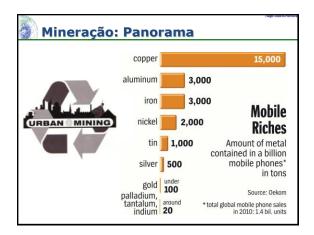

Minerais	Produção Brasileira	Prosicão no Ranking	Resevas Brasileiras	Posição no Ranking
Bauxita	14%	30	6,8%	5°
Cobre	2%	50	2%	130
Rochas Ornamentais	7,7%	30	5,6%	60
Ouro	2,3%	120	3,3%	90
Minério de Ferro	17%	20	11%	50
Caulim	6,8%	50	28%	20
Manganés	20%	20	1,1%	60
Nióbio	98%	10	98%	10
Tantalita	28%	20	50%	10
Estanho	4,1%	50	13%	30
Zinco	2.4%	120	0,85%	60



Mino	racão	: Pano	rama		
Mille	açau	. Pallu	ailla		
	INVESTIM	ENTOS EM PESQ	UISA MINERAL	NO MUNDO	
Investimento Global (US\$ 10.700.000)	Área (km²) x 1.000	Investimentos absolutos	Divisão dos investimentos	Investimentos absolutos/Área (US\$/km²)	Investimento brasileiro x Países
Canadá	9.971	2.033.000	19	0,2	5,4
Austrália	7.682	1.284.000	12	0,2	4,5
Estados Unidos	9.373	856.000	8	0,3	2,4
México	1.973	642.000	6	0,0	8,7
Chile	0,757	535.000	5	0,0	18,8
Peru	1.285	535.000	5	0,4	11,1
Rússia	17.075	428.000	4	0,7	0,7
China	9.600	428.000	4	0,1	1,2
Argentina	2.780	321.000	3	0,1	3,1
Brasil	8.547	321.000	3	0,01	1
					US\$ 1.000

Mineração: Pan	orama
690 milhões de toneladas United States Geological	Copper stock reservoir diagram for North America and Planet Earth Details are discussed in the text.
Survey (USGS, 2013)	200 Ore In-use Hibernating Deposited Copper stock type

landfill mining

Processo para a extração de materiais ou outros recursos naturais a partir de resíduos que tenham sido previamente eliminadas em um aterro.

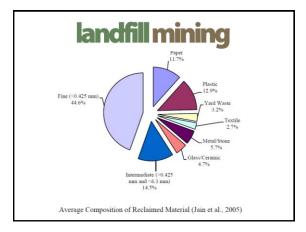
Krook et al. (2012)

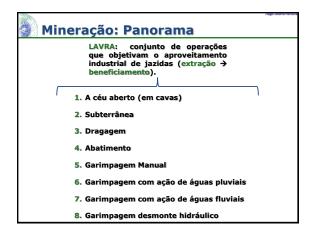
landfill mining

ETAPAS (insitu e exsitu)

- ✓ Escavação;
- ✓ Transformação;
- ✓ Tratamento;
- ✓ Recuperação dos materiais.

Krook et al (2012)

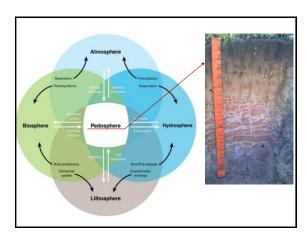


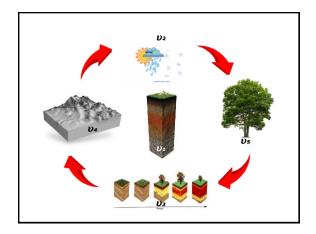


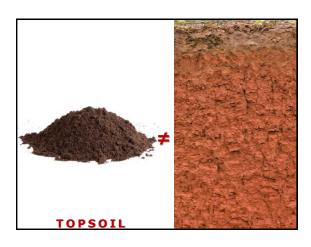
landfill mining

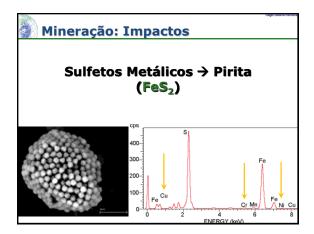
<u>UE-27: 150.000 - 500.000 aterros</u>

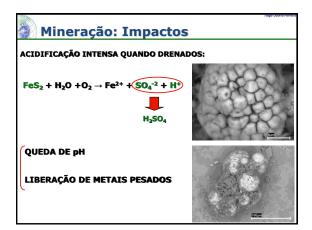
- \checkmark Redução de emissões de GEE: de 15 75 milhões de ton $CO_2(eq)/ano~(\sim15\%~da~emissão~anual no Brasil).$
- ✓ Matéria-prima secundária: 11.000 milhões de toneladas métricas → 5% do Consumo anual de recursos não energéticos e não-alimentares da UE-27 para os próximos 25 anos.
- √ Recuperação de áreas: 6.000 km² na UE (5 x Piracicaba).



