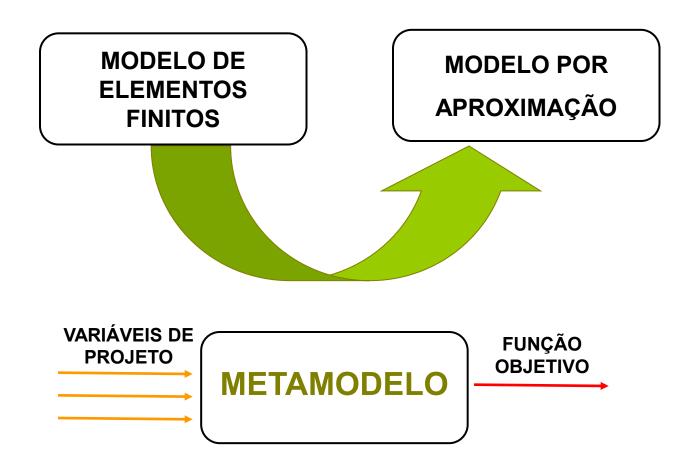

Escola Politécnica da Universidade de São Paulo Laboratório de Eletromagnetismo Aplicado LMAG-PEA-EPUSP

FUNÇÕES DE APROXIMAÇÃO APLICADAS AO PROJETO DE EQUIPAMENTOS ELETROMAGNÉTICOS



INTRODUÇÃO: OTIMIZAÇÃO DE UM PROJETO

MODELOS POR SUBSTITUIÇÃO

Funções de Aproximação

- funções radiais de base
- funções do tipo multiquadrics
- splines
- as superfícies de resposta
- as redes neurais artificiais
- Kriging e Cokriging

Função de Aproximação

- substituirá tanto a função objetivo e suas restrições no contexto de um processo de otimização;
- Características fundamentais:
 - baixo custo computacional
 - boa confiabilidade (erro em relação ao modelo de elemento finitos é baixo).

Algumas características dos dados

- Dados a serem analisados são oriundos de experimentos por computador.
- Natureza dos dados é determinística.
- Não há qualquer erro de medida.
 - Logo o modelo a ser adotado deve ser interpolador.

