 1964, 145-6).

It is perhaps helpful to compare this notion of random aggregate
behaviour with that of entropy in Information Theory (Harvey 1969,
462; Wilson 1970). If a system contains n elements and it behaves in
such a way that if the value of one element in the system is known all
the other values can be predicted, then such a system is highly organised.
In a similar system the values of # — 1 elements might be known, but
the value of the nth element still cannot be predicted. Such a system is
disorganised and is in a state of high entropy. In certain situations there
may be a variety of choices available for any action so that the aggregate
pattern of actions shows little order and provides little information about
the actions. This is comparable to the notion of randomness discussed
above. Information ‘may be regarded as the measure of the amount of
organisation (as opposed to randomness), in the system’ (Klir and
Valach 1967, 58). ‘The results of an unrestrained random process can
be defined as showing zero order. Order is achieved by placing con-
straints on the freedom of choice of action. This variety of available
choice may be called entropy and is the complement of the degree of
ordering’ (Curry 1964, 144).

1.2 Statistical introduction

It would not be possible in a book of this length to give even an
introduction to basic statistical theory, or to the use of the more
common statistical techniques in general, without overwhelming the
rest of the text. There is of course no need to do so, as there are many
textbooks on the subject. For a straightforward introduction to the
theoretical aspects we recommend Lindgren (first edition 1960 or
second edition 1968, page references will refer to the first edition),
while for a more practical approach Davies (third edition 1961) or
Davies and Goldsmith (1972) is recommended. Where possible, these
works will be quoted as source material for particular aspects of
statistical theory or technique.

1.2.1 Notation

A certain amount of mathematical notation is needed in the presenta-
tion of techniques. Most of the symbols should be familiar — a few of the
less common are given below; this section can of course be skipped by
those familiar with them.

(1) Subscripts: are lower case letters, or numbers, slightly below a
symbol, and indicating that that symbol represents a particular item
out of a set. For example, in section 4.3 the symbol ‘¢’ is used to denote
the predicted proportion of the distance between two major towns at
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which a minor town is situated. There are several (n) roads, each with
its own particular value of p, and these are denoted by p, for the first
road, p, for the second and so on up to p, for the nth. The expression p; is :
commonly used for an unspecified ith proportion. Double or multiple !
subscripts can be used — for example in section 4.3 p1; means the ith
proportion if hypothesis 1 is true, and p,; means the ith proportion if
hypothesis 2 is true.
(ii) 2 and IT (sigma and pi): it is often necessary to express a multiple
sum, for example in section 3.1 the average nearest-neighbour distance
is calculated by summing ry, 7, up to r, and dividing by n. This can be

. I o e . .
written as —(ry + 73 + ... + r,) butitis simpler and shorter to write
n

n

|
. I e

it as - 2 r;; the ‘range’ of the subscript i (from 1 to n) means that one f i
n

=1

starts summing at r;, and finishes at r,. Where the range is obvious

. I !
from the context, the expression can safely be shortened to —2r, and 1
n
)

further to 7 (‘r-bar’). L
Multiple products (e.g. r; X 7, X ... X r,) are also used. The

n
standard mathematical shorthand for this is IIr,, or just I1r. .

=1

(i) Factorials: a special case of the multiple product is the factorial.
Written as n!, it is the product 1 X 2 X § X ... X n. An impor-
tant piece of notation related to the factorial is the binomial coefficient,
!

n . .
written as ( ), and standing for It will be used exten-
r

!X (n—r)V
sively in chapter 6. Two important properties of the binomial coefficient

are that (n) = ( " )and (n) =1.
r n—r 0

\

1

(iv) Estimates: an estimate of an unknown parameter is often denoted |
by a “** or ‘hat’. For example, in section 3.2 the parameter 1 (lambda) | ]
has to be estimated from the site density, and this estimate is written I
as |
|

1.2.2. Distribution functions ;

The important concepts of random variable and distribution function
are discussed by Lindgren (pp. 31~9o). (‘Distribution’ in this sense is
not the same as the ‘distribution’ of a distribution map.) Suppose a
variable x (for example, a squared nearest-neighbour distance as in
section 3.2, p. 47) can take as its value any one of a set of real numbers,
and that the probability (P) of x being less than or equal to a certain
value, say w (omega) is written as P(x < ).
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&) Flo}h

o) Flw)A

() Fla)p

w

Fig.1.6 (a—). Examples of various sorts of cumulative distribution
functions. For explanation of symbols see text.

Then the function F(w) = P(x < w) is a cumulative distribution
function (cdf). A function of this sort will clearly increase (or stay the
same) as the value of @ increases, and it will never be less than o or
greater than 1 (because there cannot be a probability less than o or
greater than 1). A few simple examples are shown in fig.1.6. A related
function is the density function f(w), which is in fact the derivative

of the cdf, i.e. from the example just mentioned f(w) = P Flw) =
d w

in P(x < w). It has the property that if the graph of f(x) against x
1)

is drawn, the area to the left of the value x = w and beneath the curve
is equal to F(w) (the shaded area of fig.1.7). Also the probability of
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T

Flw)
w X
Fig.1.7. Example of density function showing relationship
between it and the associated cumulative density function. For
explanation of symbols see text.
fx)

/ T’

a b X

Fig.1.8. Example of a density function, showing probability
interpretation of the area beneath the curve.

x falling between two values a and b, P(a < x < b), equals the area
beneath the curve between the values a and & (fig.1.8). The value of
for which F(w) = «9, is known as the alpha-percentile of the distribu-
tion.

Also in section 3.2 (p. 47), conditional cdfs and density functions are
used. They are distinguished by a short vertical line between the
variable, in this case w, and the condition (¢). For example, flwlo <
o < ¢) is the density function of w on the condition that it must not be
less than o nor greater than c.

