
1

Tutorial, February 2012, at MODPROD

by

Peter Fritzson
Linköping University, peter.fritzson@liu.se

Olena Rogovchenko
Linköping University, olena.rogovchenko@liu.se

Slides
Based on book and lecture notes by Peter Fritzson
Contributions 2004-2005 by Emma Larsdotter Nilsson, Peter Bunus
Contributions 2006-2008 by Adrian Pop and Peter Fritzson
Contributions 2009 by David Broman, Peter Fritzson, Jan Brugård,
and Mohsen Torabzadeh-Tari
Contributions 2010 by Peter Fritzson
Contributions 2011 by Peter F., Mohsen T,. Adeel Asghar

Introduction to Object-Oriented
Modeling, Simulation and Control

with Modelica

2012-02-07

2 Copyright © Open Source Modelica Consortium

Tutorial Based on Book, 2004
Download OpenModelica Software

 Peter Fritzson
Principles of Object Oriented
Modeling and Simulation with
Modelica 2.1

Wiley-IEEE Press, 2004, 940 pages

• OpenModelica
• www.openmodelica.org

• Modelica Association
• www.modelica.org

2

3 Copyright © Open Source Modelica Consortium

September 2011
232 pages

Wiley
IEEE Press

For Introductory
Short Courses on
Object Oriented
Mathematical Modeling

New Introductory
Modelica Book

4 Copyright © Open Source Modelica Consortium

Acknowledgements, Usage, Copyrights

• If you want to use the Powerpoint version of these slides in
your own course, send an email to: peter.fritzson@ida.liu.se

• Thanks to Emma Larsdotter Nilsson, Peter Bunus, David
Broman, Jan Brugård, Mohsen-Torabzadeh-Tari, Adeel
Asghar for contributions to these slides.

• Most examples and figures in this tutorial are adapted with
permission from Peter Fritzson’s book ”Principles of Object
Oriented Modeling and Simulation with Modelica 2.1”,
copyright Wiley-IEEE Press

• Some examples and figures reproduced with permission
from Modelica Association, Martin Otter, Hilding Elmqvist,
and MathCore

• Modelica Association: www.modelica.org
• OpenModelica: www.openmodelica.org

3

5 Copyright © Open Source Modelica Consortium

Outline

Part I

Introduction to Modelica and a
demo example

Part II
Modelica environments

Part III
Modelica language concepts

and textual modeling

Part IV
Graphical modeling and the

Modelica standard library

6 Copyright © Open Source Modelica Consortium

Detailed Schedule

09:00 - Introduction to Modeling and Simulation
• Start installation of OpenModelica including OMEdit graphic editor

09:10 - Modelica – The Next Generation Modeling Language
09:25 - Exercises Part I (15 minutes)

• Short hands-on exercise on graphical modeling using OMEdit– RL Circuit

09:50 – Part II: Modelica Environments and the OpenModelica Environment
10:10 – Part III: Modelica Textual Modeling
10:15 - Exercises Part IIIa (30 minutes)

• Hands-on exercises on textual modeling using the OpenModelica environment

10:45 – Coffee Break
11:00 - Modelica Discrete Events and Hybrid Properties
11:15 - Exercises Part IIIb (10 minutes)

• Hands-on exercises on textual modeling using the OpenModelica environment

11:25 – Part IV: Components, Connectors and Connections
- Modelica Libraries

11:45 - Graphical Modeling using OpenModelica
12:00 - Exercises Part IV (30 minutes) – DCMotor etc.

• Hands-on exercises on graphical modeling using OpenModelica

4

7 Copyright © Open Source Modelica Consortium

Software Installation - Windows

• Start the software installation

• Install OpenModelica-1.8.0.msi from the USB Stick

8 Copyright © Open Source Modelica Consortium

Software Installation – Linux (requires internet connection)

• Go to
https://openmodelica.org/index.php/download/down
load-linux and follow the instructions.

5

9 Copyright © Open Source Modelica Consortium

Software Installation – MAC (requires internet connection)

• Go to
https://openmodelica.org/index.php/download/down
load-mac and follow the instructions or follow the
instructions written below.

• The installation uses MacPorts. After setting up a
MacPorts installation, run the following commands
on the terminal (as root):
• echo rsync://build.openmodelica.org/macports/ >>

/opt/local/etc/macports/sources.conf # assuming you installed into /opt/local

• port selfupdate

• port install openmodelica-devel

10 Copyright © Open Source Modelica Consortium

Part I

Introduction to Modelica and
a demo example

6

11 Copyright © Open Source Modelica Consortium

Modelica Background: Stored Knowledge

Model knowledge is stored in books and human
minds which computers cannot access

“The change of motion is proportional
to the motive force impressed “
– Newton

12 Copyright © Open Source Modelica Consortium

Modelica Background: The Form – Equations

• Equations were used in the third millennium B.C.

• Equality sign was introduced by Robert Recorde in 1557

Newton still wrote text (Principia, vol. 1, 1686)
“The change of motion is proportional to the motive force impressed ”

CSSL (1967) introduced a special form of “equation”:
variable = expression
v = INTEG(F)/m

Programming languages usually do not allow equations!

7

13 Copyright © Open Source Modelica Consortium

What is Modelica?

• Robotics

• Automotive

• Aircrafts

• Satellites

• Power plants

• Systems biology

A language for modeling of complex physical systems

14 Copyright © Open Source Modelica Consortium

What is Modelica?

A language for modeling of complex physical systems

Primary designed for simulation, but there are also other

usages of models, e.g. optimization.

8

15 Copyright © Open Source Modelica Consortium

What is Modelica?

A language for modeling of complex physical systems
i.e., Modelica is not a tool

Free, open language
specification:

There exist several free and commercial
tools, for example:

• OpenModelica from OSMC
• MathModelica by MathCore
• Dymola by Dassault systems / Dynasim
• SimulationX by ITI
• MapleSim by MapleSoft

Available at: www.modelica.org

16 Copyright © Open Source Modelica Consortium

Declarative language
Equations and mathematical functions allow acausal modeling,
high level specification, increased correctness

Multi-domain modeling
Combine electrical, mechanical, thermodynamic, hydraulic,
biological, control, event, real-time, etc...

Everything is a class
Strongly typed object-oriented language with a general class
concept, Java & MATLAB-like syntax

Visual component programming
Hierarchical system architecture capabilities

Efficient, non-proprietary
Efficiency comparable to C; advanced equation compilation,
e.g. 300 000 equations, ~150 000 lines on standard PC

Modelica – The Next Generation Modeling Language

9

17 Copyright © Open Source Modelica Consortium

What is acausal modeling/design?

Why does it increase reuse?
The acausality makes Modelica library classes more
reusable than traditional classes containing assignment
statements where the input-output causality is fixed.

