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Preface

This book is a sequel to the e-book Deformation and Vibration by
Finite Element Analysis. The present volume hence starts with
Chapter 18. Using the same software (FlexPDE version 5) it expands
the applications to irrotational and viscous flow of incompressible
fluids.

The preceding part started with an introductory chapter on
graphical facilities, which may be studied without applying boundary
conditions and without solving any PDE. There seems to be no reason
to repeat this material here, and hence it is omitted.

As before, there is no index since the Acrobat program lets you
search for words and even word combinations. After selecting Edit,
Find  (or pushing the keys Ctrl+f) if suffices to enter the item of
interest. The table of contents is also available and may be brought up
to the left of the text by clicking on Bookmarks (or by pushing F5). A
simple click on a subtitle opens that section immediately.

Since this is the last of the four Fields volumes, I should again like
to thank my late friend Dr. Russell Ross, University of East Anglia,
for reading and commenting the work. The admirable programmer
behind FlexPDE, Mr. Bob Nelson, kindly continued to support this
final round of applications.

Gunnar Backstrom

The finite-element software package used for this book (FlexPDE) is
marketed by

PDE Solutions Inc
PO Box 4217, Antioch, CA 94531-4217, USA
Phone: +1 925 776 2407   Fax: +1 925 776 2406
Email: sales@pdesolutions.com
http://www.pdesolutions.com
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18   Irrotational Flow of  Liquids in (x,y)

This is the second volume on mechanical fields, and the introductory
chapters on graphics, Laplace, and Poisson equations will not be
repeated here. Instead, we occasionally refer to the preceding book
for elementary details.

Since the density of a liquid normally changes little within the
range of pressures occurring in practical applications, we assume the
density to be constant. In this chapter we also make more daring
assumptions, i.e. that the liquid slips freely over solid surfaces and
that viscous forces are vanishingly small compared to inertial forces.
These assumptions are known to be useful, however, in many
situations.

The conservation of mass may be expressed as8p52

∇⋅ = −( )ρ ∂ρ
∂0

0v
t

where ρ0  is the mass density and v the velocity vector. Assuming
constant density, this leads us to the conservation of volume
∇⋅ =v 0

or in explicit form

∂
∂

∂
∂

v
x

v
y

x y+ = 0   

This PDE is not of 2nd order, which is a prerequisite for solving it
by FlexPDE. Fortunately, we may arrange this by expressing the
velocity components as derivatives of a common function φ . Hence,
let us choose the definitions

v
xx =

∂φ
∂

, v
yy =

∂φ
∂

In this manner we arrive at
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∂ φ
∂

∂ φ
∂

2

2

2

2 0
x y
+ =   

which is the well known Laplace equation (see Chapter 5 in
Deformation and Vibration).

So far, we have only used the principle of conservation of mass,
but it is important to note that any solution to the above PDE will also
be irrotational (∇× =v 0), because

∇× = − = − =va fz y xv
x

v
y x y y x

∂
∂

∂
∂

∂ φ
∂ ∂

∂ φ
∂ ∂

2 2
0

Energy conservation next leads us to the Bernoulli equation of
motion, which states8p116

1
2 0

2
0ρ ρv p g y+ + = constant  

where v v vx y= +2 2  is the magnitude of the velocity (speed),  p the
pressure, and g the acceleration due to gravity (assuming the y-axis to
be vertical).

Flow through a Constricted Channel

Our first application of the above equations will be to the flow
through a horizontal channel, limited by plane surfaces perpendicular
to our domain.

The following descriptor defines the problem and introduces the
PDE for the velocity potential φ . After solving for phi we simply
differentiate to obtain the components of velocity. Having obtained
these components we then form the magnitude of the velocity (v).
Assuming horizontal flow, where the gravity terms cancel, the
Bernoulli equation gives us
1
2

1
20

2
0 0

2
0ρ ρv p v p+ = +

and we finally obtain the expression for the pressure p included in the
definitions segment.
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In order to make optimum use of the adaptive gridding provided by
the program, we specify the modest initial ngrid=1. The Student
Version of FlexPDE is sufficient for solving this problem.

In the boundaries segment we specify the input velocity vx0 by a
natural statement (Chapter 5 in the preceding volume). For the output
end we just impose a constant value for the potential phi. Its absolute
value is of course arbitrary since only the derivatives will be used, but
by specifying a constant value over this boundary we also stipulate
that vy=dy(phi) is to vanish, i.e. we force the liquid to exit in the x
direction.

If you are not already familiar with FlexPDE graphics, you should
refer to the introductory chapters in Fields of Physics or Deformation
and Vibration. Also note the Help facility included in the program.
TITLE     'Flow through a Constricted Channel'           { fex181.pde }
SELECT     errlim=1e-5     ngrid=1      spectral_colors   { Rainbow }
                              { Student Version }
VARIABLES     phi                                { Velocity potential }
DEFINITIONS { SI units }
   Lx=1     Ly=1             
   coef=0.5 { Constriction coefficient }
   vx0=3.0                { Velocity at input end }
   p0=1e5              { Atmospheric pressure }
   dens=1e3            { Mass density }
   vx=dx(phi)     vy=dy(phi)      { Velocity components }
   v=vector( vx,vy)     vm=sqrt( vx^2+ vy^2) { Speed }
   p=p0+ 1/2*dens*(vx0^2-vm^2)         { Pressure }
   div_v=dx( vx)+ dy( vy) { Divergence, or div( v) }
   curl_z=dx( vy)- dy( vx) { Vorticity, or curl( v) }
EQUATIONS
   dxx( phi)+ dyy( phi)=0 { Or div( grad( v)) }
BOUNDARIES
region 'domain' start 'outer' (0,Ly)
   natural( phi)=-vx0  line to (0,-Ly) { In }
   natural( phi)=0 line to (Lx,-Ly)  to (2*Lx,-Ly*coef)  to (3*Lx,-Ly*coef)
   value( phi)=0 line  to (3*Lx,Ly*coef)  { Out }
   natural( phi)=0 line to (2*Lx,Ly*coef) to (Lx,Ly) to close
PLOTS
   contour( phi)     vector( v) norm     contour( vm) painted
   contour( p) painted     contour( p) zoom(1.5*Lx,0,  Lx,Ly)
   surface( p) zoom(1.5*Lx,0,  Lx,Ly)
   elevation( vm) on 'outer'    { Verify boundary conditions }
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   contour( div_v)     contour( curl_z)
END

The modifier norm here follows the vector plot command. This
means that the arrows will be normalized to a standard length, but the
color code indicates the magnitude, i.e. the speed. This plot shows
that the speed is constant across the ends and that there is an increase
from input to output. The elevation plot on the boundary shows this
fact more clearly.

The vector plot below thus represents the velocity field. We notice
that the streamlines are parallel to the boundaries, where they come
close, but the speed does not vanish there. We also notice that the
speed distribution at the exit appears to be roughly twice that at the
entrance.

We also see from the plot of vm (not shown here) that the speed
increases by a factor of about two from input to output, i.e. in inverse
proportion to the channel width. This is of course in accord with the
conservation of mass and volume, a principle that was incorporated
into the PDE by the vanishing divergence. Notice, however, that we
did not explicitly introduce this constancy in the boundary conditions
at the ends, although we could well have done so.
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The following is a painted contour plot of the pressure. It shows
that the pressure variation is small close to the input and output ends.

Other facts to notice are that the speed vm (not shown) takes a
minimum at the corner where the width of the channel starts to
decrease and a maximum where it becomes constant again.

From the above surface plot of p it is evident that the pressure has
a minimum at the corner where the speed peaks. The color code
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indicates that this minimum is about 70% of the value at the input
end, as gathered from the un-zoomed plot. From the latter plot we
also deduce that the pressure decreases from input to output, but not
in proportion to the width.

The last two plots demonstrate that the divergence as well as the
curl of the velocity field vanishes.