FUNÇÕES RADIAIS DE BASE

$$\hat{y} = \sum_{i=1}^{n_S} \beta_i h(\|x - x_i\|)$$

$$y(x_k) = \sum_{i=1}^{n_S} \beta_i h(\|x_k - x_i\|)$$

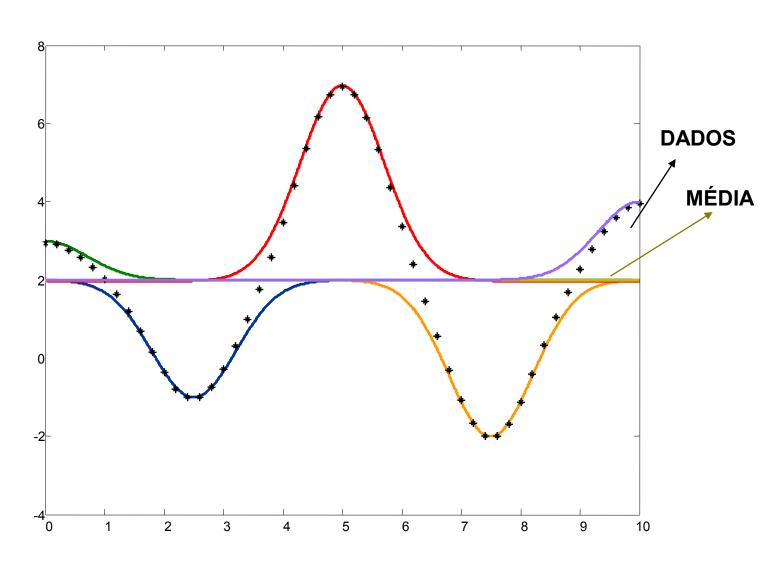
GAUSSIANA

$$h(x) = exp\left(-\frac{\left\|x - x_i\right\|^2}{2\sigma^2}\right)$$

MULTIQUADRICS

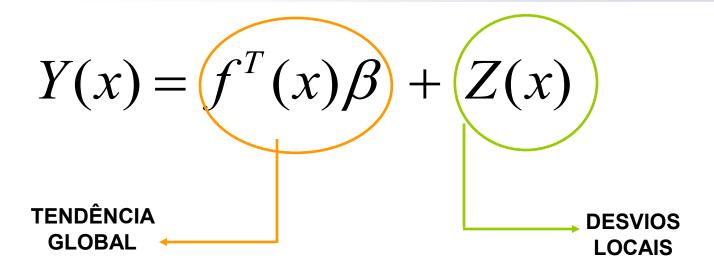
$$h(x) = exp\left(-\frac{\|x - x_i\|^2}{2\sigma^2}\right)$$
 $h(x) = \frac{1}{\left(\|x - x_i\|^2 + \lambda^2\right)^{\alpha}}$ $\alpha = -\frac{1}{2}$

Funções Radiais de Base Multiquadrics


■ se x =
$$x_j$$
 então $g(x_j) = f(x_j)$ $g(x) = \sum_{i=1}^{N} c_i \sqrt{\|x - x_i\|^2 + \lambda}$

$$[c_j] = [X_{ij}]^{-1}[f_1]$$
 $X_{ij} = \sqrt{||x_j - x_i||^2 + \lambda}$

- Com um raciocínio análogo faz a interpolação por Gaussianas
- As questões:
 - qual o bom λ ?
 - Ou qual o bom σ ?



KRIGING: VISÃO INTUITIVA

KRIGING: VIA ESTIMATIVA DE MÁXIMA VEROSSIMILHANÇA

β estimativa da média

Z(x)é a realização de um processo estocástico

Formalização Matemática do Mecanismo do Kriging

- Em experimentos por computador é usual adotar f(x) constante
 - $f(x) = \beta$
 - (Kriging Comum)
- $Z(x) = N(0,\sigma^2)$
- Como determinar β e σ²?
- Estimativa de Máxima Verossimilhança

Estimativa de Máxima Verossimilhança

A matriz de covariância

$$Cov[Z(x_i), Z(x_j)] = \sigma^2 \mathbf{R}(R(x_i, x_j))$$

Função de Correlação

$$R(x_i, x_j) = e^{-\theta \|x_i - x_j\|^2} \implies Gaussiana$$

Melhor estimador não viesado vale:

$$y^*(x) = \beta(\theta) + \mathbf{r}^t(x,\theta) \times \mathbf{R}(\theta)^{-1} \times (\mathbf{y} - \mathbf{f}\beta(\theta))$$

 $y^*(x) = \beta(\theta) + \mathbf{r}^t(x, \theta) \times \mathbf{R}(\theta)^{-1} \times (\mathbf{y} - \mathbf{f}\beta(\theta))$ **E** o vetor de correlação rt vale:

$$r^{T}(x) = [R(x, x_{1}) ... R(x, x_{n_{S}})]^{T}$$

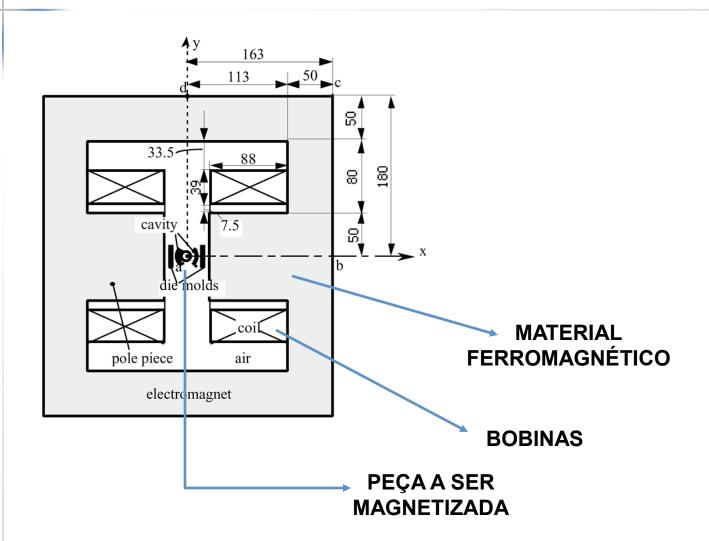
Estimativa de Máxima Verossimilhança

Se θ é conhecido, então é possível realizar uma estimativa de β e σ²,pois a correlação é Gaussiana.