Example: a resistor equation:
R*i = v;

can be used in three ways:
i := v/R;
v := R*i;
R := v/i;

Modelica Acausal Modeling

18 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

• Multi-Domain Modeling

• Visual acausal hierarchical component modeling

• Typed declarative equation-based textual language

• Hybrid modeling and simulation

10

19 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Multi-Domain
Modeling

20 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Multi-Domain
Modeling

Acausal model
(Modelica)

Causal
block-based
model
(Simulink)

Keeps the physical
structure

Visual Acausal
Hierarchical
Component

Modeling

11

21 Copyright © Open Source Modelica Consortium

inertial
x

y

axis1

axis2

axis3

axis4

axis5

axis6

r3Drive1

1

r3Motor
r3ControlqdRef

1

S

qRef

1

S

k2

i

k1

i

qddRef cut joint

l

qd

tn

Jmotor=J

gear=i

spring=c

fr
ic

=R
v0

S
rel

joint=0

S

V
s

-

+
diff

-

+
pow er

emf

La=(250/(2*D
*w

m
))

R
a=250

Rd2=100

C=0.004*D/w m

-

+
OpI

Rd1=100

Ri=10

Rp1=200

R
p2

=5
0

Rd4=100

hall2

R
d3

=1
00

g1

g2

g3

hall1

g4

g5

rw

qd q

rate2

b(s)

a(s)

rate3

340.8

S

rate1

b(s)

a(s)

tacho1

PT1

Kd

0.03

w Sum

-

sum

+1

+1

pSum

-

Kv

0.3

tacho2

b(s)

a(s)

q qd

iRefqRef

qdRef

What is Special about Modelica?

Visual Acausal
Hierarchical
Component

Modeling

Multi-Domain
Modeling

Hierarchical system
modeling

Courtesy of Martin Otter

Srel = n*transpose(n)+(identity(3)- n*transpose(n))*cos(q)-
skew(n)*sin(q);
wrela = n*qd;
zrela = n*qdd;
Sb = Sa*transpose(Srel);
r0b = r0a;
vb = Srel*va;
wb = Srel*(wa + wrela);
ab = Srel*aa;
zb = Srel*(za + zrela + cross(wa, wrela));

22 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Multi-Domain
Modeling

Typed
Declarative
Equation-based
Textual Language

A textual class-based language
OO primary used for as a structuring concept

Behaviour described declaratively using
• Differential algebraic equations (DAE) (continuous-time)
• Event triggers (discrete-time)

class VanDerPol "Van der Pol oscillator model"
Real x(start = 1) "Descriptive string for x”;
Real y(start = 1) "y coordinate”;
parameter Real lambda = 0.3;

equation
der(x) = y;
der(y) = -x + lambda*(1 - x*x)*y;

end VanDerPol;

Differential equations

Variable

declarations

Visual Acausal
Hierarchical
Component

Modeling

12

23 Copyright © Open Source Modelica Consortium

What is Special about Modelica?

Hybrid
Modeling

Visual Acausal
Component

Modeling

Multi-Domain
Modeling

Typed
Declarative
Equation-based
Textual Language

time

Continuous-time

Discrete-time

Hybrid modeling =
continuous-time + discrete-time modeling

24 Copyright © Open Source Modelica Consortium

Block Diagram (e.g. Simulink, ...) or
Proprietary Code (e.g. Ada, Fortran, C,...)
vs Modelica

Proprietary
Code

Block Diagram

Modelica

Systems
Definition

System
Decomposition

Modeling of
Subsystems

Causality
Derivation

(manual derivation of

input/output relations) Implementation Simulation

Modelica – Faster Development, Lower Maintenance
than with Traditional Tools

13

25 Copyright © Open Source Modelica Consortium

Modelica vs Simulink Block Oriented Modeling
Simple Electrical Model

R1=10

C=0.01 L=0.1

R2=100

G

AC=220

p
n

p

pp

p

p

n

n

nn

-1

 1

sum3

+1

 -1

sum1

+1

+1

sum2

1
s

l2

1
s

l1sinln

1/R1

Res1

1/C

Cap

1/L

Ind

R2

Res2

Modelica:
Physical model –
easy to understand

Simulink:
Signal-flow model – hard to
understand

Keeps the
physical
structure

26 Copyright © Open Source Modelica Consortium

Graphical Modeling - Using Drag and Drop Composition

14

27 Copyright © Open Source Modelica Consortium

• A DC motor can be thought of as an electrical circuit which
also contains an electromechanical component

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
ElectroMechanicalElement EM(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, EM.n);
connect(EM.p, DC.n);
connect(DC.n,G.p);
connect(EM.flange,load.flange);

end DCMotor

load

EM

DC

G

R L

Multi-Domain (Electro-Mechanical) Modelica Model

28 Copyright © Open Source Modelica Consortium

Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

15

29 Copyright © Open Source Modelica Consortium

Model Translation Process to Hybrid DAE to Code

Modelica Model

Flat model Hybrid DAE

Sorted equations

C Code

Executable

Optimized sorted
equations

Modelica
Model

Modelica
Graphical Editor

Modelica
Source code

Translator

Analyzer

Optimizer

Code generator

C Compiler

Simulation

Modelica
Textual Editor

Frontend

Backend

"Middle-end"

Modeling
Environment

30 Copyright © Open Source Modelica Consortium

Modelica in Power Generation
GTX Gas Turbine Power Cutoff Mechanism

Hello

Courtesy of Siemens Industrial Turbomachinery AB

Developed
by MathCore
for Siemens

16

31 Copyright © Open Source Modelica Consortium

Modelica in Automotive Industry

32 Copyright © Open Source Modelica Consortium

Modelica in Avionics

17

33 Copyright © Open Source Modelica Consortium

Modelica in Biomechanics

34 Copyright © Open Source Modelica Consortium

Application of Modelica in Robotics Models
Real-time Training Simulator for Flight, Driving

Courtesy of Martin Otter, DLR,
Oberphaffenhofen, Germany

• Using Modelica models
generating real-time
code

• Different simulation
environments (e.g.
Flight, Car Driving,
Helicopter)

• Developed at DLR
Munich, Germany

• Dymola Modelica tool

18

35 Copyright © Open Source Modelica Consortium

Brief Modelica History

• First Modelica design group meeting in fall 1996
• International group of people with expert knowledge in

both language design and physical modeling
• Industry and academia

• Modelica Versions
• 1.0 released September 1997
• 2.0 released March 2002
• 2.2 released March 2005
• 3.0 released September 2007
• 3.1 released May 2009
• 3.2 released March 2010
• 3.3 expected May 2012

• Modelica Association established 2000 in Linköping
• Open, non-profit organization

36 Copyright © Open Source Modelica Consortium

Modelica Conferences

• The 1st International Modelica conference October, 2000
• The 2nd International Modelica conference March 18-19, 2002
• The 3rd International Modelica conference November 5-6, 2003 in