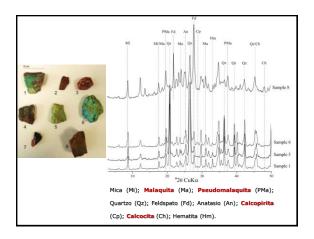


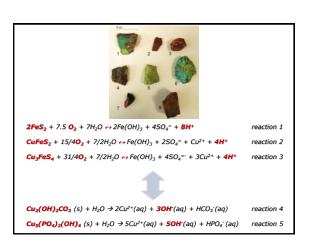


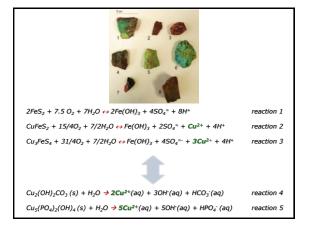


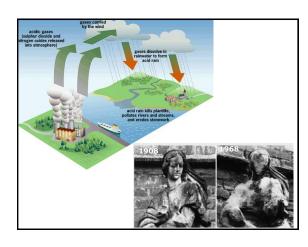




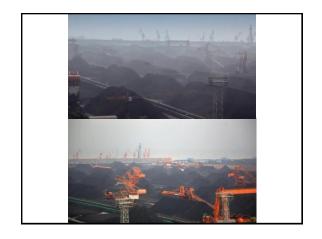


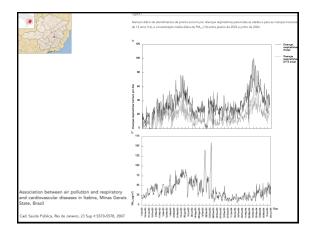


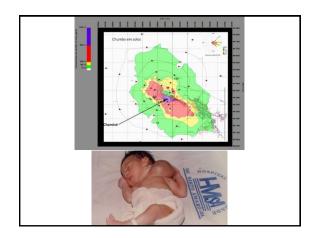


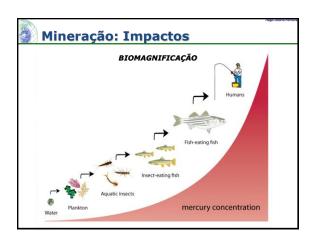


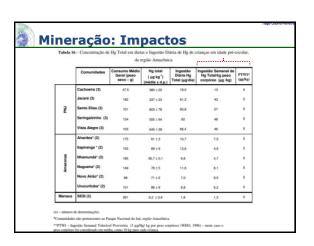
POLUIÇÃO ATMOSFÉRICA





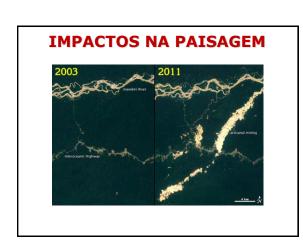


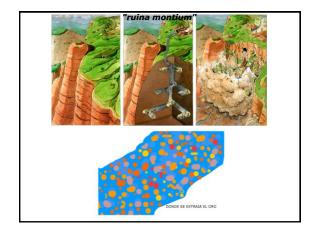




Minera	ção: Imp	actos		
pela 2. Comparação entre as undo em consideração a situa-		mercúrio para a atmosfera	no Brasil, baseado	,
Setor	Parametros de produção/consumo	Parametros de emissão para a atmosfera	(t.ano ⁻¹)	% do total
Produção de cloro	25.7 tHg.yr ⁻¹	45%	11.65	10.1
Produção de soda	125 gHg.t ⁻¹ KOH	45%	0.37	0.3
Tintas & pigmentos	34.3 tHg.yr ⁻¹	1%	0.34	0.3
Eletro-eletrônico	9.1 tHg.yr ⁻¹	0.2%	0.02	< 0.1
Combustão de carvão	27.2 x 109MJ.yr ⁻¹	0.13 μgHg.MJ ⁻¹	0.01	< 0.1
Combustão de óleo	28.3 x 109MJ.yr ⁻¹	0.33 μgHg.MJ ⁻¹	0.01	< 0.1
Combustão de biomassa	4.8 x 106MJ.yr-1	0.03 g.t ⁻¹	0.12	0.1
Pirometalurgia Pb	62.023 t.yr ⁻¹	2- 4 gHg.tPb ⁻¹	0.19	
Zn	163.000 t.yr ⁻¹	8-45 gHg.tZn ⁻¹	4.30	3.9
Cd	197 t.yr ⁻¹	8-45 gHg.tCd ⁻¹	0.05	
Produção de aço e ferro	15 x 10 ⁷ t.yr ⁻¹	$0.08 \mathrm{gHg.t^{-1}}$	12	10.4
Queimadas	11.100 km ² .yr ⁻¹	7.8 gHg.ha ⁻¹	8.7	7.5
Garimpos de ouro	87 tAu.yr ⁻¹	0.92 tHg.tAu ⁻¹	77.9	67.3
Total			115.7	100