$$\hat{\beta}(\theta) = (\mathbf{f}^{\mathsf{t}} \mathbf{R}(\theta)^{-1} \mathbf{f})^{-1} (\mathbf{f}^{\mathsf{t}} \mathbf{R}(\theta)^{-1} \mathbf{y})$$

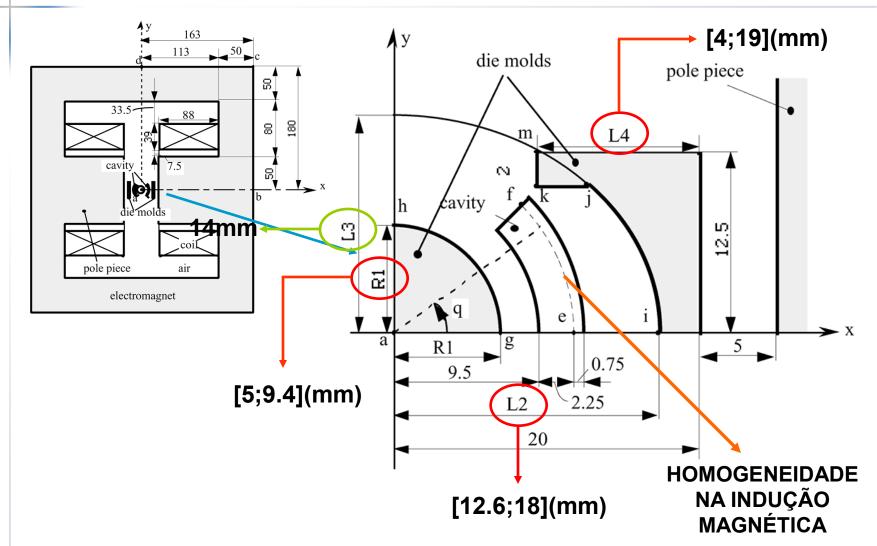
$$\hat{\sigma}^{2}(\theta) = [(\mathbf{y} - \mathbf{f} \,\hat{\beta}(\theta))^{\mathrm{T}} \,\mathbf{R}^{-1}(\theta)(\mathbf{y} - \mathbf{f} \,\hat{\beta}(\theta))]/N$$

Estimativa de Máxima Verossimilhança

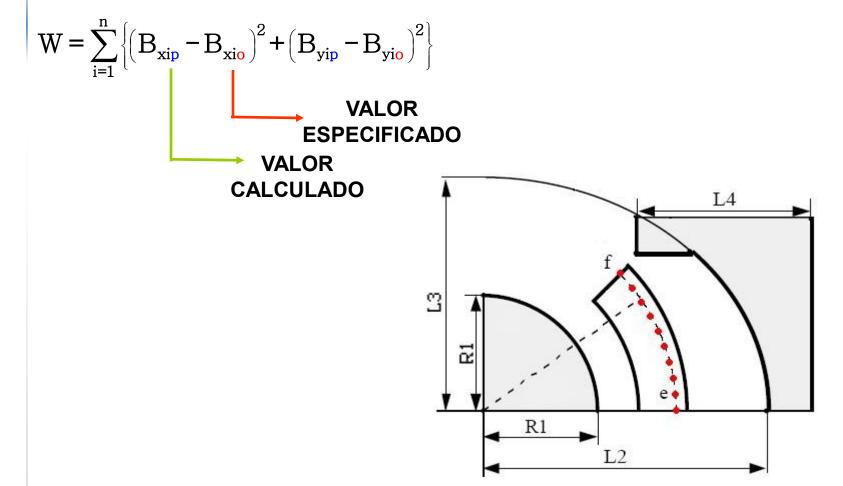

Como determinar o coeficiente de correlação (θ)?

$$\max \frac{-\left\{N\ln(\hat{\sigma}^{2}(\theta)) + \ln\left(\det\left(\mathbf{R}(\theta)\right)\right)\right\}}{2}$$

$$y^*(x) = \beta(\theta) + \mathbf{r}^t(x,\theta) \times \mathbf{R}(\theta)^{-1} \times (\mathbf{y} - \mathbf{f}\beta(\theta))$$