Linköping, Sweden
• The 4th International Modelica conference March 6-7, 2005 in Hamburg,

Germany
• The 5th International Modelica conference September 4-5, 2006 in Vienna,

Austria
• The 6th International Modelica conference March 3-4, 2008 in Bielefeld,

Germany
• The 7th International Modelica conference Sept 21-22, 2009 in Como, Italy
• The 8th International Modelica conference March 20-22, 2011 in Dresden,

Germany
• Coming: The 9th International Modelica conference Sept 3-5, 2012 in

Munich, Germany

19

37 Copyright © Open Source Modelica Consortium

Exercises Part I
Hands-on graphical modeling

(15 minutes)

38 Copyright © Open Source Modelica Consortium

Exercises Part I – Basic Graphical Modeling

• (See instructions on next two pages)
• Start the OMEdit editor (part of OpenModelica)
• Draw the RLCircuit
• Simulate

A
C

R=10

R1

L=0.1

L

G

L=1R=100

SimulationThe RLCircuit

20

39 Copyright © Open Source Modelica Consortium

Exercises Part I – OMEdit Instructions (Part I)

• Start OMEdit from the Program menu under OpenModelica

• Go to File menu and choose New, and then select Model.

• E.g. write RLCircuit as the model name.

• For more information on how to use OMEdit, go to Help and choose
User Manual or press F1.

• Under the Modelica Library:
• Contains The standard Modelica library components
• The Modelica files contains the list of models you
have created.

40 Copyright © Open Source Modelica Consortium

Exercises Part I – OMEdit Instructions (Part II)

• For the RLCircuit model, browse the Modelica standard library and add
the following component models:

• Add Ground, Inductor and Resistor component models from
Modelica.Electrical.Analog.Basic package.

• Add SineVolagte component model from Modelica.Electrical.Analog.Sources
package.

• Make the corresponding connections between the component models
as shown in slide 37.

• Simulate the model
• Go to Simulation menu and choose simulate or click on the siumulate button in the

toolbar.

• Plot the instance variables
• Once the simulation is completed, a plot variables list will appear on the right side.

Select the variable that you want to plot.

21

41 Copyright © Open Source Modelica Consortium

Part II

Modelica environments and OpenModelica

42 Copyright © Open Source Modelica Consortium

• Dynasim (Dassault Systemes)

• Sweden

• First Modelica tool on the market

• Main focus on automotive
industry

• www.dynasim.com

Dymola

22

43 Copyright © Open Source Modelica Consortium

Simulation X

• ITI

• Germany

• Mechatronic systems

• www.simulationx.com

44 Copyright © Open Source Modelica Consortium

MapleSim

• Maplesoft

• Canada

• Recent Modelica tool on the
market

• Integrated with Maple

• www.maplesoft.com

23

45 Copyright © Open Source Modelica Consortium

Courtesy
Wolfram
Research

• Wolfram Research

• USA, Sweden

• General purpose

• Mathematica integration

• www.wolfram.com

• www.mathcore.com

Car model graphical view

MathModelica – MathCore / Wolfram Research

Mathematica

Simulation and
analysis

46 Copyright © Open Source Modelica Consortium

The OpenModelica Environment
www.OpenModelica.org

24

47 Copyright © Open Source Modelica Consortium

OpenModelica (Part I)

• OpenModelica

• Open Source Modelica
Consortium (OSMC)

• Sweden and other countries

• Open source

• www.openmodelica.org

• OMEdit, graphical editor

• OMOptim, optimization subsystem

48 Copyright © Open Source Modelica Consortium

• Advanced Interactive Modelica compiler (OMC)
• Supports most of the Modelica Language

• Basic environment for creating models
• OMShell – an interactive command handler

• OMNotebook – a literate programming notebook

• MDT – an advanced textual environment in Eclipse

48

OpenModelica (Part II)

• ModelicaML UML Profile

• MetaModelica extension

• ParModelica extension

25

49 Copyright © Open Source Modelica Consortium

Open-source community services
• Website and Support Forum

• Version-controlled source base

• Bug database

• Development courses

• www.openmodelica.org

Code Statistics

OSMC – Open Source Modelica Consortium
40 organizational members February 2012

Founded Dec 4, 2007

50 Copyright © Open Source Modelica Consortium

OSMC 40 Organizational Members, Feb 2012
(initially 7 members, 2007)

Companies and Institutes (22 members)
• ABB Corporate Research, Sweden
• Bosch Rexroth AG, Germany
• Siemens PLM, California, USA
• Siemens Turbo Machinery AB, Sweden
• CDAC Centre for Advanced Computing, Kerala,

India
• Creative Connections, Prague, Czech Republic
• DHI, Aarhus, Denmark
• Evonik, Dehli, India
• Equa Simulation AB, Sweden
• Fraunhofer FIRST, Berlin, Germany
• Frontway AB, Sweden
• IFP, Paris, France
• InterCAX, Atlanta, USA
• ISID Dentsu, Tokyo, Japan
• MathCore Engineering/ Wolfram, Sweden
• Maplesoft, Canada
• TLK Thermo, Germany
• Sozhou Tongyuan Software and Control, China
• VI-grade, Italy
• VTI, Linköping, Sweden
• VTT, Finland
• XRG Simulation, Germany

Universities (18 members)
• Linköping University, Sweden
• TU Berlin, Institute of UEBB, Germany
• FH Bielefeld, Bielefeld, Germany
• TU Braunschweig, Institute of

Thermodynamics, Germany
• TU Dortmund, Proc. Dynamics, Germany
• Technical University Dresden, Germany
• Université Laval, modelEAU, Canada
• Georgia Institute of Technology, USA
• Ghent University, Belgium
• Griffith University, Australia
• Hamburg Univ. Technology/TuTech, Institute of

Thermo-Fluid, Germany
• University of Ljubljana, Slovenia
• University of Maryland, Inst. Systems

Engineering, USA
• University of Maryland, CEEE, USA
• Politecnico di Milano, Italy
• Ecoles des Mines, ParisTech, CEP, France
• Mälardalen University, Sweden
• Telemark University College, Norway

26

51 Copyright © Open Source Modelica Consortium

OMNotebook Electronic Notebook with DrModelica

• Primarily for teaching
• Interactive electronic book
• Platform independent

Commands:
• Shift-return (evaluates a cell)
• File Menu (open, close, etc.)
• Text Cursor (vertical), Cell

cursor (horizontal)
• Cell types: text cells &

executable code cells
• Copy, paste, group cells
• Copy, paste, group text
• Command Completion (shift-

tab)

52 Copyright © Open Source Modelica Consortium

OMnotebook Interactive Electronic Notebook
Here Used for Teaching Control Theory

27

53 Copyright © Open Source Modelica Consortium

OpenModelica MDT – Eclipse Plugin

• Browsing of packages, classes, functions

• Automatic building of executables;
separate compilation

• Syntax highlighting

• Code completion,
Code query support for developers

• Automatic Indentation

• Debugger
(Prel. version for algorithmic subset)