Tabela 2. Indi	cadores e sintomas	,	es de Hg	
	(Souza & Barbo	osa, 2000)		
	Consumo I	Teores de Hg		
Indicadores	μg kg ⁻¹ do indivíduo	μg /indivíduo de 55 kg	em cabelo (mg kg ⁻¹	
Dose de referência (EPA/OMS)	0,1	16,5	4	
Máximo permitido (FAO/OMS)	0,5	27,5	7	
Desenvolvimento anormal de crianças	0,7 – 1,5	38,5 - 82,5	10 – 20	
Sintoma sub-clínicos	1,5 – 2,1	82,5 - 115,5	> 20	
Sintomas clínicos: parestesia (OMS ou WHO, 1990)	2,4 - 5,5	132 – 302,5	> 50	
Ribeirinhos da Amazônia	1,4	77.0	19.1	





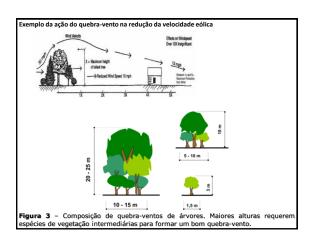
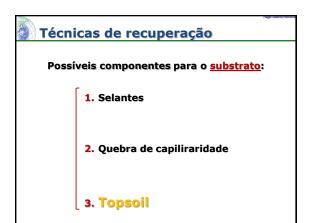


Table 5. Useful plant sp pollution	ecies useful for controlling ai
Special properties	Name of species
Pubescence on leaves to entrap and hold dust particles	Guazama, Putranjiva, Nyctanthes, Trema, Holop telea, Terminalia
Leaves and branches to slow wind	Albizzia, Samania, Peltophorum, Tamarindus, Dalbergia
Blossoms and foliage that provide pleasant smell to mask odour	Morinda, Cestrum, Annona, Michelia, Jasminum, Citrus, Plumeria, Magnolia
Leaves and branches to slow the action of rain	Azadirachta, Melia, Acacia auriculiformis, Delonix, Cassia
Plants that absorb SO ₂	Lichens, Fagus, Acer

Tabela 1. Util como quebra-ve			S	adi	cior	nai	s (de	al	gu	ma	as	es	pé	cie	es	us	adas
ESPÉCIES	CII	ima	Pluviosidade (mm)		Altura (m)		Utilização		Madeira				Para Mel					
	Sub-tropical	Temperado	600-800	800-1000	> 1000	6.9	9-24	> 24	Omamental	Sombra	Cortina	Serrada	Desenrolado	Postes	Decorativa	Combustivel	Néctar	Pólen
Syncarpia glomulifera (laurifolia)	1	1	-	1	1	-	-	1	1	1	2	1	-	_	-	-	2	-
Tristania conferta	1	1	-	2	1	-	2	1	1	1	1	-	_	_	_	1	-	-
Eucalyptus acmentoides	1	1	2	2	1	-	-	1	1	1	1	1	-	1	-	2	2	-
Eucalyptus cinera	-	2	1	1	-	-	1	-	1	2	1	×	-	-	-	-	2	2
Eucalyptus cloeziana	1	2	-	2	1	-	-	1	2	2	2	1	-	2	-	-	-	-
Eucalyptus maculata	1	1	2	1	1	-	-	1	1	2	2	1	2	1	-	1	1	-
Eucalyptus microcorys	1	1	-	2	1	-	-	1	1	2	1	1	-	-	-	1	2	-
Eucalyptus moluccana	2	1	1	1	-	-	1	-	1	2	2	2	-	2	-	1	2	-
Eucalyptus paniculata	1	1	-	1	1	-	-	1	2	2	2	1	-	1	-	1	1	2
Eucalyptus pilulares	1	1	-	2	1	-	-	1	1	2	1	1	-	1	-	2	2	-
Eucalyptus resinifera	1	1	-	2	1	-	-	1	1	1	1	1	-	-	2	-	2	-
Eucalyptus robusta	1	1	-	2	1	-	1	1	1	1	1	2	-	-	-	-	-	-
Eucalyptus saligna	1	1	-	2	1	-	-	1	1	2	2	1	-	2	2	2	-	-