Cylindrical Obstacle across a Straight Channel

We shall next consider flow around an obstacle, and in particular the
forces exerted on it by the stream. In the descriptor, which is based on
fex181, we introduce a bar of circular cross-section across the
channel.
TITLE     'Obstacle across a Straight Channel'           { fex182.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors
VARIABLES     phi                        { Velocity potential }
DEFINITIONS
   Lx=1.0     Ly=1.0     a=0.2
   vx0=5.0                { x-component of velocity at left end }
   p0=1e5              { Atmospheric pressure at left end }
   dens=1e3            { Mass density }
   vx=dx( phi)     vy=dy( phi)      { Velocity components }
   v=vector( vx,vy)     vm=magnitude( v)
   p=p0+ 0.5*dens*( vx0^2- vm^2)  { Pressure }
EQUATIONS
   div( grad( phi))=0
BOUNDARIES
region 'domain'
   start 'outer' (-Lx,Ly) point value( phi)= 0
   natural( phi)=-vx0  line to (-Lx,-Ly) { In }
   natural( phi)=0 line to (Lx,-Ly) { Wall }
   natural( phi)=vx0 line  to (Lx,Ly)  { Out }
   natural( phi)=0 line to close  { Wall }
   start 'obstacle' (a,0) { Cut-out }
   natural( phi)=0  arc( center=0,0) angle=360  close
PLOTS
   contour( vm) painted     vector( v) norm
   vector( v) norm zoom(-3*a/2,-a/2,  2*a,2*a)
   contour( p) painted     elevation( p) on 'obstacle'
END
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Since the liquid is assumed non-viscous, drag forces could only be
caused by the pressure distribution. The plot below suggests that the
pressure is symmetric with respect to both axes. From this symmetry
we would expect the upstream and downstream forces to be equal and
oppositely directed.

The elevation plot below presents the pressure variation on the
surface of the obstacle. The left-right symmetry, as well as the up-
down symmetry, is clearly evident from this figure.

To the left and also to the right of the obstacle (points 1 and 3), we
find pressure values larger than the ambient value (1e5). We could
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also calculate this maximum value directly from the Bernoulli
equation (p.227 2)
1
2

1
2

2
0
2

0ρ ρv p v p+ = +

for a point of flow stagnation ( )v = 0 , obtaining the result p=1.125e5.
The pressure on the sides parallel to the mainstream (points 2 and

4) is much lower than the ambient value. This pressure reduction is a
well-known consequence of the Bernoulli equation.

The left-right symmetry of the pressure plot indicates the absence
of a force dragging the object along the stream. This may be sur-
prising at first. As is apparent from the following vector plot,
however, the incoming flow deviates to become parallel to the front
face, but the acceleration required is equal and opposite to that
required for making the stream parallel again on the opposite side.

The plot also illustrates the phenomenon of stagnation. The color
serves to indicate the magnitude. Here, the speed vanishes at y = 0 on
a line perpendicular to the figure.

It is clear from the above (symmetric) plots of p that the pressure
forces on the liquid sum to the value zero. Since the liquid slips on
the boundaries, the total force vanishes, and hence the force on the
obstacle.
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Even if there is no resultant force on the cylinder, we do find
excess pressure on the left and right sides and a deficit at the bottom
and top sides. Hence, if the obstacle were elastic it would deform.

Obstacle Close to a Wall

It is easy to modify fex182 to make the upper boundary line come
closer to the obstacle. The changes are evident from the following
lines.
TITLE     'Obstacle Across a Channel, Close to Wall'        { fex182a.pde }
...
region 'domain'
   start 'outer'(-Lx,0.3*Ly) point value( phi)=0
   natural( phi)= -vx0     line to (-Lx,-Ly)
   natural( phi)=0     line to (Lx,-Ly)
   natural( phi)=vx0     line  to (Lx,0.3*Ly)
   natural( phi)=0 line to close { Keep 'obstacle' below }
...
   elevation( p) from (-Lx,-Ly) to (Lx,-Ly)
   elevation( p) from (-Lx,0.3*Ly) to (Lx,0.3*Ly)
END

The above vector plot shows the flow pattern in this case.
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As is evident from the following plot, p is still left-right symmetric,
but the pressure is now lower on the top than at the bottom of the
cylinder. From this it is clear that an upward force acts on the
obstacle.

Evidently, the pressure pushes the obstacle toward the nearby wall.
This effect is vaguely analogous to the suction felt when you stand
close to a passing train.

The elevation plots present the pressure on the top and bottom
sides of the domain, and from these we may read off the integrals,
which are equal to the forces on the liquid, caused by the cylinder.
The conclusion is that the force on the latter is 195527-188798=6729.

Drag and Lift on an Inclined Plate

Let us now turn to a situation where we all know from experience that
a lifting force may occur, both in air and in water. The geometry
should be clear from the figure below. As before, we have a stream of
liquid from left to right with constant velocity at the vertical
boundaries. In the following descriptor the obstacle is a rectangular
plate at an angle of attack (alpha) with respect to the main stream. The
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general expressions for the corner coordinates of the plate permit us
to change the angle of attack at will.
TITLE     'Drag and Lift on a Plate'           { fex183.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors
VARIABLES     phi                       { Velocity potential }
DEFINITIONS
   Lx=1.0     Ly=1.0     a=0.5*Ly     d=0.2* a
   vx0=5.0 { x-component of velocity at left end }
   alpha=30* pi/180     { Angle of attack, radians }
   si=sin( alpha)     co=cos( alpha)
   x1=-d/2*si- a/2*co     y1=-d/2*co+ a/2*si { Corner coordinates }
   x2=d/2*si- a/2*co     y2=d/2*co+ a/2*si
   x3=-x1     y3=-y1     x4=-x2     y4=-y2               
   p0=1e5              { Atmospheric pressure at left end }
   dens=1e3 { Mass density }
   vx= dx(phi)     vy= dy(phi)      { Velocity components }
   v=vector( vx, vy)     vm=magnitude( v)
   p=p0+ 0.5*dens*(vx0^2-vm^2) { Pressure }
   brute_force=p0* 2*y2
EQUATIONS
   dxx( phi)+ dyy( phi)=0
BOUNDARIES
region 'domain'
   start 'outer' (-Lx,Ly) point value( phi)=0
   natural( phi)=-vx0     line to (-Lx,-Ly)
   natural( phi)=0     line to (Lx,-Ly)
   natural( phi)=vx0     line  to (Lx,Ly)
   natural( phi)=0     line to close
   start 'obstacle' (x1,y1)   { Cut-out }
   natural( phi)=0 line to (x2,y2) to (x3,y3) to (x4,y4) to close
PLOTS
   contour( vm) painted     vector( v) norm     contour( p) painted      
   elevation( p) from (-Lx,-Ly) to (-Lx,Ly) report(brute_force) { Left }
   elevation( p) from (Lx,-Ly) to (Lx,Ly) { Right }
   elevation( p) from (-Lx,-Ly) to (Lx,-Ly) { Bottom }
   elevation( p) from (-Lx,Ly) to (Lx,Ly) { Top }
END

The following vector plot illustrates the geometry and also shows
that there is a strong variation of speed at the corners.
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Although the pressure distribution below seems to be symmetric
with respect to the coordinate axes, this is less obvious than in the
preceding example. It is clear, on the other hand, that the stream
exerts a torque on the plate.

The elevation plots of p give us quantitative information about the
pressure and the forces acting on the liquid. The following figure
shows the pressure variation along the lower boundary line.
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Taking the difference of the force integrals we find the value –7.7
for the x-component and –0.1 for the y-component. We compare these
forces to an estimate (brute_force) of that acting on the surface facing
the stream, i.e. p0*2*y2. We find that the force components are
smaller than the reference value by a factor of at least 4000.

Hence, in the case of the sloping obstacle there seems to be no net
force, neither drag nor lift. In fact, analytic theory shows that this is a
general property of potential flow. This result is of course contrary to
common experience, and the paradox stems from our unrealistic
assumptions about the velocity at the solid interfaces. Molecules
move randomly and cannot slide without friction along a boundary
surface, but collide against it, thereby losing the velocity component
along the surface. The boundary condition at a solid obstacle must
obviously be zero tangential velocity, but this cannot be obtained with
curl-free flow, as we shall see in later chapters.

In the next chapter we shall discover that the present kind of
potential flow is not the most general class of irrotational motion.
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Exercises

 Change the boundary condition at the output end of the constricted
channel (fex181), such that you specify the appropriate horizontal
velocity. Compare the results to those of the original example. Then
change the output speed in the boundary condition by 10 % and
observe the consequences.

 Change fex181 so that the horizontal input velocity will vary
across the channel according to the function u y Lx y0

23 1= −[ ( / ) ],
still keeping φ equal to zero at the output end.

 Use an input speed of 7.0 m/s in fex181 and notice the minimum
value of pressure resulting from the solution. Suggest a physical
interpretation of the astonishing outcome.