54 Copyright © Open Source Modelica Consortium 54

OpenModelica MDT: Code Outline and Hovering Info

Code Outline for
easy navigation within
Modelica files

Identifier Info on
Hovering

28

55 Copyright © Open Source Modelica Consortium

The OpenModelica MDT Debugger (Eclipse-based)
Using Japanese Characters

56 Copyright © Open Source Modelica Consortium

Interactive Simulation with OpenModelica

Tank 1 Tank 2

Liquid
Source

MaxLevel

Level h

Level h

Plot View

Requirements
Evaluation View
in ModelicaML

Domain-Specific
Visualization View

Examples of Simulation
Visualization

Simulation Control

29

57 Copyright © Open Source Modelica Consortium

Model structure Model Variables

Optimized
parameters

Optimized
Objectives

OMOptim – Optimization (1)

58 Copyright © Open Source Modelica Consortium

Problems

Solved problems Result plot Export result data .csv

OMOptim – Optimization (2)

30

59 Copyright © Open Source Modelica Consortium

General Tool Interoperability & Model Exchange
Functional Mock-up Interface (FMI)

The FMI development is part of the MODELISAR 29-partner project
• FMI development initiated by Daimler

• Improved Software/Model/Hardware-in-the-Loop Simulation, of physical
models and of AUTOSAR controller models from different vendors for
automotive applications with different levels of detail.

• Open Standard

• 14 automotive use cases for evaluation

• > 10 tool vendors are supporting it

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling
courtesy Daimler

60 Copyright © Open Source Modelica Consortium

OPENPROD – Large 28-partner European Project, 2009-2012
Vision of Cyber-Physical Model-Based Product Development

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

Product
models

Requirements
models

Unified Modeling: Meta-modeling& Modelica& UML & OWL

Business
Process
Control

Requirements
Capture

Model-Driven
Design
(PIM)

Compilation
& Code Gen

(PSM)

System
Simulation

Software &
Syst Product

Feedback

Platform
models

Process
models

OPENPROD Vision of unified modeling framework for model-driven
product development from platform independent models (PIM)
to platform specific models (PSM)

Current work based on Eclipse, UML/SysML, OpenModelica

31

61 Copyright © Open Source Modelica Consortium

OpenModelica – ModelicaML UML Profile
SysML/UML to Modelica OMG Standardization

• ModelicaML is a UML Profile for SW/HW modeling
• Applicable to “pure” UML or to other UML profiles, e.g. SysML

• Standardized Mapping UML/SysML to Modelica
• Defines transformation/mapping for executable models

• Being standardized by OMG

• ModelicaML
• Defines graphical concrete syntax (graphical notation for diagram) for

representing Modelica constructs integrated with UML

• Includes graphical formalisms (e.g. State Machines, Activities,
Requirements)

• Which do not exist in Modelica language

• Which are translated into executable Modelica code

• Is defined towards generation of executable Modelica code

• Current implementation based on the Papyrus UML tool + OpenModelica

62 Copyright © Open Source Modelica Consortium

Example: Simulation and Requirements Evaluation

Req. 001 is instantiated 2 times (there are 2 tanks in
the system)

tank-height is 0.6m

Req. 001 for the tank2 is violated

Req. 001 for the tank1 is not violated

32

63 Copyright © Open Source Modelica Consortium

OpenModelica – Recent Developments and Plans

• January 2012. OpenModelica 1.8.1 release with operator
overloading, faster compilation, ModelicaML with valuebindings

• 2012. Continued high priority on better support for the Modelica
standard library.

• Spring 2012. Support for larger models and improved simulation.

• February 2012. Shifting to bootstrapped OpenModelica compiler
for development.

• March 2011. Subset Fluid library flattening and simulating

• March 2012. Thermopower library simulating

• March 2011. Further improved support for MultiBody simulation.

• April 2011. Most of Fluid library flattening

• April-May 2011. Most of Media and Fluid libraries simulating

• May-June 2012. Integrated Modelica debugger.

64 Copyright © Open Source Modelica Consortium

Part III

Modelica language concepts
and textual modeling

Hybrid
Modeling

Typed
Declarative
Equation-based
Textual Language

33

65 Copyright © Open Source Modelica Consortium

A resistor equation:
R*i = v;

Acausal Modeling

The order of computations is not decided at modeling time

Acausal Causal

Causal possibilities:
i := v/R;
v := R*i;
R := v/i;

Visual
Component
Level

Equation
Level

66 Copyright © Open Source Modelica Consortium

Typical Simulation Process

34

67 Copyright © Open Source Modelica Consortium

Simple model - Hello World!

model HelloWorld "A simple equation"
Real x(start=1);
parameter Real a = -1;

equation
der(x)= a*x;

end HelloWorld;

Equation: x’ = - x
Initial condition: x(0) = 1

Simulation in OpenModelica environment

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

simulate(HelloWorld, stopTime = 2)
plot(x)

Name of model

Continuous-time

variable

Initial condition

Parameter, constant

during simulation

Differential equation

68 Copyright © Open Source Modelica Consortium

Modelica Variables and Constants

• Built-in primitive data types
Boolean true or false

Integer Integer value, e.g. 42 or –3

Real Floating point value, e.g. 2.4e-6

String String, e.g. “Hello world”

Enumeration Enumeration literal e.g. ShirtSize.Medium

• Parameters are constant during simulation

• Two types of constants in Modelica
• constant

• parameter
constant Real PI=3.141592653589793;
constant String redcolor = "red";
constant Integer one = 1;
parameter Real mass = 22.5;

35

69 Copyright © Open Source Modelica Consortium

A Simple Rocket Model

 abs

thrust mass gravity
acceleration

mass
mass massLossRate thrust

altitude velocity

velocity acceleration

 


   

 
 

class Rocket "rocket class"
parameter String name;
Real mass(start=1038.358);
Real altitude(start= 59404);
Real velocity(start= -2003);
Real acceleration;
Real thrust; // Thrust force on rocket
Real gravity; // Gravity forcefield
parameter Real massLossRate=0.000277;

equation
(thrust-mass*gravity)/mass = acceleration;
der(mass) = -massLossRate * abs(thrust);
der(altitude) = velocity;
der(velocity) = acceleration;

end Rocket;

new model
declaration
comment

parameters (changeable
before the simulation)

name + default value

differentiation with
regards to time

mathematical
equation (acausal)

floating point
type

start value

thrustapollo13

mg

Rocket

70 Copyright © Open Source Modelica Consortium

Celestial Body Class

class CelestialBody
constant Real g = 6.672e-11;
parameter Real radius;
parameter String name;
parameter Real mass;

end CelestialBody;

An instance of the class can be
declared by prefixing the type
name to a variable name

...
CelestialBody moon;
...

