TÉCNICAS DE ANÁLISE FASORIAL.

Exercício 1:

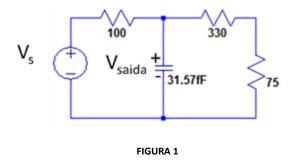
Uma caixa preta contém duas fontes de corrente I_{s1} , I_{s2} . A tensão de saída está identificada como $V_{saída}$. Se $I_{s1}=2\angle 20^o A$ e $I_{s2}=3\angle 30^o A$ então $V_{saída}=80\angle 10^o V$.

Entretanto, se $I_{s1} = I_{s2} = 4 \angle 40^o A$ então $V_{\text{saída}} = 90$ - j30V. Determine $V_{\text{saída}}$ se $I_{s1} = 2.5 \angle -60^o A$ e $I_{s2} = 2.5 \angle 60^o A$.

EXERCÍCIO 2:

Projete uma combinação de indutores, capacitores e resistores, usando a análise fasorial que tenha:

- a) Em ω = 30 rad/s, admitância de 1 j4 os;
- b) Em ω = 560 rad/s, uma admitância de 5 μ S, com pelo menos um capacitor;
- c) Em ω = 50 rad/s, uma admitância de 4 \angle -10 $^{\circ}$ μ S;
- d) Em ω = 300kHz, uma admitância de 60nS, usando o menor número possível de componentes.


EXERCÍCIO 3:

Uma fonte de tensão senoidal $v=100\cos{(10^5t)}$ V, um resistor de 500Ω e um indutor de 8mH estão conectados em série. Determine os instantes de tempo **aplicando a transformada fasorial**, $0 \le t \le 0.5T$, nos quais a potência nula está sendo:

- a) Fornecida ao resistor;
- b) Fornecida ao indutor;
- c) Gerada pela fonte.

Exercício 4:

Usando **fasores** reduza o circuito da Figura 1 a um simples circuito RC. Deduza uma expressão para o ganho do circuito ($\frac{V_{saida}}{V_s}$), em função da frequência. Trace no MATLAB o gráfico de tal ganho e discuta-o.

EXERCÍCIO 5:

Se ω =500rad/s e $I_L=2,5 \angle 40~A$ A no circuito da Figura 2, determine V_s (t) aplicando as técnicas de análise fasorial.

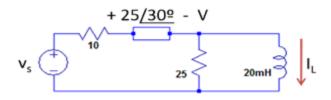
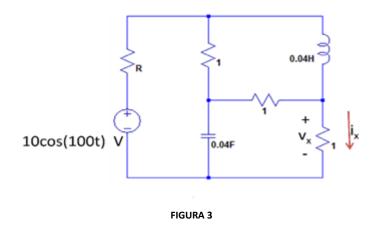
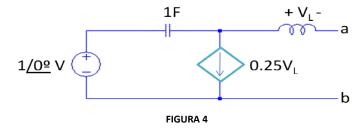



FIGURA 2

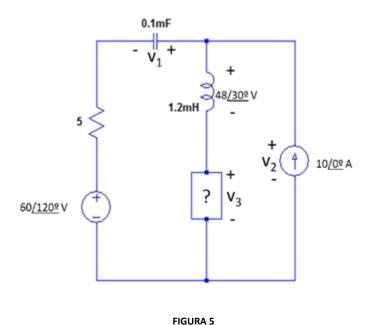
EXERCÍCIO 6:

Determine i_x da Figura 3 no domínio da frequência. Após isso, determinar a equação diferencial que governa a tensão V_x , sendo que a fonte excitante do circuito é dada por V_x , com derivada \dot{V}_x . R = 1 ohm.

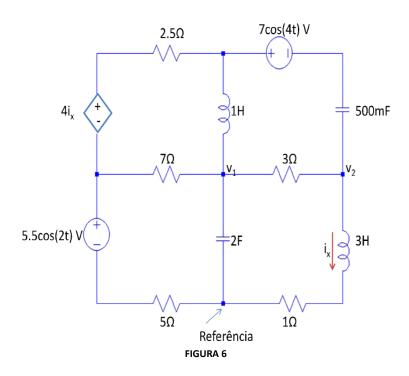


EXERCÍCIO 7:

Assuma $V_1=100 \angle 0$, $|V_2|=140 V$ e $|V_1+V_2|=120 V$. Use métodos gráficos para determinar dois valores possíveis para o ângulo de V_2 .