 Change the angle of attack and the thickness of the inclined plate
(fex183) according to your own taste.

  Expand fex181 to fit the simplest model of a symmetrical Venturi
tube8p120.
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19   Circulation around an Obstacle

In the preceding chapter on potential flow we obtained velocity fields
with vanishing curl, known as irrotational. We shall now find that
whenever there is an obstacle in the stream, alternative irrotational
solutions exist. By adding such a solution to that of potential flow we
obtain a more general kind of motion.

Let us start from the expression for the curl component relevant to
motion in the ( , )x y  plane.

∇× = − =va fz y xv
x

v
y

∂
∂

∂
∂

ω   

The quantity ω  is usually called vorticity. In irrotational flow, the
vorticity has to vanish everywhere in the liquid, but the velocity field
inside the obstacle does not have to obey this condition. Of course,
nothing will be moving in the solid obstacle, but the solution may
formally extend into this region.

The problem at hand is to solve the above PDE, which is of first
order only. We thus proceed as on p.226 to transform it into a
standard 2nd order PDE involving a new potential function, ψ . Since
this type of flow as well involves a potential, we could call it
circulating potential flow. With the definitions

v
yx =

∂ψ
∂

 ,      v
xy = −

∂ψ
∂

  

the above PDE takes the form of a Poisson equation, viz.

∂ ψ
∂

∂ ψ
∂

ω ψ ω
2

2

2

2
2 0

x y
+ + ≡ ∇ + =   

where ω  must be zero in the liquid while it may take different values
in the region inside the obstacle. The descriptor below implements
this idea in the simplest way, using the Student Version of FlexPDE.
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TITLE     'Circulation around an Obstacle'           { fex191.pde }
SELECT     errlim=1e-4     spectral_colors { Student Version }
VARIABLES     psi                                  { Circulation potential }
DEFINITIONS { SI units }
   Lx=1.0     Ly=1.0     a=0.2
   omega { Source of curl, vorticity }
   vx=dy( psi)     vy=-dx( psi)      { Velocity components }
   v=vector( vx, vy)     vm=magnitude( v)
EQUATIONS
   div( grad( psi))+ omega=0
BOUNDARIES
region 'domain'     omega=0
   start 'outer' (-Lx,Ly)   value( psi)=0   { Vanishing normal velocity }
   line to (-Lx,-Ly) to (Lx,-Ly) to (Lx,Ly) to close
region 'obstacle'   omega=1.0   start 'circle' (0,-a)
   natural( psi)=0  { Vanishing normal velocity }
   arc( center=0,0) angle=360
PLOTS
   contour( psi)     contour( vm) painted     vector( v) norm
   contour( div( v)) on 'domain'     contour( curl( v))
   elevation( normal( v), tangential( v)) on 'outer'
   elevation( normal( v), tangential( v)) on 'circle'
END

The vector plot below demonstrates (by color) that the flow is
fastest close to the obstacle.
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According to the above plot, the velocity on the outer boundary is
parallel to the border. The first elevation plot, comparing the normal
and tangential components of v confirms this fact.

The above plot also demonstrates that the velocity follows the
borderline of the obstacle, which is essential. The last elevation plot
of normal(v) shows this even more clearly.

The following contour plot of the speed vm indicates the maximum
and minimum points clearly.

In the definitions segment we declared the vorticity omega to be a
variable, but we waited until boundaries to assign values to it. The
plot of div(v) shows the result to be zero in the liquid, and the next
plot suggests that curl(v) also vanishes, as required.

The solution inside the obstacle is of course purely fictitious and is
only used to introduce circulation in the liquid by means of the PDE.
In the solid, curl(v) should be equal to ω = 10.  according to our
definition. The plot suggests that curl(v) is about unity in that region,
but the sparse node points give us only a very rough confirmation.
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Circulation Integral

We shall now explore the circulation of the vector field quantitatively
by line integrals along closed curves. The formal definition of
circulation is

Γ = ⋅ =z zv ld v dlt   

Since an elevation plot may present the tangential velocity vt  using
the length as the independent variable, the integral value cited at the
bottom of the plot is in fact equal to Γ . The following modifications
to fex191 are needed to calculate a few line integrals of this kind.
TITLE     'Circulation Integral '         { fex191a.pde }
...
feature
   start 'circle3' (0,-3*a) arc( center=0,0) angle=360
PLOTS
   elevation( tangential( v)) on 'circle' as 'circulation'
   elevation( tangential( v)) on 'circle3' as 'circulation'
   elevation( tangential( v)) on 'outer' as 'circulation'
END

Under boundaries we have added a new closed curve with a radius
three times that of the obstacle. The command feature lets us add lines
inside the domain in the way we create regions.
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We now calculate the circulation over three different curves, all
enclosing the region where ω  is non-zero. The above plot shows the
tangential velocity-component on the square boundary. We find the
other two integral values to be about the same.

Here, we may compare the circulation to an analytic expression by
means of the Stokes integral theorem1p364

v l v⋅ = ∇ × =z zz zzd dx dy dx dy
C zA A

a f ω   

where the first integral refers to a closed curve C, and the second and
third ones to a region of area A enclosed by it. Since we have ω = 10.
inside the cross-section of the obstacle, the last integral evaluates to
ωπ a2 012566= . , in fair agreement with the line integrals.

Combined Velocity Fields

In order to obtain a more general solution for irrotational liquid flow
we add a circulating field to the potential field from fex182. A
convenient way of adding these fields is to calculate both by the same
descriptor. We are perfectly free to solve for φ  and ψ
simultaneously, but the solution domains must be identical.
Unfortunately, the potential field had a void for the obstacle, while
the domain for the circulating velocity field was defined over a the
entire square without an excluded region.

In order to solve for φ  over the full domain, we may use a PDE
that is slightly different from p.226 1, i.e.

∂
∂

∂
∂

φ( ) ( ) ( ) ( )
cv
x

cv
y

c cx y+ ≡ ∇⋅ = ∇ ⋅ ∇ =v 0       

The idea is to define the constant c to be unity in the liquid and to
take a suitably small value co  in the region of the obstacle. The FEA
program arranges to make the normal component ( )c nv  continuous
across the interface from obstacle to liquid. This means that the
relation 1⋅ =v c vn o on  will make vn  on the liquid side much smaller
than v  in the region of the obstacle, which in turn is of the order of
the input speed. In other words, the velocity will be closely tangential
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on the outside of the obstacle, as we assumed in the preceding
chapter.

The following descriptor, combining the non-circulating and circu-
lating fields, is based on fex191, some features from fex191a being
added. The sum (v2) of the two velocities involves the coefficient c2.
We use the latter to specify the amount of circulation.
TITLE     'Combined Velocity Fields'           { fex192.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors
VARIABLES     phi     psi                                  
DEFINITIONS
   Lx=1     Ly=1.0     a=0.2     vx0=1.0
   dens=1e3     p0=1e5 { Atmospheric pressure }
   omega     c { Angular velocity, parameter c for PDE }
   vx=dx( phi)     vy=dy( phi)      { Velocity v from potential phi }
   v=vector( vx,vy)     vm=magnitude( v)
   vcx=dy( psi)     vcy=-dx( psi) { Circulating velocity vc from psi }
   vc=vector( vcx, vcy)
   c2=10     v2x=vx+ c2*vcx     v2y=vy+ c2*vcy
   v2=vector( v2x, v2y)     v2m=magnitude( v2)
   p=p0+ 0.5*dens*( vx0^2- v2m^2)         { Pressure }
   unit_x=vector( 1,0)     unit_y=vector( 0,1)
   force_x=-p*normal( unit_x)     force_y=-p*normal( unit_y)
EQUATIONS  { Tagged with the dominant variable }
   phi: div( c*grad( phi))=0    { Potential flow }
   psi: div( grad( psi))+ omega=0  { Circulating flow }     
BOUNDARIES
region 'domain'   omega=0   c=1
   start 'outer'(-Lx,Ly)   natural( phi)=-c*vx0   value( psi)=0  { In }
   line to (-Lx,-Ly)   natural( phi)=0   line to (Lx,-Ly)
   natural( phi)=c*vx0   { Out }
   line  to (Lx,Ly)  natural( phi)=0  line to close
region 'obstacle'   omega=1   c=1e-10   start 'circle' (a,0) 
   natural( phi)=0   natural( psi)=0   arc( center=0,0) angle=360
PLOTS
   vector( v) norm on 'domain'     vector( vc) norm on 'domain'
   vector( v2) norm on 'domain'
   contour( p) painted on 'domain'
   elevation( tangential( v), normal( v)) on 'circle' on 'domain'
   elevation( p) on 'circle' on 'domain'
   elevation( force_x, force_y) on 'circle'
   elevation( dens*vx0*tangential( v2)) on 'circle' on 'domain'
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   contour( curl( v2))      contour( div( v2))
END

The following figure is a vector plot of the combined velocity v2. It
shows that the speed is now higher below the obstacle, as we might
expect.