A class declaration creates a type name in Modelica

The declaration states that moon is a variable
containing an object of type CelestialBody

36

71 Copyright © Open Source Modelica Consortium

Moon Landing

class MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;

protected
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;

public
Rocket apollo(name="apollo13");
CelestialBody moon(name="moon",mass=7.382e22,radius=1.738e6);

equation
apollo.thrust = if (time < thrustDecreaseTime) then force1

else if (time < thrustEndTime) then force2
else 0;

apollo.gravity=moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end MoonLanding;

 2..

..
.

radiusmoonaltitudeapollo

massmoongmoon
gravityapollo






only access
inside the class

access by dot
notation outside
the class

altitude
CelestialBody

thrust
apollo13

mg

Rocket

72 Copyright © Open Source Modelica Consortium

Simulation of Moon Landing

simulate(MoonLanding, stopTime=230)
plot(apollo.altitude, xrange={0,208})
plot(apollo.velocity, xrange={0,208})

50 100 150 200

5000

10000

15000

20000

25000

30000
50 100 150 200

-400

-300

-200

-100

It starts at an altitude of 59404
(not shown in the diagram) at
time zero, gradually reducing it
until touchdown at the lunar
surface when the altitude is zero

The rocket initially has a high
negative velocity when approaching
the lunar surface. This is reduced to
zero at touchdown, giving a smooth
landing

37

73 Copyright © Open Source Modelica Consortium

Specialized Class Keywords

• Classes can also be declared with other keywords, e.g.: model, record,
block, connector, function, ...

• Classes declared with such keywords have specialized properties
• Restrictions and enhancements apply to contents of specialized classes
• After Modelica 3.0 the class keyword means the same as model

• Example: (Modelica 2.2). A model is a class that cannot be used as a
connector class

• Example: A record is a class that only contains data, with no equations
• Example: A block is a class with fixed input-output causality

model CelestialBody
constant Real g = 6.672e-11;
parameter Real radius;
parameter String name;
parameter Real mass;

end CelestialBody;

74 Copyright © Open Source Modelica Consortium

Modelica Functions

• Modelica Functions can be viewed as a specialized
class with some restrictions and extensions

• A function can be called with arguments, and is
instantiated dynamically when called

function sum
input Real arg1;
input Real arg2;
output Real result;

algorithm
result := arg1+arg2;

end sum;

38

75 Copyright © Open Source Modelica Consortium

function PolynomialEvaluator
input Real A[:]; // array, size defined

// at function call time
input Real x := 1.0;// default value 1.0 for x
output Real sum;

protected
Real xpower; // local variable xpower

algorithm
sum := 0;
xpower := 1;
for i in 1:size(A,1) loop
sum := sum + A[i]*xpower;
xpower := xpower*x;

end for;
end PolynomialEvaluator;

Function Call – Example Function with for-loop

Example Modelica function call:

The function
PolynomialEvaluator
computes the value of a
polynomial given two
arguments:
a coefficient vector A and
a value of x.

...
p = polynomialEvaluator({1,2,3,4},21)

{1,2,3,4} becomes
the value of the
coefficient vector A, and
21 becomes the value of
the formal parameter x.

76 Copyright © Open Source Modelica Consortium

Inheritance

record ColorData
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

end ColorData;

class Color
extends ColorData;

equation
red + blue + green = 1;

end Color;

Data and behavior: field declarations, equations, and
certain other contents are copied into the subclass

keyword
denoting
inheritance

restricted kind
of class without
equations

parent class to Color

child class or
subclass

class ExpandedColor
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end ExpandedColor;

39

77 Copyright © Open Source Modelica Consortium

Multiple Inheritance

Multiple Inheritance is fine – inheriting both geometry and color

class Point
Real x;
Real y,z;

end Point;

class Color
parameter Real red=0.2;
parameter Real blue=0.6;
Real green;

equation
red + blue + green = 1;

end Color;
multiple inheritance

class ColoredPointWithoutInheritance
Real x;
Real y, z;
parameter Real red = 0.2;
parameter Real blue = 0.6;
Real green;

equation
red + blue + green = 1;

end ColoredPointWithoutInheritance;

Equivalent to

class ColoredPoint
extends Point;
extends Color;

end ColoredPoint;

78 Copyright © Open Source Modelica Consortium

Multiple Inheritance cont’

Only one copy of multiply inherited class Point is kept

class Point
Real x;
Real y;

end Point;

Diamond Inheritance
class VerticalLine
extends Point;
Real vlength;

end VerticalLine;

class HorizontalLine
extends Point;
Real hlength;

end HorizontalLine;

class Rectangle
extends VerticalLine;
extends HorizontalLine;

end Rectangle;

40

79 Copyright © Open Source Modelica Consortium

Simple Class Definition

• Simple Class Definition
• Shorthand Case of Inheritance

• Example:
class SameColor = Color;

class SameColor
extends Color;

end SameColor;

Equivalent to:

• Often used for
introducing new
names of types:

type Resistor = Real;

connector MyPin = Pin;

inheritance

80 Copyright © Open Source Modelica Consortium

Inheritance Through Modification

• Modification is a concise way of combining inheritance
with declaration of classes or instances

• A modifier modifies a declaration equation in the
inherited class

• Example: The class Real is inherited, modified with a
different start value equation, and instantiated as an
altitude variable:

...
Real altitude(start= 59404);

...

41

81 Copyright © Open Source Modelica Consortium

The Moon Landing - Example Using Inheritance (I)

model Body "generic body"
Real mass;
String name;

end Body;

model CelestialBody
extends Body;
constant Real g = 6.672e-11;
parameter Real radius;

end CelestialBody;

model Rocket "generic rocket class"
extends Body;
parameter Real massLossRate=0.000277;
Real altitude(start= 59404);
Real velocity(start= -2003);
Real acceleration;
Real thrust;
Real gravity;

equation
thrust-mass*gravity= mass*acceleration;
der(mass)= -massLossRate*abs(thrust);
der(altitude)= velocity;
der(velocity)= acceleration;

end Rocket;

altitude CelestialBody

thrustapollo13

mg

Rocket

82 Copyright © Open Source Modelica Consortium

The Moon Landing - Example using Inheritance (II)

model MoonLanding
parameter Real force1 = 36350;
parameter Real force2 = 1308;
parameter Real thrustEndTime = 210;
parameter Real thrustDecreaseTime = 43.2;
Rocket apollo(name="apollo13", mass(start=1038.358));
CelestialBody moon(mass=7.382e22,radius=1.738e6,name="moon");
equation
apollo.thrust = if (time<thrustDecreaseTime) then force1

else if (time<thrustEndTime) then force2
else 0;

apollo.gravity =moon.g*moon.mass/(apollo.altitude+moon.radius)^2;
end Landing;

inherited
parameters

42

83 Copyright © Open Source Modelica Consortium

Inheritance of Protected Elements

class ColoredPointWithoutInheritance
Real x;
Real y,z;
protected Real red;
protected Real blue;
protected Real green;

equation
red + blue + green = 1;

end ColoredPointWithoutInheritance;