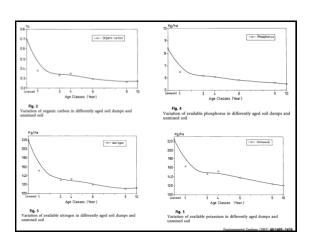
Table 4. Trees tolerant to air	pollutants
Dust pollution Alstonia scholoris Casala siamea Daibergia sisco Flcus berghalensis F. infectoria Mangliera indica Pettophorum ferrugineum Polyathia lognifolia Shorea robusta Syzyglum cumini Tectoria grandis Anus windis	Sulphur dioxide Albizzia lebbeck Albarthus excelsa Alstonia scholaris Azadirachta indica Ficus religiosa Lagerstroenian Mirrusopa elingi Polyathia iongifolia Terminalia arjuna Acer platanoides Quercus palustris Q. rubra
Ozone Acer negundo Acer plantanoides Quercus palustris	Oxides of nitrogen Gagus orientalis Quercus rubra Robinia pseudocacia Sambucus nigra
Peroxyacetyl nitrate Acer platanoides A. negundo Quercus palustris	Lead Cassia siamea Zizyphus mauritiana

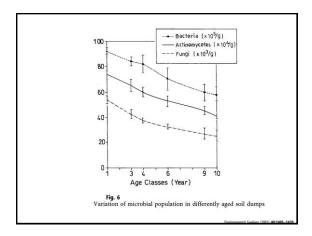

Técnicas de recuperação

Nome Comum	Nome Cientifico	Quantidade (Kg / ha) / Declividade				
		< 45° ≥ 45				
Aveia-preta	Avena strigosa	20	30			
Braquiária	Brachiaria decumbens	40	60			
Braquiarão	Brachiaria bryzantha	20	30			
Feijão guandu	Cajanus cajan	20	30			
Calopogônio	Calopogonium mucunoides	10	20			
Capim-gordura	Melinis minutiflora	40	80			
Crotalária	Crotalária spectabilis	20	30			
Nabo forrageiro	Raphanus sativus	20	10			

Lan – Geotecnia e Fundação



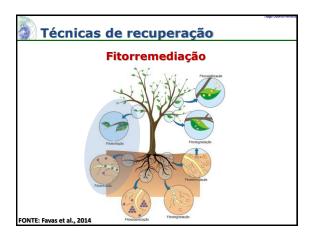


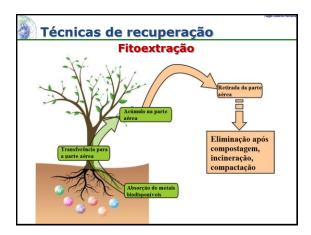


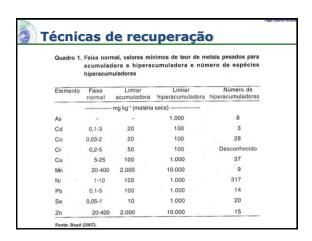
	Regeneração a partir de topsoil
	Figure 1. Coleta da serregilileira na irea recim demastică adjucente a Mina Limeira, de propriedade de Compoulan de Cimeiro Ribeirlo Grande (CCRG), Dezembro de 2004. Ribeirlo Grande, SP.
Jakovac, 2007	Figura 2. A esquerda, distribuição do toposol com auxilio de maspinistio. A direita, espulhamento manual do hoposol depositado no talade experimental de propriedade da Companhia de Cimento Ribeirao Grande (CCRG). Dezembro de 2004. Ribeirao Grande, SP.

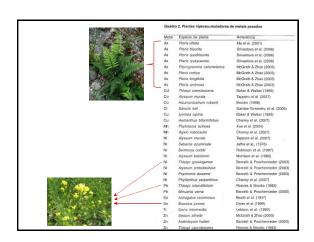
Regeneração natural a partir de topsoil Figura 6. a) Aspecto dos tratamentos de sulço (à esperch) e madeizamento (à direita), antes da implantação do toprool. b) Aspecto geral do talude, preparado para o depósito do toprool, em dezembro de 2004. Ribeirio Grande-SP.