The plot below tests to what extent the normal velocity vanishes on
the circle.
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The above plot shows that vn  is in fact smaller than vt  but
fluctuates noticeably around zero. This is the best that can be done,
however, with this limited number of nodes. Using the Professional
Version with a smaller value of errlim we obtain less scatter and no
visible net variation.

In order to calculate the force acting on the obstacle, we integrate
− p n xcos( , )  over the circle to obtain the x-component of the force,
and so on. In practice, we construct a unit vector field unit_x, which
combines with normal to give us the direction cosine.

In this example, the pertinent velocity field exists in the liquid
region, which we have to keep in mind when plotting and calculating
line integrals. Under boundaries we first define a total domain and
then reserve a circular region for the obstacle. As a consequence of
this definition, 'domain' becomes equivalent to the remainder, i.e. the
liquid region.

For the line integrals, FlexPDE permits us to specify both the curve
for integration ('circle') and the region where the data are to be
fetched. We specify this by the modifier on 'circle' on 'domain'.

The elevation plot of the local forces shows that the integral of
force_x is now small compared to force_y, which takes a negative
value (-1302). The force is thus perpendicular to the main stream and
directed downwards, as is also evident from the contour plot of the
pressure.

Kutta and Joukovski8p156 used a complex formalism to derive an
expression for the force on a cylindrical object of general shape. The
result for the lift force is
F vy x= −ρ 0Γ   

Judging from the last elevation plot, which yields the circulation (Γ),
our integrated value agrees reasonably well with the analytic result
for the negative lift force.

We have seen that the circulating mode of motion may produce a
force on the obstacle, transverse to the input velocity vx0. This is
similar to the Magnus effect8p159, which is easily observed in a tennis
court. There is no drag force, however, on a cylinder in a non-viscous
liquid.
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Finally, the contour plots of div(v2) and curl(v2) confirm that the
combined velocity field conserves mass and is irrotational.

Forces on an Inclined Plate

Let us now apply the above PDEs to fex183 in the preceding chapter,
exploiting suitable fractions of fex192. Here, we exploit the feature
that a boundary condition need not be repeated if unchanged.
TITLE     'Forces on an Inclined Plate'           { fex193.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors
VARIABLES     phi     psi                                  
DEFINITIONS
   Lx=1.0     Ly=1.0     a=0.5*Ly     d=0.2*a
{ Geometric parameters for inclined plate }
      alpha=30* pi/180     { Angle of attack, radians }
      si=sin( alpha)     co=cos( alpha)
      x1=-d/2*si- a/2*co     y1=-d/2*co+ a/2*si { Corners }
      x2=d/2*si- a/2*co     y2=d/2*co+ a/2*si
      x3=-x1     y3=-y1     x4=-x2     y4=-y2               
   dens=1e3     p0=1e5              { Atmospheric pressure at left end }
   vx0=5     vx=dx(phi)     vy=dy(phi)      { Velocity from potential phi }
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector( 1,0)     unit_y=vector( 0,1)
   omega     c { Angular velocity and parameter for PDE }
   vcx=dy( psi)     vcy=-dx( psi) { Circulating field from psi }
   vc=vector( vcx, vcy)     vcm=magnitude( vc)
{ Combining velocities v and vc to obtain v2 }
   c2=-30     v2x=vx+ c2*vcx     v2y=vy+ c2*vcy
   v2=vector( v2x, v2y)     v2m=magnitude( v2)
   p2=p0+ 0.5*dens*( vx0^2- v2m^2)         { Pressure }
   force_x=-p2*normal( unit_x)     force_y=-p2*normal( unit_y)
EQUATIONS { Tagged }
   phi: div( c*grad( phi))=0    { Potential flow }
   psi: div( grad( psi))+ omega=0  { Circulating flow }
BOUNDARIES
region 'domain'   omega=0   c=1
   start 'outer' (-Lx,Ly)
   natural( phi)=-c*vx0   value( psi)=0   line to (-Lx,-Ly) { In }
   natural( phi)=0     line to (Lx,-Ly)
   natural( phi)=c*vx0     line  to (Lx,Ly)  { Out }
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   natural( phi)=0     line to close
region 'obstacle'   omega=1   c=1e-10
   start 'rectangle' (x4,y4)   natural( phi)=0   natural( psi)=0
   line to (x3,y3) to (x2,y2) to (x1,y1) to close
PLOTS
   vector( v) norm on 'domain'     vector( vc) norm on 'domain'
   vector( v2) norm on 'domain'     contour( p2) painted on 'domain'
   elevation( tangential( v), normal( v)) on 'rectangle' on 'domain'
   elevation( force_x, force_y) on 'rectangle' on 'domain'
   elevation( dens*vx0* tangential( v2)) on 'rectangle' on 'domain'
END

The following vector plot indicates that the liquid flows along the
sides of the plate as required. Since we now have chosen a negative
value of c2, the combined velocity is higher on the top face of the
plate, which we expect to result in a lift force.

The following plot of vt  and vn  illustrates that the normal com-
ponent is relatively small on the long sides, but that the few node
points on the short sides do not yield the ideal zero, but positive and
negative slopes.
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The plot of the pressure below makes it clear that there is an
upward force on the left part of the plate and a downward force on the
right part, which should produce a torque.

Integrating by means of the second elevation plot we find that the
net vertical force is in fact positive. Its magnitude (6584) is in rough
agreement with the Kutta-Joukovski value (7373), given by the
integral on the last plot. There is also a right-directed drag force in the
direction of flow.
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In summary of this chapter, we note that an added circulating field
reproduces to some extent the lift force found by experience. The
required amount of circulation ( )Γ  is not directly given by the Kutta-
Joukovski theory, however, which means that the coefficient c2 has to
be determined by trial and error to provide smooth flow-off.

Most importantly, combining potential flow and circulating flow
does not yield zero speed on the surface of the obstacle. This means
that the detailed velocity field is unphysical, even if it predicts
reasonable forces.

Exercises

 Investigate if fex191 may be modified to accommodate an obstacle
of square cross-section.

 Explore how the lift and drag forces obtained by fex193 vary with
the angle of attack. What happens at negative alpha?

 Adapt fex193 to treat flow around an obstacle of square cross-
section.
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20   Viscous Flow in Channels

In this chapter we shall deal with realistic situations in ( , )x y , where a
liquid locally is at rest with respect to the solid objects in contact with
it. Under such conditions curl(v) will in general be non-zero.

Classical mechanics applied to a liquid yields the Navier-Stokes
equation8p59. That equation expresses Newton’s law of motion

ρ0
d
dt tot

v f=

for the total force ftot  on a fluid element that is carried along with the
stream. (That kind of derivative is also commonly denoted D Dv / t .)
Here, ρ0 is the constant mass density of the fluid. Since the velocity
in a chosen volume element is a function of ( , , )t x y , we may write

d
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With this expression for the derivative, Newton’s law takes the form

ρ ∂
∂

ρ η0 0
2 0v v v F v

t
p+ ⋅∇ − +∇ − ∇ =( )   

where F is an external force (e.g. gravity), −∇p  the force due to
pressure, and η∇2v  the one proportional to viscosity8pp57,69. This
vector PDE is known as the Navier-Stokes (N-S) equation.

The second term, ρ0 ( )v v⋅∇ , has the dimension of force but it is
really part of the time derivative and hence called an inertial force.
This term is obviously second-order in v.

The last term corresponds to the viscous force on the volume
element. Normally, ∇2  operates on a scalar and ∇2 v  should be taken
as shorthand for the vector ( )i j∇ + ∇2 2v vx y .