TEAM 25



TEAM 25

TEAM 25: A Função Objetivo

TEAM 25: A influência das amostras

- Amostra 1: cada uma das 4 variáveis de otimizaçãodo problema assumiu sete valores distintos e equidistantes, desde seu valor mínimo até o valor máximo, obtendo-se uma amostra com 2401 pontos.
- Amostra 2: manteve-se a variável L3 constante e igual a 14 mm, porque ela tem baixo impacto no problema analisado. Desta forma, manteve-se o critério anterior, sete valores distintos e equidistantes por variável, o que resulta uma diminuição do tamanho da amostra para 343 pontos.
- Amostra 3: a partir da amostra com 2401 pontos, realiza-se um sorteio dos pontos que participarão da construção da função de aproximação.
- Amostra 4: a partir da amostra com 2401 pontos, fixa-se uma das quatro variáveis que definirá um hiperplano. Neste hiperplano, realiza-se um sorteio dos pontos que participarão da construçao da funçao de aproximação. Esta amostragem é mais guiada do que a anterior.

TEAM 25 A influência das amostras e dos parâmetros (multiquadrics)

h	Forma de Amostragem	L_3	L_2	L_4	R_1	Função Objetivo
	1	15,499	14,687	14,781	7,295	0,023
0,01	2	14,000	13,724	14,647	7,024	0,003
0,01	3	15,760	16,765	15,874	7,728	-0,008
	4	17,481	15,650	14,092	7,615	0,00086
	1	15,592	14,677	14,824	7,312	-0,027
0,1	2	14,000	13,570	17,917	7,332	-0,005
0,1	3	15,831	18,000	12,424	6,470	-0,039
	4	14,630	14,938	15,700	6,980	0,031
	1	15,798	14,432	14,886	7,306	-0,039
1	2	14,000	13,724	14,647	7,024	-0,004
1	3	18,991	15,352	14,248	7,835	0,003
	4	14,617	15,293	16,442	7,488	-0,030
	1	15,911	13,295	15,032	7,215	-0,087
10	2	14,000	13,724	14,647	7,024	-0,004
10	3	14,667	15,077	12,114	7,426	-0,217
	4	14,780	15,673	16,524	7,654	-0,057

TEAM 25: A influência das amostras MULTIQUADRICS

Tipo de	L_3	L_2	L_4	R_1	Função
amostragem	[mm]	[mm]	[mm]	[mm]	Objetivo
1	15,50	14,69	14,78	7,30	-0,023857
2	14,00*	13,70	14,69	7,02	-0,003352
3	15,76	16,77	15,87	7,73	-0,00813
4	14,63	14,94	15,72	6,98	-0,030788

^{*}Pelo método de amostragem, esse valor foi fixado e não encontrado na simulação.

Tabela 4. Melhor Resultado Conhecido

L_3	L_2	L_4	R_1	Função
[mm]	[mm]	[mm]	[mm]	Objetivo
14,03	14,01	14,64	7,28	6,461 x 10 ⁻⁵

TEAM 25: a influência do parâmetro σ (Gaussianas)

	L_3	L_2	L_4	R_1	Função
σ	[mm]	[mm]	[mm]	[mm]	Objetivo
1	35	8,1963	15,736	6,3389	-0,015
2	14,125	13,886	15,318	7,9993	-0,067493
5	14,023	12,6	8,4743	5,0000	-0,13512
10	14,005	12,772	17,065	6,3604	-0,072119

Tabela 4. Melhor Resultado Conhecido

L_3	L_2	L_4	R_1	Função
[mm]	[mm]	[mm]	[mm]	Objetivo
14,03	14,01	14,64	7,28	6,461 x 10 ⁻⁵

TEAM 25: análise comparativa (amostra 2)

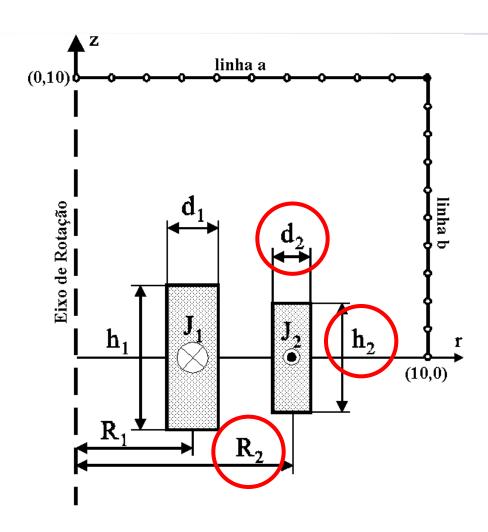

	L_3	L_2	L_4	R_1	Função
	[mm]	[mm]	[mm]	[mm]	Objetivo
Multiquadrics	14,63	14,94	15,72	6,98	-0,030788
Gaussiana	14,000	13,159	15,268	6,9684	-0,008546
Splines	14,000	13,313	15,262	7,046	-0,006925
Kriging	14,00	14,1737	14,3720	7,1945	2.80 x 10 ⁻⁴