Sometimes the variable can only take one of a finite (strictly speak-
ing, countable) number of different values (for example, the number of
sites in a grid-square can only be a whole number not exceeding the
total number of sites). Such variables are called discrete, and their
distributions are discrete distributions. They are characterised by the
probabilities associated with the possible values the variable could take,

which are written as p, = P(x = x,) where x, is one of the possible
values xg, x;, x5, etc.
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The distributions most commonly used in this book are:

. s 1 (x — w)?
(i) The Normal distribution, {(x) = o/ @) expi{— ot

(Lindgren, p. 88).

(ii) The (negative) exponential distribution, f(x) = 4 exp (—4x),

x > o, (Lindgren, p. 82) which are both continuous distributions, and
(iii) The Poisson distribution, p; = exp(—m) X m*[m! (Lindgren,

p- 76).
E—1)!
(iv) The negative binomial distribution, p = ————(;:}(— I)I 3 e,
I(r — 1)!
where ¢ = 1 — p, (Lindgren, p. 142) which are both discrete distri-
butions.

Of these four distributions, two — the negative exponential and the
Poisson — each have one parameter (4 and m respectively) which
determine their shape, while two—the Normal and the negative
binomial — have two parameters each (u (mu), o (sigma), and p, 7
respectively).

If one is considering two (or more) variables, it may be that the
conditional distribution of one, given the value of the other, is indepen-
dent of that value (Lindgren, p. 103). In other words, the value of the
second variable may tell us nothing about the value of the first. In such
circumstances, the variables are said to be independent. Many statistical
tests are based on the assumption that the variables concerned arg,
independent, and will not otherwise be valid.

If two variables are not independent, one may be interested in the
degree of relationship or ‘coherence’ between them. The most common
measure of coherence is the correlation coefficient, usually denoted by
p (rho). It can take any value from —1 to +1: if it is zero the variables
are said to be ‘uncorrelated’, while a value of +1 indicates perfect
positive correlation and —1 perfect negative correlation. Uncorrelated
variables need not necessarily be independent, but independent
variables are always uncorrelated (see section 5.1).

Suppose we have a random sample X = %3, X3, ..., %n from a
distribution with density function f(x), which is determined by a single
parameter 0 (theta), and can therefore be written as f(x, 0). The density
function will take a separate value for each of the x; — f(x;, 8),etc.

n
Multiplying all these together gives us a new function L(0) = IIf(x;, 6)
1=1
which is known as the likelihood function (Lindgren, p. 222). This can

be used to estimate the parameter 0: the maximum likelihood estimate of
0 being that value which maximises the likelihood function L(6).
However, we shall be more interested in comparing likelihood func-
tions for different values of 6 (see next section).
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1.2.9 Statistical tests

Suppose we have a hypothesis (often called a null hypothesis if it is a
particularly simple one) about a certain situation, which we wish to
test by reference to a certain set of data. For example, in section 3.1 we
use the hypothesis that a point-pattern is random in order to study a
distribution pattern of sites. In such a situation there are two sorts of
mistake one can make - (i) falsely rejecting a true hypothesis (called
a type I error) and (ii) falsely accepting an untrue hypothesis (called a
type II error). In devising a statistical test we have to agree on an
acceptable chance of making a type I error — it might be a very small
chance if the implications of rejecting the hypothesis are far-reaching,
or it might be larger if we are using the hypothesis as an ‘Aunt Sally’
and are not committed to it. This chance is called the significance level
of the test — commonly used values are 5 %, and 1 %, but any value can
be used. The test will then be to reject the hypothesis if some statistic
based on the data (known as a test statistic) exceeds a critical value which
depends on the test being used and on the significance level chosen. If]
having performed the test, we say that ‘the result is significant at the
5 % level’ we mean that, if the null hypothesis were true, the probability
of obtaining a set of data no more favourable to the hypothesis than our
actual set of data, is 5 9 or less.

As a simple example, suppose we take a sample of n observations from
a Normal distribution with known variance 1 but unknown mean, and
that our null hypothesis is that the mean 6 = o. We choose 5 9, as our
significance level, which (via tables of the Normal distribution) tells us
to reject the null hypothesis if the mean of our observations is outside
the range —1.96/4/n to +1.96/4/n (the critical values). We calculate
the mean (our test statistic), find that its value lies outside thisrange and
say that it differs significantly from zero, at the 5 %, level.

A rather different situation occurs if we have two hypotheses and
wish to choose between them. This can be done (as in section 4.3) by
calculating the likelihood function (or its greatest value) under each
hypothesis and dividing one by the other to form a likelihood ratio
(LR). There will be a critical value of this ratio, below which one
hypothesis will be accepted and above which the other (see p. 82).

The topic of hypothesis testing is covered much more fully by
Lindgren (pp. 232-67).

A particular case is the situation when the null hypothesis specifies
the form of the parent distribution of which our data is a sample — for
example, that our data are a random sample from a Poisson distribu-
tion. In such cases a goodness-of-fit test is often used. The well-known
%2 (chi-squared) test (Cochran, 1952) is one such, but there are many
others. Such tests are usually employed when the possible alternative
to the hypothesis is not well defined. Lindgren (p. 296) points out a
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disconcerting feature of goodness-of-fit tests — that if the sample is large
enough then the null hypothesis would almost certainly be rejected,
since the true state of the situation, while perhaps very close to our null
hypothesis, is probably not exactly as specified in the null hypothesis.
The question to be asked may then be ‘is the difference practically
significant ?’ rather than ‘is it statistically significant ?’,