The simplest case of flow occurs at such small speeds that the non-
linear inertial force become negligible compared to viscous force, and
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in the present chapter we shall consider liquid motion under such
conditions. The ratio of inertial-to-viscous forces is usually expressed
in the form of the dimensionless Reynolds number, defined by

Re = ρ
η

0 0 0v L
  

where v0 is a typical speed and L0 a typical size of the solution
domain. This number gives us an order-of-magnitude indication of
the sort of flow we are dealing with. At sufficiently small values of
Re, the inertial term is negligible compared to the viscous force and
the problem can be treated as linear in the dependent variables. The
PDEs then yield solutions corresponding to laminar flow.

Above the first critical value (Re )= 1  the solutions may remain
laminar, even if the PDEs are non-linear. Above a much higher value
(Re=100 or much more depending of the details of the problem) the
solution becomes turbulent and time-dependent (permanently
unstable).

In Cartesian coordinates, the component Navier-Stokes equations
may thus be written (for the x- and y-directions respectively)
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Here, we have kept the second term unexpanded, since it may be
disregarded until a later chapter.

So far, we have only two equations for the three dependent
variables vx , vy , and p. Conservation of mass at constant density
gives us a third equation8p52, i.e.

∇⋅ = ∇ ⋅ = +
F
HG

I
KJ =( )ρ ρ ρ ∂

∂
∂
∂0 0 0 0v v v

x
v
y

x y    

but unfortunately this is a PDE of first order only, which FlexPDE
would not accept.



254

Using ∇⋅ =v 0 together with the equation of motion we may,
however, generate a relation containing second-order derivatives in p.
Applying the divergence operator to the N-S equation we obtain11

ρ ∂
∂

ρ η0 0
2 2 0

t
p∇⋅ + ∇ ⋅ ⋅∇ −∇ ⋅ + ∇ − ∇⋅ ∇ =v v v F v( ) ( )

where the first term vanishes because of mass conservation.
Furthermore, we may eliminate the last term using the identities

η η η∇⋅ ∇ = ∇ ∇⋅ = ∇ =( ) ( ) ( )2 2 2 0 0v v

The remainder of the modified N-S equation is

∇ + ∇⋅ ⋅∇ −∇⋅ =2
0 0p ρ ( )v v F   

If the volume force F is constant in space the last term will vanish.
Expressed in Cartesian coordinates, this PDE takes the form
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+ + ∇ ⋅ ⋅∇ −∇⋅ =( )v v F                                      

Even in this equation we leave the term containing ρ0 unexpanded,
since it will not be used in the present chapter.

We now have a total of three PDEs for calculating vx , vy  and p.
Although we derived the equation for p using mass conservation, it
would be wrong to assume that any solution to these three PDEs
would necessarily satisfy ∇⋅v=0. In fact, one may show11 that this is
true only in special cases. We shall see that the first two examples in
this chapter are sufficiently simple for the divergence to vanish
automatically.

It could never be wrong, however, to add ∇⋅v, multiplied by a
factor, to the equation for p, since the divergence should vanish in the
final stage of the solution process. Hence we settle for the following
form

∂
∂

∂
∂
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2

2
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2 0 0p
x
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f+ + ∇⋅ ⋅∇ −∇ ⋅ − ∇ ⋅ =∇( )v v F v      

where we may choose the factor f∇   freely according to the problem
at hand, to ensure vanishing divergence. Trial runs lead us to employ
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a negative factor. We may always verify by means of plots that the
divergence vanishes for a given solution.

The factor f∇  may not be taken as a fixed number, however, since
it has a physical dimension, in fact the same as η /L0

2 . Hence, we
should write

f C
L∇ =
η

0
2   

where the parameter L0  is a typical size of the domain. The number C
is to be chosen empirically, large enough to ensure vanishing ∇⋅ v ,
but not so large that it impairs convergence in FlexPDE calculations
or requires unreasonably long runtimes.

Although the divergence term was introduced on intuitive grounds
and proves itself in practical use, we may understand approximately
how it works. In the derivation of p.252 1 we used the term f = −∇p
for the force generated by pressure. The Gauss theorem6p43 now yields

∇ = ∇⋅∇ = − ∇ ⋅ = −zzz zzz zzz zz2 pdV p dV dV f d snf

Let us now consider a small region around a point of interest. By
subtracting a certain amount from the ∇2p  term in p254 2 we
effectively create an outward force on the boundary of that region,
which transports fluid away from the point considered. This nudges
the calculations toward vanishing divergence.

Boundary Conditions

Now that we have a PDE for pressure, we must find out what
boundary conditions to use with it. This is easy enough where the
pressure takes known values, but what about boundaries that just limit
the fluid flow?

The alternative to value is a natural statement. In the latter case we
need an expression for ∂ ∂p n p/ ≡ ⋅∇n , where n is the outward
normal ( n = 1) at the boundary of the domain. The N-S equation
(p.252) provides the answer rather directly11:
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If the pressure is not known on a boundary segment, we may thus use
the following general expression for the natural boundary condition
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where ρ ∂ ∂0 v tn /  will vanish in the steady state, and we defer the
expansion of the last term until it is required later.

Steady Flow at Small Speeds (Re<<1)

In this chapter and the next one we shall only be concerned with
steady flow, which means that we omit the time derivative. We also
assume Re to be small enough to permit us to neglect the PDE term
proportional to the density. The three PDEs then take the simpler
form
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We shall soon see that in the most elementary examples, involving
parallel flow, we may even neglect the last (divergence) term.

For small Re, the natural boundary condition for pressure
simplifies into
∂ ∂ ηp n n F n F n v n vx x y y x x y y/ = + + ∇ + ∇2 2d i               
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Flow Due to a Moving Wall at Re<<1

We shall now consider the motion of a liquid confined between two
parallel walls. One wall is kept stationary and the other one moves
with speed vx0, at constant spacing between the walls. In order to
obtain a small Reynolds number with the usual domain size and
reasonable velocity, we have chosen a hypothetical liquid of very
high viscosity.

In the two preceding chapters we imposed the ambient pressure p0,
because there was a risk of large negative pressures at corners,
leading to voids. In the N-S PDE, only derivatives of p occur, and
hence we may ignore p0 in the solution process. We may always add
the ambient pressure later to the solution for p to ensure that the total
pressure remains positive.

Under boundaries we specify the velocity components on the solid
surfaces. We assume that the moving wall, rather than a pressure
difference, drives the motion and hence the pressure is taken to be
zero on both of the vertical sides. In the above expression for ∂ ∂p n/
we have ny = 1 on the upper horizontal side, since the outward
normal to the boundary points in the direction of positive y. On the
lower boundary we must enter ny = −1.

TITLE   'Flow Due to a Moving Wall'           { fex201.pde }
SELECT     errlim=1e-5     spectral_colors    { Student Version }
VARIABLES     vx     vy     p
DEFINITIONS
   Lx=1.0     Ly=1.0     vx0=1e-3     visc=1e4 { Viscosity }
   dens=1e3     Re=dens*vx0*2*Ly/visc { Reynolds number }
   v=vector( vx, vy)     vm=magnitude( v) { Speed }
EQUATIONS     { Tagged by dominant variable } { For vanishing Re }
   vx: dx( p)- visc*div( grad( vx))=0
   vy: dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))=0 { Divergence term neglected }
BOUNDARIES
region 'domain'  start 'outer' (-Lx,Ly)
   natural( vx)=0   value( vy)=0   value(p)=0   line to (-Lx,-Ly) { Left }
   value( vx)=0   value( vy)=0   natural(p)=-visc*div( grad( vy))
   line to (Lx,-Ly)   natural( vx)=0   value( vy)=0   value(p)=0 { Right }
   line to (Lx,Ly)   value( vx)=vx0   value( vy)=0   { Upper }
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   natural(p)=visc*div( grad( vy))  line to close
PLOTS
   elevation( vx, vy) on 'outer' report( Re)
   contour( vx)     contour( vy)     contour( p)
   vector( v) norm
   contour( div( v))     contour( curl( v)) painted
END

The elevation plot taken on the outer boundary is useful for check-
ing that the velocity boundary conditions have been fulfilled. The
liquid evidently does not slip over the solid boundaries.

The distribution of vx shown by the plot below is extremely
simple. The velocity vector turns out to be highly parallel to the x-
axis (laminar flow), which is confirmed by the plot of vy.