Tabela 4. Melhor Resultado Conhecido

L ₃	L_2	L_4	R_1	Função
[mm]	[mm]	[mm]	[mm]	Objetivo
14,03	14,01	14,64	7,28	6,461 x 10 ⁻⁵

TEAM 22

TEAM 22: 3 condições

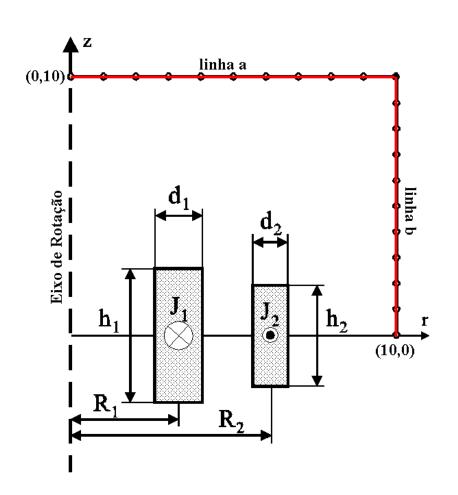
- 1) A Energia armazenada no dispositivo deve ser 180MJ.
- 2) A indução magnética nas linhas a e b (a 10 metros do dispositivo) deve ser a menor possível.
- 3) A condição de supercondutividade do enrolamento deve ser garantida.

TEAM 22: 1^a Condição

 Função que se busca minimizar é

$$F_{Energia} = \left| rac{Energia - E_{ref}}{E_{ref}}
ight|$$

$$E_{ref} = 180MJ$$



TEAM 22: 2^a Condição

$$F_{B_{Stray}^2} = \frac{B_{Stray}^2}{B_{norm}^2}$$

$$B_{norm} = 3.0 \times 10^{-3} T$$

$$B_{stray}^{2} = \frac{\sum_{i=1}^{22} |B_{stray_{i}}|^{2}}{22}$$

TEAM 22: 3^a Condição

Acima da linha, o material perde sua característica de supercondutor.

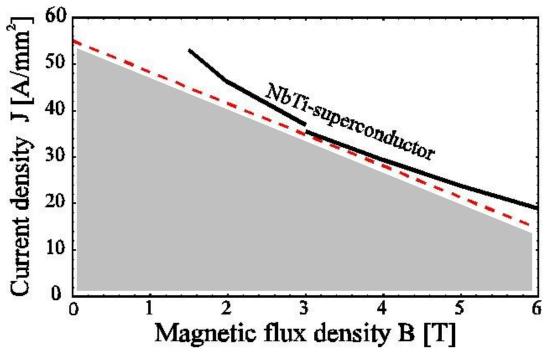
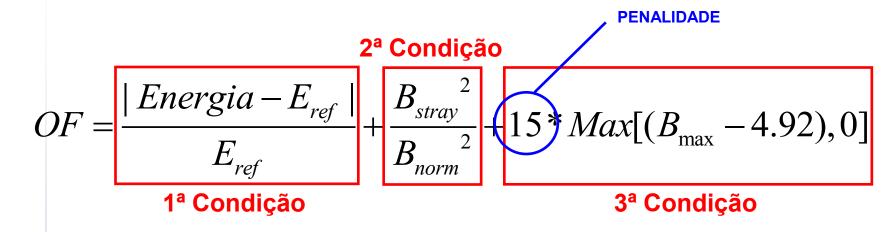