EXERCÍCIO 8:

Use $\omega = 1$ rad/s e determine aplicando fasores o equivalente de Norton da rede mostrada na Figura 4.


EXERCÍCIO 9:

Assuma $\omega = 5$ krad/s no circuito da Figura 5. Determine $v_1(t)$, $v_2(t)$ e $v_3(t)$ usando transformada fasorial.

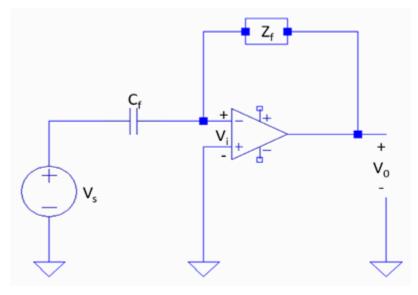
EXERCÍCIO 10:

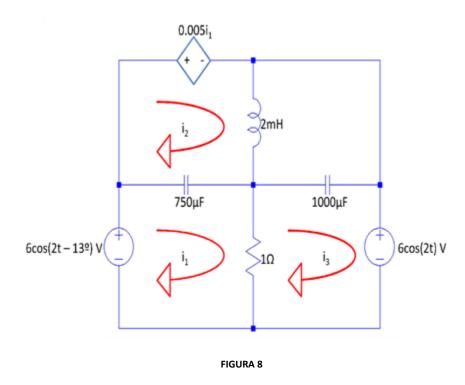
Use a superposição e a análise de fasores para obter tensões $v_1(t)$ e $v_2(t)$ do circuito da Figura 6.

EXERCÍCIO 11:

O amp-op da Figura 7 é ideal. Usando as técnicas fasoriais vistas em aula:

a) Construa um diferenciador básico fazendo $Z_f=R_f$, determine o ganho e mostre que ele tende a -j ω C R_f a medida que o ganho tende para infinito.

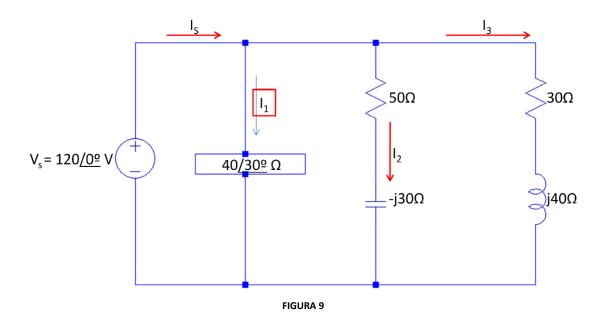



FIGURA 7

Sel0301 Circuitos Elétricos I - 5ª Lista de Exercícios:

b) Assuma que Z_f represente C_f e R_f em paralelo, determine a nova expressão para o ganho e mostre qual seu valor quando tende a infinito.

EXERCÍCIO 12:


Determine I_1 , I_2 e I_3 da Figura 8 equacionando o circuito na frequência.

EXERCÍCIO 13:

No circuito da Figura 9, obtenha aplicando fasores:

- a) I_1 , I_2 e I_3
- b) Mostre I_1 , I_2 , I_3 e V_s em um diagrama fasorial (escalas de 50V/cm e 2A/cm).
- c) Determine I_s graficamente e indique sua amplitude e seu ângulo de fase.

EXERCÍCIO 14:

Determine a corrente fluindo na fonte de tensão da Figura 10 com análise fasorial.

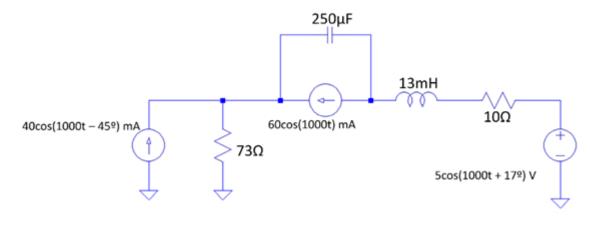


FIGURA 10

EXERCÍCIO 15:

Obtenha, aplicando fasores, o equivalente de Thévenin da rede mostrada na Figura 11.

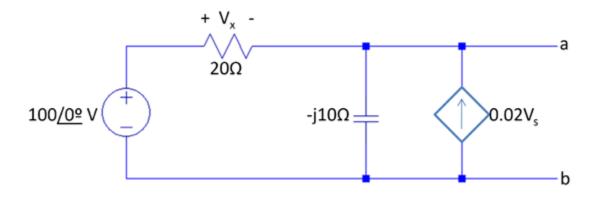


FIGURA 11