If an extends-clause is preceded by the protected keyword,
all inherited elements from the superclass become protected
elements of the subclass

The inherited fields from Point keep
their protection status since that
extends-clause is preceded by
public

A protected element cannot be
accessed via dot notation!

class ColoredPoint
protected
extends Color;
public
extends Point;

end ColoredPoint;

class Color
Real red;
Real blue;
Real green;

equation
red + blue + green = 1;

end Color;

class Point
Real x;
Real y,z;

end Point;

Equivalent to

84 Copyright © Open Source Modelica Consortium

Exercises Part II
(30 minutes)

43

85 Copyright © Open Source Modelica Consortium

Exercises Part II

• Start OMNotebook (part of OpenModelica)
• Start->Programs->OpenModelica->OMNotebook

• Open File: Exercises-ModelicaTutorial.onb from the directory you copied
your tutorial files to.

• Note: The DrModelica electronic book has been automatically opened when
you started OMNotebook.

• Open Exercises-ModelicaTutorial.pdf (also
available in printed handouts)

86 Copyright © Open Source Modelica Consortium

• Open the Exercises-ModelicaTutorial.onb found in the
Tutorial directory you copied at installation.

• Exercise 2.1. Simulate and plot the HelloWorld example. Do
a slight change in the model, re-simulate and re-plot. Try
command-completion, val(), etc.

• Locate the VanDerPol model in DrModelica (link from
Section 2.1), using OMNotebook!

• Exercise 2.2: Simulate and plot VanDerPol. Do a slight
change in the model, re-simulate and re-plot.

Exercises 2.1 and 2.2 (See also next two pages)

class HelloWorld "A simple equation"
Real x(start=1);

equation
der(x)= -x;

end HelloWorld;

simulate(HelloWorld, stopTime = 2)
plot(x)

44

87 Copyright © Open Source Modelica Consortium

Exercise 2.1 – Hello World!

A Modelica “Hello World” model
class HelloWorld "A simple equation”

parameter Real a=-1;
Real x(start=1);

equation
der(x)= a*x;

end HelloWorld;

Equation: x’ = - x
Initial condition: x(0) = 1

Simulation in OpenModelica environment

0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

simulate(HelloWorld, stopTime = 2)
plot(x)

88 Copyright © Open Source Modelica Consortium

-1 1 2

-2

-1

1

2

-2

Exercise 2.2 – Van der Pol Oscillator

class VanDerPol "Van der Pol oscillator model"
Real x(start = 1) "Descriptive string for x"; // x starts at 1
Real y(start = 1) "y coordinate"; // y starts at 1
parameter Real lambda = 0.3;

equation
der(x) = y; // This is the 1st diff equation //
der(y) = -x + lambda*(1 - x*x)*y; /* This is the 2nd diff equation */

end VanDerPol;

simulate(VanDerPol,stopTime = 25)

plotParametric(x,y)

45

89 Copyright © Open Source Modelica Consortium

Exercise 2.3 – DAE Example

Include algebraic equation
Algebraic equations contain
no derivatives

Simulation in OpenModelica environment

0.2 0.4 0.6 0.8 1

time

0.90

0.95

1.05

1.10

1.15

1.20

1.0

simulate(DAEexample, stopTime = 1)
plot(x)

class DAEexample
Real x(start=0.9);
Real y;

equation
der(y)+(1+0.5*sin(y))*der(x)

= sin(time);
x - y = exp(-0.9*x)*cos(y);

end DAEexample;

Exercise: Locate in DrModelica.
Simulate and plot. Change
the model, simulate+plot.

90 Copyright © Open Source Modelica Consortium

Exercise 2.4 – Model the system below

• Model this Simple System of Equations in Modelica

46

91 Copyright © Open Source Modelica Consortium

Exercise 2.5 – Functions

• a) Write a function, sum2, which calculates the sum
of Real numbers, for a vector of arbitrary size.

• b) Write a function, average, which calculates the
average of Real numbers, in a vector of arbitrary
size. The function average should make use of a
function call to sum2.

92 Copyright © Open Source Modelica Consortium

Discrete Events and Hybrid Systems

Picture: Courtesy Hilding Elmqvist

47

93 Copyright © Open Source Modelica Consortium

Hybrid Modeling

time

Continuous-time

Discrete-time

Hybrid modeling = continuous-time + discrete-time modeling

Real x;
Voltage v;
Current i;

Events

discrete Real x;
Integer i;
Boolean b;

• A point in time that is instantaneous, i.e., has zero duration

• An event condition so that the event can take place

• A set of variables that are associated with the event

• Some behavior associated with the event,
e.g. conditional equations that become active or are deactivated at
the event

94 Copyright © Open Source Modelica Consortium

Event creation – if

model Diode "Ideal diode"
extends TwoPin;
Real s;
Boolean off;

equation
off = s < 0;
if off then
v=s

else
v=0;

end if;
i = if off then 0 else s;

end Diode;

if <condition> then
<equations>

elseif <condition> then
<equations>

else
<equations>

end if;

if-equations, if-statements, and if-expressions

False if s<0

If-equation choosing
equation for v

If-expression

48

95 Copyright © Open Source Modelica Consortium

Event creation – when

when <conditions> then
<equations>

end when;

when-equations

Only dependent on time, can be
scheduled in advance

Time event
when time >= 10.0 then

...
end when;

time
event 1 event 2 event 3

Equations only active at event times

State event

when sin(x) > 0.5 then
...

end when;

Related to a state. Check for
zero-crossing

96 Copyright © Open Source Modelica Consortium

Generating Repeated Events

The call sample(t0,d) returns
true and triggers events at times
t0+i*d, where i=0,1, …

model SamplingClock
Integer i;
discrete Real r;

equation
when sample(2,0.5) then
i = pre(i)+1;
r = pre(r)+0.3;

end when;
end SamplingClock;

time

sample(t0,d)

false

true

t0 t0+d t0+2d t0+3d t0+4d

Variables need to be
discrete

Creates an event
after 2 s, then
each 0.5 s

pre(...) takes the
previous value
before the event.

49

97 Copyright © Open Source Modelica Consortium

Reinit - discontinuous changes

model BouncingBall "the bouncing ball model"
parameter Real g=9.81; //gravitational acc.
parameter Real c=0.90; //elasticity constant
Real height(start=10),velocity(start=0);

equation
der(height) = velocity;
der(velocity)=-g;
when height<0 then
reinit(velocity, -c*velocity);

end when;
end BouncingBall;

The value of a continuous-time state variable can be instantaneously
changed by a reinit-equation within a when-equation

Reinit ”assigns”
continuous-time variable
velocity a new value

Initial conditions

98 Copyright © Open Source Modelica Consortium

Exercise 2.6 – BouncingBall

• Locate the BouncingBall model in one of the hybrid
modeling sections of DrModelica (the When-
Equations link in Section 2.9), run it, change it
slightly, and re-run it.