Fig. 8 – Curva Limite do Supercondutor

TEAM 22: 3^a Condição

$$|J| < (-6.4 |B| + 54.0) A / mm^2$$


$$J = 22.5 \, A/mm^2$$
 | $B < 4.92T$

$$F_{B_{\text{max}}} = Max[(B_{\text{max}} - 4.92), 0]$$

TEAM 22: Função Objetivo

 A partir das 3 Condições chegou-se a Função Objetivo que se deseja minimizar

Análise

- A análise deve ser sempre feita observando-se quatro aspectos:
 - ■Função objetivo
 - Energia
 - B_{stray}^2
 - $\blacksquare \mathsf{B}_{\mathsf{max}}$

Resultados – Multiquadrics

Tabela 8. Melhor resultado conhecido [10]

R ₂ [mm]	h ₂ /2 [mm]	d ₂ [mm]	Função Objetivo	Energia [MJ]	$rac{\mathrm{B_{stray}}^2}{\mathrm{[T^2]}}$
3080	239	394	8,808 x 10 ⁻²	180,0277	7,9138 x 10 ⁻⁷

Tabela 9. Melhores valores encontrados em relação aos quatro valores de h.

h	R ₂ [mm]	h ₂ /2 [mm]	d ₂ [mm]	Função Objetivo	Energia [MJ]	$egin{array}{c} \mathbf{B_{stray}}^2 \ \mathbf{[T^2]} \end{array}$	$egin{array}{c} \mathbf{B}_{ ext{max}} \ [\mathbf{T}] \end{array}$
0,01	3130	353,04	250,04	0,10825	177,78	8,6305 x 10 ⁻⁷	3,9944
0,1	3130	353,13	250,14	0,10812	177,82	8,6399 x 10 ⁻⁷	3,995
1	3130,1	353,42	250,43	0,10771	177,95	8,6678 x 10 ⁻⁷	3,997
10	2870,8	354,97	301,65	0,15023	162,74	4,8895 x 10 ⁻⁷	4,869
10	3270,1	502,96	151,77	0,30161	175,57	2,4931x 10 ⁻⁶	4,0467
10	3398,8	502,76	149.54	0,15637	182,10	1,3022 x 10 ⁻⁶	4,111

Resultados - Gaussianas

Tabela 10. Melhores pontos encontrados em relação aos quatro valores de σ .

σ	R ₂ [mm]	h ₂ /2 [mm]	d ₂ [mm]	Função Objetivo	Energia [J]	$egin{array}{c} \mathbf{B_{stray}}^2 \ \mathbf{[T^2]} \end{array}$	B _{max} [T]
10	2870	353	300	0,15231	161,97	4,690 x 10 ⁻⁷	4,8446
20	3130	503	199,78	0,36009	180	3,241 x 10 ⁻⁶	3,7203
30	2870	353	300	0,15231	180	1,774 x 10 ⁻⁶	3,8817
40	3000	950,97	101,32	0,059389	180	5,337 x 10 ⁻⁷	3,8303
50	2999	654,06	144,58	0,054645	180	$4,918 \times 10^{-7}$	3,7485

Resultados

Tabela 11. Tabela Comparativa – Problema do SMES.

		R ₂ [mm]	h ₂ /2 [mm]	D ₂ [mm]	Função Objetivo	Energia [MJ]	$egin{array}{c} {f B_{stray}}^2 \ {f [T^2]} \end{array}$	$egin{array}{c} \mathbf{B}_{ ext{max}} \ [\mathbf{T}] \end{array}$
	Multiquadrics	3130	353,13	250,14	0,10812	177,82	8,6399 x 10 ⁻⁷	3,995
Função	Gaussianas	2999	654,06	144,58	0,054645	180	4,918 x 10 ⁻⁷	3,7485
Objetivo	Splines	2698,9	802,53	253,16	0,10703	175,08	7,1462 x 10 ⁻⁷	3,9819
	Kriging	3134	355.75	256.17	0,098178	180	8.8360 x 10 ⁻⁷	4,0339
	Multiquadrics	3398,8	502,76	149.54	0,15637	182,10	1,3022 x 10 ⁻⁶	4,111
To a second	Gaussianas	2999	654,06	144,58	0,054645	180	4,918 x 10 ⁻⁷	3,7485
Energia	Splines	2698,9	802,53	253,16	0,10703	175,03	7,1462 x 10 ⁻⁷	3,9819
	Kriging	3134	355.75	256.17	0,098178	180	8.8360 x 10 ⁻⁷	4,0339
	Multiquadrics	2870,8	354,97	301,65	0,15023	162,74	4,8895 x 10 ⁻⁷	4,869
	Gaussianas	2870	353	300	0,15231	161,97	4,690 x 10 ⁻⁷	4,8446
$\mathbf{B}_{\mathrm{stray}}^2$	Splines	3003,6	204	197,86	0,33293	123.66	1,7947 x 10 ⁻⁷	4,5812
	Kriging	2846.5	1147.3	69.96	0,18389	158.63	5.8641 x 10 ⁻⁷	3,5059

Resultados

Tabela 12. Classificação das Funções de Aproximação em relação a cada requisito.