The plot below suggests that ∇⋅ v  vanish everywhere. Applying
the integral definition of the divergence (pp.21,23) to a small box
parallel to the axes, we find that only the sides perpendicular to the x-
axis contribute, and with opposite signs. The plot of div(v) does not
yield exactly zero, but the contours are irregular and the values are
small compared to an estimate of the maximum possible derivative,
δ δv yx ≅ −10 3.
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Using the line integral definition of curl (p.21), we first notice that
its value must be the same everywhere. The local curl must thus equal
the average value we obtain from a line integral along the boundary,
which amounts to ( ) / ( )0 2 2 20− ⋅v L L Lx x x y = − = − −v ex0 2 5 4/ . This
result is borne out by the plot of curl(v).

Pressure-Driven Flow through a Channel

As a second elementary example we study steady flow between two
parallel walls, driven by a prescribed pressure difference δp . Since
the main velocity component will not be known beforehand, we
calculate the Reynolds number using globalmax, which yields the
largest value over the solution domain.

We shall use fex201 as a template for the following descriptor. The
natural boundary conditions are equally simple in this case, since only
ny  is non-zero on the solid boundaries. On the left and right
boundaries we specify natural(vx)=0, which means ∂ ∂v xx / = 0  on the
end faces.

This problem has a simple analytic solution8p8, i.e.

v p w yx = −
δ

η
/l

2
2 2d i,     vy = 0   
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where δp  is the pressure difference between the ends, l  the length of
the channel, and 2w its width. Since vx  is independent of x, the
pressure gradient in that direction must be constant for symmetry
reasons. The pressure p x( ) must thus be a linear function. This set of
functions may easily be shown to satisfy the PDEs and the boundary
conditions. We enter the expression for the horizontal velocity under
the notation vx_ex. The modifications to  fex201 are as follows.
TITLE     'Pressure-Driven Flow through a Channel'           { fex202.pde }
…
   Lx=1.0     Ly=1.0     visc=1e4     delp=100 { Driving pressure }
   vx_ex=delp/(2*Lx)/(2*visc)*(Ly^2- y^2) { Exact solution }
   dens=1e3     Re=dens*globalmax( vx)*2*Ly/visc
…
region 'domain'
   start 'outer' (-Lx,Ly)
   natural( vx)=0   value( vy)=0    value(p)=delp { In }
   line to (-Lx,-Ly)  value( vx)=0   value( vy)=0
   natural(p)=-visc*div( grad( vy))
   line to (Lx,-Ly) natural( vx)=0   value( vy)=0   value(p)=0  { Out }
   line to (Lx,Ly)   value( vx)=0   value( vy)=0
   natural(p)=visc*div(grad( vy))
   line to close
…
   contour( vx- vx_ex) report( globalmax( vx))
END

The plot below shows the solution for the horizontal component of
velocity, vx. The value is zero at the horizontal boundaries and takes a
maximum at mid-distance.

Comparing the contour plots of vx and vy we find that the velocity
is accurately horizontal everywhere. This is another example of
laminar flow, and the simplicity of the motion makes it obvious that
div(v) must be zero.
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The plot of the speed error (not shown here) indicates that vx is
true to about one part in 1012.

The plot below illustrates that curl(v) is non-zero everywhere,
except in the symmetry plane, where this function changes sign.

We may also calculate the vorticity from the analytic solution as
−∂ ∂v yx / . This is another example of innocent-looking, laminar flow
that proves to be rotational.
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Viscous Flow through a Constricted Channel

The following is a modification of fex181, which should make it valid
for viscous flow. Here, we have used the unit vector field which is
expedient for expressing the direction cosines ( , )n nx y  occurring in
the natural boundary conditions for p. On the input and output faces
we have specified ∂ ∂v xx / = 0 , assuming that there is negligible
change in vx close to the ends.

TITLE     'Viscous Flow through a Constricted Channel'      { fex203.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors 
VARIABLES     vx     vy     p
DEFINITIONS
   Lx=1.0     Ly=1.0     coef=0.5     visc=1e4
   delp=100 { Driving pressure }
   dens=1e3     Re=dens*globalmax( vx)*2*Ly/visc
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1) { Unit vector fields }
   nx=normal( unit_x)     ny=normal( unit_y) {Direction cosines }
{ Natural boundary condition for p: }
   natp=visc*[ nx*div( grad( vx))+ ny*div( grad( vy))]
EQUATIONS
   vx: dx( p)- visc*div( grad( vx))=0
   vy: dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))=0
BOUNDARIES
region 'domain' start 'outer' (0,Ly)
   natural( vx)=0   value( vy)=0   value( p)=delp     { In }   
   line to (0,-Ly)  value( vx)=0   value( vy)=0   natural( p)=natp
   line to (Lx,-Ly) to (2*Lx,-Ly*coef) to (3*Lx,-Ly*coef)
   natural( vx)=0   value( vy)=0   value( p)=0 { Out }
   line  to (3*Lx,Ly*coef)  value( vx)=0   value( vy)=0   natural( p)=natp
   line to (2*Lx,Ly*coef) to (Lx,Ly) to close
PLOTS
   elevation( nx, ny) on 'outer' as 'direction cosines'
   contour( vx) report(Re)     contour( vm)
   vector( v) norm     contour( p)
   contour( div( v)) painted     contour( curl( v)) painted
   elevation( vx) from (0.5*Lx,-Ly) to (0.5*Lx,Ly)
   elevation( vx) from (2.5*Lx,-Ly*coef) to (2.5*Lx,Ly*coef)
END
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The following plot of nx and ny shows how the direction cosines
change as we go along the contour.

The solution converges rapidly, and the plot of vm (below)
demonstrates that the speed indeed vanishes on the walls. It is
surprising to find, however, that the output speed is smaller than the
input value.

The next plot shows that the divergence definitely is non-zero. We
also obtain a similar indication from the two elevation plots. The
integral value reported on the bottom line is obviously equal to the
volume of liquid transported through the cross-section (per second
and meter of depth in z). The two integral values show that the fluxes
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through the cross-sections are different. In short, the solution does not
conserve mass and is definitely wrong!

The cause of this discrepancy is that we have not yet used the extra
term in the 3rd PDE that was designed to suppress div(v).

Acting on the warning received, we now introduce the term
containing div(v) in the last PDE of fex203. The numerical factor 1e4
has been found suitable by trial and error.
TITLE     'Constricted Channel with Divergence Term'      { fex203a.pde }
...
EQUATIONS
   vx: dx( p)- visc*div( grad( vx))=0
   vy: dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))- 1e4*visc/Lyˆ2*div(v)=0
...
   contour( div( v))
   elevation( natp) on 'outer'
END

From the following plot of vx we notice that the maximum speed at
the exit now is about twice that at the entrance. The plot of div(v) now
exhibits the irregular contours that characterize a vanishing function.
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The elevation plots across the channel both exhibit parabolic
velocity profiles (below). They also demonstrate the conservation of
mass and volume, because we find the two flux integral values to
agree within 0.02%.

The last plot presents the variation of natp over the entire
boundary. This expression contains two second-order derivatives and
will hence appear as a staircase function.
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Comparison with Irrotational Flow

It might be interesting to compare viscous flow through a constricted
channel with that pertaining to a velocity potential φ  (p.226). In order
to bring the boundary conditions into closer agreement we change the
speed distribution at the input, such as to produce a parabolic velocity
profile. The definition of vx0 in fex181 needs to be modified, and we
should adapt the plots to the new situation.
TITLE   'Constricted Channel, Parabolic vx0'          { fex181a.pde }
...
   vx0=4.0e-4*(Ly^2- y^2)/Ly^2 { Velocity at input end }
...
PLOTS
   elevation( vx0) from (0,-Ly) to (0,Ly)
   elevation( vx) from (Lx/2,-Ly) to (Lx/2,Ly)
   elevation( vx) from (3*Lx,-Ly) to (3*Lx,Ly)
   vector( v) norm
   contour( vx) painted     contour( vm) painted
   contour( div(v))     contour( curl(v))
END
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The elevation plots illustrate that the initially parabolic distribution
changes and finally becomes nearly flat at the end, in contrast to what
we observed in fex203a. The following vector plot confirms this.

This example shows that the behavior of viscous flow is
dramatically different from that of potential flow. It is possible,
however, to consider viscous flow through a channel as potential flow
in a region sufficiently far from the walls. The region close to the
wall, where the vorticity is large (the boundary layer), may be treated
separately.