50

99 Copyright © Open Source Modelica Consortium

Part IV

Components, Connectors and Connections –
Modelica Libraries and Graphical Modeling

100 Copyright © Open Source Modelica Consortium

Software Component Model

A component class should be defined independently of the
environment, very essential for reusability

A component may internally consist of other components, i.e.
hierarchical modeling

Complex systems usually consist of large numbers of
connected components

Component

Interface

ConnectionComponent

Connector
Acausal coupling

Causal coupling

51

101 Copyright © Open Source Modelica Consortium

Connectors and Connector Classes

Connectors are instances of connector classes

v +

i

pin

s

f

flange

connector Pin
Voltage v;
flow Current i;

end Pin;

Pin pin;

connector class

keyword flow
indicates that currents
of connected pins
sum to zero.

electrical connector

an instance pin
of class Pin

connector Flange
Position s;
flow Force f;

end Flange;

Flange flange;

connector class

mechanical connector

an instance flange
of class Flange

102 Copyright © Open Source Modelica Consortium

The flow prefix

Two kinds of variables in connectors:
• Non-flow variables potential or energy level

• Flow variables represent some kind of flow

Coupling
• Equality coupling, for non-flow variables

• Sum-to-zero coupling, for flow variables

The value of a flow variable is positive when the current
or the flow is into the component

v

+ i

pin
positive flow direction:

52

103 Copyright © Open Source Modelica Consortium

Translational Position Force Linear momentum
Mechanical.
Translational

Physical Connector

• Classes Based on Energy Flow
Domain

Type
Potential Flow Carrier Modelica

Library

Electrical Voltage Current Charge
Electrical.

Analog

Rotational Angle Torque
Angular

momentum
Mechanical.
Rotational

Magnetic
Magnetic
potential

Magnetic
flux rate

Magnetic flux

Hydraulic Pressure Volume flow Volume HyLibLight

Heat Temperature Heat flow Heat HeatFlow1D

Chemical
Chemical
potential

Particle flow Particles
Under

construction

Pneumatic Pressure Mass flow Air PneuLibLight

104 Copyright © Open Source Modelica Consortium

connect-equations

pin1 pin2
+ +

i i

v v

connect(connector1,connector2)

Connections between connectors are realized as equations in Modelica

The two arguments of a connect-equation must be references to
connectors, either to be declared directly within the same class or be
members of one of the declared variables in that class

pin1.v = pin2.v;
pin1.i + pin2.i =0;

Pin pin1,pin2;
//A connect equation
//in Modelica:
connect(pin1,pin2); Corresponds to

53

105 Copyright © Open Source Modelica Consortium

Connection Equations

1 2 3 nv v v v  

pin1.v = pin2.v;
pin1.i + pin2.i =0;

Pin pin1,pin2;
//A connect equation
//in Modelica
connect(pin1,pin2); Corresponds to

Each primitive connection set of nonflow variables is
used to generate equations of the form:

Each primitive connection set of flow variables is used to generate
sum-to-zero equations of the form:

1 2 () 0k ni i i i     

connect(pin1,pin2); connect(pin1,pin3); ... connect(pin1,pinN);

Multiple connections are possible:

106 Copyright © Open Source Modelica Consortium

Common Component Structure

The base class TwoPin has
two connectors p and n for
positive and negative pins
respectively

p

p.i

p.v

n.i

n.v
n

i

i i + - TwoPin

electrical connector class

partial model TwoPin
Voltage v
Current i
Pin p;
Pin n;

equation
v = p.v - n.v;
0 = p.i + n.i;
i = p.i;

end TwoPin;
// TwoPin is same as OnePort in
// Modelica.Electrical.Analog.Interfaces

positive pin

negative pin

partial class
(cannot be
instantiated) connector Pin

Voltage v;
flow Current i;

end Pin;

54

107 Copyright © Open Source Modelica Consortium

Electrical Components

model Resistor ”Ideal electrical resistor”
extends TwoPin;
parameter Real R;

equation
R*i = v;

end Resistor;

model Inductor ”Ideal electrical inductor”
extends TwoPin;
parameter Real L ”Inductance”;

equation
L*der(i) = v;

end Inductor;

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

p.i n.i

p.v n.v
v

+

model Capacitor ”Ideal electrical capacitor”
extends TwoPin;
parameter Real C ;

equation
i=C*der(v);

end Capacitor;

108 Copyright © Open Source Modelica Consortium

Electrical Components cont’

model Source
extends TwoPin;
parameter Real A,w;

equation
v = A*sin(w*time);

end Resistor;

p.i n.i

p.v n.v

v(t)

+

p.ip.v

model Ground
Pin p;

equation
p.v = 0;

end Ground;

55

109 Copyright © Open Source Modelica Consortium

Resistor Circuit

R 2 R 1

R 3

n p p n

p ni3

i2i1

v 1 v 2

v 3

R1.p.v = R2.p.v;
R1.p.v = R3.p.v;
R1.p.i + R2.p.i + R3.p.i = 0;

model ResistorCircuit
Resistor R1(R=100);
Resistor R2(R=200);
Resistor R3(R=300);

equation
connect(R1.p, R2.p);
connect(R1.p, R3.p);

end ResistorCircuit;

Corresponds to

110 Copyright © Open Source Modelica Consortium

• Modelica Standard Library (called Modelica) is a
standardized predefined package developed by
Modelica Association

• It can be used freely for both commercial and
noncommercial purposes under the conditions of
The Modelica License.

• Modelica libraries are available online including
documentation and source code from
http://www.modelica.org/library/library.html

Modelica Standard Library - Graphical Modeling

56

111 Copyright © Open Source Modelica Consortium

Modelica Standard Library cont’

• Blocks Library for basic input/output control blocks
• Constants Mathematical constants and constants of nature
• Electrical Library for electrical models
• Icons Icon definitions
• Fluid 1-dim Flow in networks of vessels, pipes, fluid machines, valves, etc.
• Math Mathematical functions
• Magnetic Magnetic.Fluxtubes – for magnetic applications
• Mechanics Library for mechanical systems
• Media Media models for liquids and gases
• SIunits Type definitions based on SI units according to ISO 31-1992
• Stategraph Hierarchical state machines (analogous to Statecharts)
• Thermal Components for thermal systems
• Utilities Utility functions especially for scripting

The Modelica Standard Library contains components from
various application areas, including the following sublibraries:

112 Copyright © Open Source Modelica Consortium

Modelica.Blocks

Continuous, discrete, and logical input/output blocks
to build block diagrams.