	Função Objetivo	Energia	${f B_{stray}}^2$
1°	Gaussianas	Gaussianas e Kriging	Splines
2°	Kriging	151	Gaussianas
3°	Splines	Multiquadrics	Multiquadrics
4 °	Multiquadrics	Splines	Kriging

Conclusão

- Eficiência das Funções de Aproximação
- Menor Versatilidade das Splines
- Amostras menores podem eventualmente ser eficientes
- Usou-se análise de sensibilidade nas Funções Radiais de Base.
- TEAM 22: d2 e h2 são os parâmetros que mais sofrem com o processo de aproximação da função objetivo.

Para resolução

- Problema 22
- Definição do Problema
- http://www.compumag.org/jsite/imag es/stories/TEAM/problem22.pdf

Hipóteses

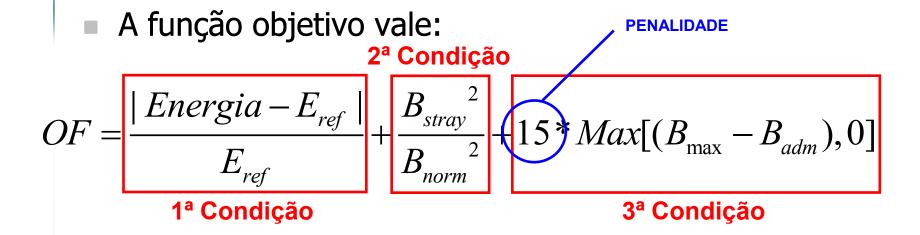
Problema

- 8 parâmetros
- H2, D2 e R2 valores ótimos
- H1, R1, D1, J1 e J2 são as possíveis variáveis.
- Cada sub-problema terá 3 variáveis

Os Sub-problemas

- Sub-problema 1: Variáveis (H1, D1 e R1). J1 e J2 no valor ótimo e Cálculo de Bmax na Bobina 2
- Sub-problema 2: Variáveis (H1, D1 e J1). R1 e J2 no valor ótimo e Cálculo de Bmax na Bobina 2
- Sub-problema 3: Variáveis (H1, J1 e R1). D1 e J2 no valor ótimo e Cálculo de Bmax na Bobina 2
- Sub-problema 4: Variáveis (J1, D1 e R1). H1 e J2 no valor ótimo e Cálculo de Bmax na Bobina 2
- Sub-problema 5: Variáveis (J2, D1 e R1). H1 e J1 no valor ótimo e Cálculo de Bmax na Bobina 1
- Sub-problema 6: Variáveis (J2, D1 e R1). H1 e J1 no valor ótimo e Cálculo de Bmax na Bobina 2

Valores ótimos:


000000000000000000000000000000000000000	R ₁	R_2	h ₁ /2	h ₂ /2	d_1	d_2	J_1	J_2
	[m]	[m]	[m]	[m]	[m]	[m]	$[MA/m^2]$	$[MA/m^2]$
results	1.5703	2.0999	0.7846	1.4184	0.5943	0.2562	17.3367	-12.5738

Procedimento

- Duas opções:
 - Resolve-se o problema de otimização diretamente com MEF.
 - Ou
 - Cada variável terá cinco valores distintos.
 Forma-se uma base com 125 pontos (5x5x5).
 Faz-se uma interpolação da função objetivo.
- A escolha é sua.
- Passa-se a etapa de Otimização. Qual método? A escolha é novamente sua.

- Logo deve-se calcular Energia, Btray e Bmax nos 125 pontos.
- O valor de B_{adm} deve ser calculado para cada sub-problema porque dependerá de J1 ou J2.
- Dicas: 1) criar três funções de aproximação; uma para cada condição. 2) o valor da penalidade da restrição pode (deve) ser alterada.