Tangential Input Velocity

We now return to an example involving a rectangular domain. Here,
we specify a constant vertical velocity vy0  at the left face, while
keeping the other three sides closed by fixed walls. In practice, we
could impose this lateral velocity by an endless tape, driven over
rollers at constant velocity past the left face. The template for this
example is fex203a.
TITLE   'Tangential Input Velocity'           { fex204.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors
VARIABLES     vx     vy     p
DEFINITIONS
   Lx=1.0     Ly=1.0     visc=1.0
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   vy0=1e-5 { Input velocity }
   dens=1e3     Re=dens*globalmax( vx)*2*Ly/visc
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1) { Unit vector fields }
   nx=normal( unit_x)     ny=normal( unit_y) { Direction cosines }
   natp=visc*[ nx*div( grad( vx))+ ny*div( grad( vy))]
EQUATIONS
   vx: dx( p)- visc*div( grad( vx))=0
   vy: dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))- 1e4*visc/Lyˆ2*div( v)=0
BOUNDARIES
region 'domain' start 'outer' (-Lx,-Ly)
   value( vx)=0   value( vy)=0   natural(p)=natp
   line to (Lx,-Ly) to (Lx,Ly) to (-Lx,Ly)
   value( vx)= 0   value( vy)=vy0   line to close
PLOTS
   vector( v) norm report(Re)     contour( vm) 
   contour( p)     contour( div( v))     contour( curl( v)) painted
END

We again exploit a convenient feature of FlexPDE that makes any
boundary condition valid for the following segments, until modified.
For instance, natp need not be repeated for each of the sides.

The above vector plot displays a kind of circulation, centered on a
point not far from the left face. This is not circulation in the sense of
the preceding chapter, however, because another plot shows that
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curl(v) is definitely non-zero. In fact, the vorticity appears to take
opposite signs in different regions.

The contour plot of div(v) yields the irregular contours of value
zero that we usually associate with a vanishing function.

Channel with a Lateral Cavity

In fex202, the channel walls assured parallel flow. Let us now study
the case of a channel provided with a lateral cavity as shown in the
next figure. We keep a few lines from the descriptor fex204 and
modify the others as follows.

Under boundaries, five line segments will have equal boundary
conditions, and hence we may simplify by specifying those only once.
TITLE     'Channel with a Lateral Cavity'           { fex205.pde }
…
DEFINITIONS
   Lx=1.0     Ly=1.0     visc=0.1
   delp=1e-6 { Replaces vy0 }
...
region 'domain'  start 'outer' (0,Ly)
   natural(vx)=0   value( vy)=0   value(p)=delp { In }
   line to (0,0)   value(vx)=0   value(vy)=0   natural(p)=natp
   line to  (Lx,0) to (Lx,-Ly) to (2*Lx,-Ly) to (2*Lx,0) to (3*Lx,0)
   natural(vx)= 0    value(p)=0    line to (3*Lx,Ly)  { Out }
   value(vx)= 0   natural(p)=natp  line to close
PLOTS
   vector( v) norm report( Re)     contour( vm) 
   vector( v) norm  zoom(Lx,-Ly,  Lx,Ly)     contour( p)
   contour( div( v))     contour( curl(v)) painted
   elevation( vx) from (0.5*Lx,0) to (0.5*Lx,Ly)
   elevation( vx) from (1.5*Lx,-Ly) to (1.5*Lx,Ly)
   elevation( vx) from (2.5*Lx,0) to (2.5*Lx,Ly)
END

The plot of vm below shows that the flow is mainly confined to the
through part of the channel, the velocity being much lower in the
adjacent cavity. Clearly, this plot is symmetric with respect to the
plane x = 1 5. .
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Both vector plots demonstrate that circulation occurs in the cavity,
and the curl is again non-zero. The plot below clearly shows the
center of circulation.

The plot of div(v) demonstrates that the solution is compatible with
mass and volume conservation. In particular, the three elevation plots
across the channel quantitatively confirm that no mass is lost along
the stream.
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Uniform Velocity of Injection

So far we have injected fluid into a channel at uniform pressure. An
alternative would be to impose uniform input velocity, resulting in a
non-uniform pressure distribution over the input area. We shall now
solve this problem for the constricted channel (fex203).

The boundary conditions for pressure are by derivatives (natural),
except at the exit where we specify the value p = 0. To obtain the
total pressure we just add the ambient value. We now modify fex204
to obtain the following file.
TITLE   'Uniform Velocity of Injection'           { fex206.pde }
SELECT     errlim=1e-3     ngrid=1     spectral_colors
VARIABLES     vx     vy     p  { Pressure minus ambient }
DEFINITIONS
   Lx=1.0     Ly=Lx     coef=0.5     visc=1.0
   vx0=1e-5 { Input velocity }
   dens=1e3     Re=dens*vx0*2*Ly/visc
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1) { Unit vector fields }
   nx=normal( unit_x)     ny=normal( unit_y) {Direction cosines }
   natp=visc*[ nx*div( grad( vx))+ ny*div( grad( vy))]
EQUATIONS
   vx: dx( p)- visc*div( grad( vx))=0
   vy: dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))- 1e4*visc/Lyˆ2*div( v)=0
BOUNDARIES
region 'domain'  start 'outer' (0,Ly)
   value( vx)=vx0   natural( vy)=0  natural( p)=natp    { In }
   line to (0,-Ly)  value( vx)=0   value( vy)=0   natural( p)=natp
   line to (Lx,-Ly) to (2*Lx,-Ly*coef) to (3*Lx,-Ly*coef)  { Wall }
   natural( vx)=0   natural( vy)=0   value( p)=0 { Out }
   line  to (3*Lx,Ly*coef)  value( vx)=0   value( vy)=0   natural( p)=natp
   line to (2*Lx,Ly*coef) to (Lx,Ly) to close { Wall }
PLOTS
   elevation( vx) from (0,-Ly) to (0,Ly)
   elevation( vx, 0.1*dy( vx)) from (3*Lx,-Ly*coef) to (3*Lx,Ly*coef)
   elevation( p) on 'outer'     vector( v) norm report(Re)
   contour( vx)     contour( vy)     contour( vm) 
   contour( p)     contour( div( v))     contour( curl( v)) painted
END
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The contour plot of vx below illustrates the change of the initially
uniform velocity component.

The elevation plots of vx across the ends show in more detail how
the initially uniform profile modifies into a parabolic one, as is clearly
confirmed by the derivative. Obviously, the velocity component vx is
not strictly uniform over the input, but that is caused by the
discontinuity at the walls. The integrals confirm that flux is
conserved.

The elevation plot of p on the boundary demonstrates that the
pressure varies considerably over the input area, being highest near
the walls. The output pressure, however, seems to be uniform as
required.

Dynamic Similarity

We have already used the Reynolds number Re = ρ η0 0 0v L /  to assess
whether a given flow problem may be treated in terms of a linear
PDE. The factors involved, such the typical speed v0 , are of course
arbitrary to some extent. Hence, we can only expect Re to be an
order-of-magnitude indicator in this connection.
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Another application of Re is to exploit knowledge gained from
calculation or experiment to predict the flow in an enlarged or
reduced geometry – still at the same value of Re. Here, the prediction
is accurate, as we shall see.

To reveal the similarity between situations characterized by a
given value of Re, we start from the N-S vector equation. (The
additional equation (p.254 1) only arranges to make ∇⋅ =v 0 and
need not concern us here.) We thus consider the PDE

ρ ∂
∂

ρ η0 0
2 0v v v F v

t
p+ ⋅∇ − +∇ − ∇ =( )

The key to the prediction is a transformation of the variables into
non-dimensional form. The new (primed) variables may be expressed
as follows.
t t v L' /= 0   (time)        r r' /= L   (position)        v v' /= v0   (velocity)

p p v' /( )= ρ0 0
2   (pressure)        F F' /( / )= ρ0 0

2v L    ( volume force )

The new variables t ' , r' , and v'  are obviously non-dimensional,
but the reference length L and speed v0  must be identically defined in
the problems to be compared. For instance, we might choose the
maximum value of the variable, or the value for a point at the middle
of the stream. The actual values, however, would be different.