 Library

Continuous

Examples:

57

113 Copyright © Open Source Modelica Consortium

Modelica.Electrical

Electrical components for building analog, digital, and
multiphase circuits

Library

Analog

Library

MultiPhase

Library

Digital

V1

V2

I1

R1

R2

R3

R4

C1

C4

C5

C2

C3

Gnd1

Gnd9

Gnd3

Gnd2

Gnd6

Gnd7 Gnd8 Gnd5

Gnd4

Transistor1 Transistor2

Examples:

Library

Machines

114 Copyright © Open Source Modelica Consortium

Modelica.Mechanics

Package containing components for mechanical systems

Subpackages:

• Rotational 1-dimensional rotational mechanical components

• Translational 1-dimensional translational mechanical components

• MultiBody 3-dimensional mechanical components

58

115 Copyright © Open Source Modelica Consortium

Modelica.Stategraph

Hierarchical state machines (similar to Statecharts)

116 Copyright © Open Source Modelica Consortium

Other Free Libraries

• WasteWater Wastewater treatment plants, 2003
• ATPlus Building simulation and control (fuzzy control included), 2005
• MotorCycleDymanics Dynamics and control of motorcycles, 2009
• NeuralNetwork Neural network mathematical models, 2006
• VehicleDynamics Dynamics of vehicle chassis (obsolete), 2003
• SPICElib Some capabilities of electric circuit simulator PSPICE, 2003
• SystemDynamics System dynamics modeling a la J. Forrester, 2007
• BondLib Bond graph modeling of physical systems, 2007
• MultiBondLib Multi bond graph modeling of physical systems, 2007
• ModelicaDEVS DEVS discrete event modeling, 2006
• ExtendedPetriNets Petri net modeling, 2002
• External.Media Library External fluid property computation, 2008
• VirtualLabBuilder Implementation of virtual labs, 2007
• SPOT Power systems in transient and steady-state mode, 2007
• ...

59

117 Copyright © Open Source Modelica Consortium

Some Commercial Libraries

• Powertrain

• SmartElectricDrives

• VehicleDynamics

• AirConditioning

• HyLib

• PneuLib

• CombiPlant

• HydroPlant

• …

118 Copyright © Open Source Modelica Consortium

Connecting Components from Multiple Domains

model Generator
Modelica.Mechanics.Rotational.Accelerate ac;
Modelica.Mechanics.Rotational.Inertia iner;
Modelica.Electrical.Analog.Basic.EMF emf(k=-1);
Modelica.Electrical.Analog.Basic.Inductor ind(L=0.1);
Modelica.Electrical.Analog.Basic.Resistor R1,R2;
Modelica.Electrical.Analog.Basic.Ground G;
Modelica.Electrical.Analog.Sensors.VoltageSensor vsens;
Modelica.Blocks.Sources.Exponentials ex(riseTime={2},riseTimeConst={1});

equation
connect(ac.flange_b, iner.flange_a); connect(iner.flange_b, emf.flange_b);
connect(emf.p, ind.p); connect(ind.n, R1.p); connect(emf.n, G.p);
connect(emf.n, R2.n); connect(R1.n, R2.p); connect(R2.p, vsens.n);
connect(R2.n, vsens.p); connect(ex.outPort, ac.inPort);

end Generator;

R1

R2

ind

emf

G

ex ac iner vsen

Electrical
domain

Mechanical
domain

Block
domain

1

2

• Block domain

• Mechanical domain

• Electrical domain

60

119 Copyright © Open Source Modelica Consortium

DCMotor Model Multi-Domain (Electro-Mechanical)

A DC motor can be thought of as an electrical circuit
which also contains an electromechanical component.

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
EMF emf(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, emf.n);
connect(emf.p, DC.n);
connect(DC.n,G.p);
connect(emf.flange,load.flange);

end DCMotor;

load

emf
DC

G

R L

120 Copyright © Open Source Modelica Consortium

Exercises Part IV
Graphical Modeling Exercises

using
OpenModelica

61

121 Copyright © Open Source Modelica Consortium

Graphical Modeling - Using Drag and Drop Composition

122 Copyright © Open Source Modelica Consortium

Graphical Modeling Animation – DCMotor

62

123 Copyright © Open Source Modelica Consortium

• A DC motor can be thought of as an electrical circuit which
also contains an electromechanical component

model DCMotor
Resistor R(R=100);
Inductor L(L=100);
VsourceDC DC(f=10);
Ground G;
ElectroMechanicalElement EM(k=10,J=10, b=2);
Inertia load;

equation
connect(DC.p,R.n);
connect(R.p,L.n);
connect(L.p, EM.n);
connect(EM.p, DC.n);
connect(DC.n,G.p);
connect(EM.flange,load.flange);

end DCMotor

load

EM

DC

G

R L

Multi-Domain (Electro-Mechanical) Modelica Model

124 Copyright © Open Source Modelica Consortium

Automatic transformation to ODE or DAE for simulation:

(load component not included)

Corresponding DCMotor Model Equations

The following equations are automatically derived from the Modelica model:

63

125 Copyright © Open Source Modelica Consortium

Exercise 3.1

• Draw the DCMotor model using the graphic connection
editor using models from the following Modelica
libraries:
Mechanics.Rotational.Components,
Electrical.Analog.Basic,
Electrical.Analog.Sources

J

emf
u

G

R L • Simulate it for 15s and plot the
variables for the outgoing
rotational speed on the inertia
axis and the voltage on the
voltage source (denoted u in the
figure) in the same plot.

126 Copyright © Open Source Modelica Consortium

Exercise 3.2

• If there is enough time: Add a torsional spring to the
outgoing shaft and another inertia element. Simulate
again and see the results. Adjust some parameters to
make a rather stiff spring.

64

127 Copyright © Open Source Modelica Consortium

Exercise 3.3

• If there is enough time: Add a PI controller to the system
and try to control the rotational speed of the outgoing shaft.
Verify the result using a step signal for input. Tune the PI
controller by changing its parameters in OMEdit.

128 Copyright © Open Source Modelica Consortium

Exercise 3.4 – DrControl

• If there is enough time: Open the DrControl electronic book
about control theory with Modelica and do some exercises.
• Open File: C:OpenModelica1.6.0\share\omnotebook\drcontrol\DrControl.onb

65

129 Copyright © Open Source Modelica Consortium

Learn more…

• OpenModelica
• www.openmodelica.org

• Modelica Association
• www.modelica.org

• Books
• Principles of Object Oriented Modeling and Simulation with

Modelica 2.1, Peter Fritzson
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-
0471471631.html

• Modeling and Simulation of Technical and Physical
Systems with Modelica. Peter Fritzson.
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-
111801068X.html

• Introduction to Modelica, Michael Tiller

130 Copyright © Open Source Modelica Consortium

Summary

Hybrid
Modeling

Visual Acausal
Component

Modeling

Multi-Domain
Modeling

Typed
Declarative
Textual Language Thanks for listening!