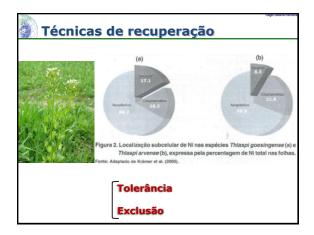


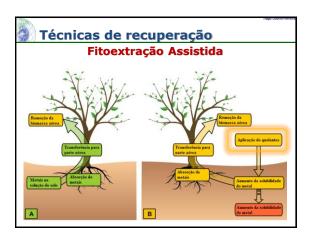


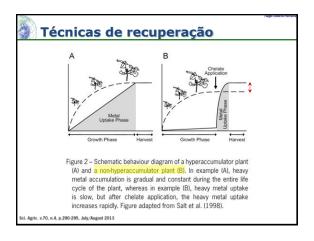


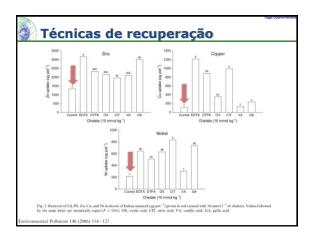


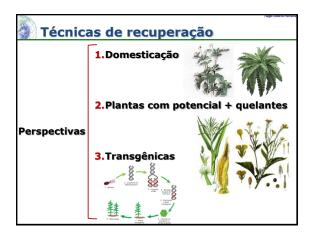




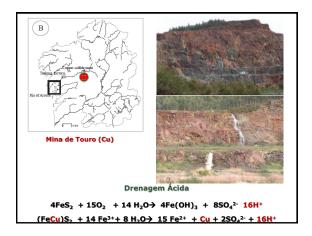


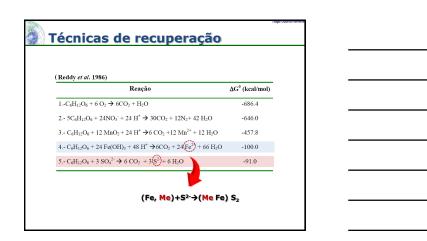


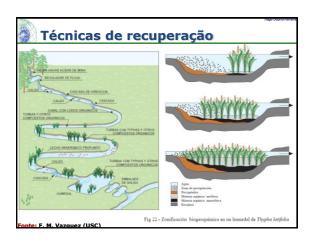




Técnicas	s de recupera	ıcão
100111001	, ac recape.	iguo
uadro 3. Espécies	de plantas com elevada prod	ducão de biomassa e potenci
하다 하네 보안하다면 그렇게 하다 맛있다.		and an element of better
de uso na	fitoextração	
Espécie	Contaminante/substrato	Beferência
	Metais pesados/solo	Greger & Landberg (1999)
Salix		
		Barceló & Poschenrieder
Salix Populus	Ni/solo, água, água subterrânea	Barceló & Poschenrieder
	Ni/solo, água, água subterrânea	Barceló & Poschenrieder (2003)
Populus Brassica napus, B.	Ni/solo, água, água	Barceló & Poschenrieder (2003) Brown (1996); Bañuelos et al
Populus	Ni/solo, água, água subterrânea	Barceló & Poschenrieder (2003)
Populus Brassica napus, B. juncea, B. nigra	Ni/solo, água, água subterrânea Metais pesados, Se/solo	Barceló & Poschenrieder (2003) Brown (1996); Bañuelos et al (1997) Ostwald (2000)
Populus Brassica napus, B. juncea, B. nigra Cannabis sativa	Ni/solo, água, água subterrânea Metais pesados, Se/solo Cd/solo	Barceló & Poschenrieder (2003) Brown (1996); Bañuelos et al (1997)
Populus Brassica napus, B. juncea, B. nigra Cannabis sativa Helianthus	Ni/solo, água, água subterrânea Metais pesados, Se/solo Cd/solo	Barceló & Poschenrieder (2003) Brown (1996); Bañuelos et al (1997) Ostwald (2000) EPA (2000); Elkatib et al.
Populus Brassica napus, B. juncea, B. nigra Cannabis sativa	Ni/solo, água, água subterrânea Metais pesados, Se/solo Cd/solo Pb, Cd/solo	Barceló & Poschenrieder (2003) Brown (1996); Bañuelos et al (1997) Ostwald (2000) EPA (2000); Elkatib et al. (2001)







Técnicas de recuperação
Componentes dos tecnosolos usados para imobilizar esses elementos (afinidades)
Matéria orgânica: Cu, Fe, Pb, Cd, Ni e Co
Argilominerais: Fe, Cd, Co e Ni
<u>Oxidróxidos:</u> Cr, Hg, As e Pb
Carbonatos: Co, Cd, Cu, Fe, Pb e Zn