All five terms in the above N-S equation have the same dimension.
Comparing the second and fourth terms we see that (dimensionally)
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⇔

and hence that ρ0 0
2v  must have the same dimension as p. Of course,

you can also see this by expanding the dimensional expressions.
A similar comparison of the third and fourth terms leads us to an

expression for the non-dimensional variable F' .
Applying the above transformations we obtain the non-

dimensional form for the N-S equation.
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Multiplying through by L v/( )ρ0 0
2  gives us the simpler PDE

∂
∂

v v v F v'
'

( ' ) ' ' '
Re

'
t

p+ ⋅∇ − +∇ − ∇ =
1 02   

From this it is clear that the solution in terms of primed variables only
depends on the value of Re, if the boundary conditions are the same.
Knowing the solution to one such problem we can thus generate
solutions to an infinite number of problems having the same value of
Re.

Let us now explore whether two problems with similar boundary
conditions and proportional geometric dimensions have the same
primed solutions. We first modify fex206 to display the primed
variables, using vx0 and Lx as reference values. We need not
transform x and y, since the geometrical factors will be reduced
automatically on plotting. In anticipation we also calculate the mean
value of v'  (vpm) to facilitate comparison.

TITLE   'Dynamic Similarity'                 { fex206a.pde }
… { Primed variables: }
   vxp=vx/vx0     vyp=vy/vx0     vp=vector( vxp, vyp)
   vpm=magnitude( vp)     pp=p/(dens*vx0^2)
   area=area_integral(1)     vpm_mean=area_integral( vpm)/area
EQUATIONS
…
PLOTS
   vector( vp) norm report(Re)     contour( vpm) report(vpm_mean)
   contour( pp)     contour( abs( pp)/area)
END

We are now ready to compare to a problem with other parameters.
Since Re depends on four quantities, we must change at least two of
them to produce the same value. In the following descriptor, based on
fex206a, we modify three factors.
TITLE   'Dynamic Similarity, Other Parameters'         { fex206b.pde }
…
   Lx=0.1     Ly=Lx     coef=0.5     visc=0.01
   vx0=1e-6
…

If we make both scripts show the plots, enlarging the second plot
of each, we may compare corresponding figures quickly by clicking



275

on the tabs at the top. We can then proceed similarly with the other
plots.

We find that the following plot reports the same mean value for the
magnitude vpm to five digits. It is possible to transform back to
unprimed variables in order to obtain results in the usual form.

From the third plot it appears that pp varies over the same range in
the two descriptors. In order to make a more accurate comparison, we
could integrate the results. Considering that the geometrical sizes are
different (by a factor of 100), we should also divide by the area to
obtain mean values. These also turn out to be nearly equal.

We finally note that the dimensional expression for the ratio of the
inertial-to-viscous terms is

ρ
η

ρ
η

0
2

0 0
2

0

0 0
2

( ) /
/

Rev v
v
⋅∇

∇
≅ =

v L
v L

   

which means that Re is a rough measure of the importance of the non-
linear term in the PDE.
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Exercises

 Show analytically that the function vx_ex (p.260) satisfies the
PDEs and the boundary conditions.

 Verify the numeric calculation of curl(v) in fex202 using the
function vx_ex.

 Modify fex203a such as to produce a sudden constriction at x Lx= .
 Modify fex203a to produce a sudden widening of the channel at

x Lx= . Use Ly=0.4 and coef=2.0.
 Explore the results of fex206 using coef=1.0 and coef=2.0. Repeat

the solution for Lx=2.0.
 Create circular constrictions on the channel in fex205 as indicated

by the figure below. Let the minimum channel width be 0.2.



277

21   Viscous Flow past an Obstacle

We shall now study slow viscous flow in a channel containing an
obstacle. The practical difference with respect to the preceding
chapter is that we shall have to exclude a region corresponding to the
obstacle and specify boundary conditions on its surface.

Viscous Flow past a Circular Cylinder

Here, we revisit an example from the chapter on irrotational flow
(fex182, p.231). We need to add the PDEs for viscous flow and the
pertinent boundary conditions, using the convenient formulation for a
general orientation (natp) from fex203.

Empirically it has been found that natp=0 often is a sufficiently
good approximation to the full expression, at least for Re<<1. In the
next example we test this simplification by successive runs, using the
stages device. The program sets the parameter stage to be 1 in the
first run and 2 in a second run, where we use the full natp.
TITLE     'Viscous Flow past a Circular Cylinder'           { fex211.pde }
SELECT     errlim=1e-3     ngrid=1     spectral_colors     stages=2
VARIABLES     vx      vy       p
DEFINITIONS
   Lx=2.0     Ly=1.0     a=0.2     visc=1e4
   delp=100 { Driving pressure }
   dens=1e3     Re=dens*globalmax( vx)*2*Lx/visc
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1) { Unit vector fields }
   nx=normal( unit_x)     ny=normal( unit_y) { Direction cosines }
   natp=
        if stage=2 then visc*[ nx*div( grad( vx))+ ny*div( grad( vy))]  else 0
EQUATIONS
   vx: dx( p)- visc*div( grad( vx))=0
   vy: dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))- 1e4*visc/Lyˆ2*div( v)=0
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BOUNDARIES
region 'domain'  start 'outer' (-Lx,Ly)
   natural( vx)=0   natural( vy)=0    value(p)=delp { In }
   line to (-Lx,-Ly)   value( vx)=0   value( vy)=0   natural(p)=natp { Wall}
   line to (Lx,-Ly)  natural( vx)=0   natural( vy)=0   value(p)=0  { Out }
   line to (Lx,Ly)   value( vx)=0   value( vy)=0   natural(p)=natp { Wall }
   line to close
   start 'outline' (a,0) { Exclude cylinder }
   value( vx)=0  value( vy)=0   natural(p)=natp
   arc( center=0,0) angle=360 close
PLOTS
   contour( vx) report( Re)     contour( vy)
   contour( vm) painted     contour( p)
   vector( v) norm     vector(v) norm  zoom(-2*a,-2*a, 4*a,4*a)
   contour( div( v))     contour( curl( v)) painted
   elevation( vx, vy) from (-Lx,0) to (Lx,0)
END

The program runs the script in two stages. By clicking on
File,View we may easily compare the results with natp=0 to those
exploiting the full expression for natp. We only need to select the two
plots and then switch from one to the other by means of Ctrl-Shift n
(for next) and Ctrl-Shift b (for back).

The following plot for stage=2 illustrates that the speed vanishes
on the solid surfaces and that the maximum speed occurs
approximately midway between the cylinder and the wall.
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Switching between stages 1 and 2 we find no visible change of the
contours of vx, and the integral values differ only in the fourth
decimal. The variation is about as small for vm and p. For the rest of
the examples in this chapter we shall thus replace natp by 0 on the
basis of experience.

The information contained here and in the vector plots indicates
that the flow is symmetric with respect to y = 0. Thus, there is no
circulation of the liquid around the obstacle.

In addition, the above plot suggests that the speed is symmetric
with respect to x = 0, as also appears from the two vector plots of v.
The final elevation plot illustrates this symmetry in more detail.

The next figure illustrates the pressure field. We notice that there
are high values on the front side of the obstacle and negative values
on the rear side. The effect of this is to create a pressure force on the
obstacle, in addition to viscous drag.

To the above pressure values we may add the ambient pressure
(1e5), which makes the total pressure positive everywhere.
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Viscous Force on a Solid Surface

In order to gain deeper insight, we shall consider the forces on the
walls and on a solid cylinder in the channel. In an earlier chapter
(p.245) we only calculated the force due to pressure, but we must now
include the effects of viscosity. For a solid surface perpendicular to
the y-axis, the definition of viscosity directly gives us the viscous
force per unit area8p4, i.e.

f v
yx
x= η ∂
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For a solid surface of arbitrary orientation we may write the tangential
force per unit area as
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where we have used the components of the normal unit vector n. For
the Cartesian components of this force per unit area we obtain
f f tx t x= , f f ty t y=   

After having developed the expressions required, we now return to
the example of the circular cylinder to explore the forces caused by
the flow.
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We are now in a position to calculate the forces occurring in
fex211. On the parallel walls, the drag forces will only be of viscous
nature, while the obstacle is also exposed to unbalanced pressure. The
above expressions for force per unit area contain direction cosines,
and as we have already seen FlexPDE provides simple expressions
for these, referred to a boundary curve.

Instead of reading off integrals on several different elevation plots,
we prefer to use line_integral under definitions. The values obtained
can then be reported as a summary.

Evidently, there are rather many expressions related to velocities
and forces, and we will find it expedient to store them in an include
file named visc_xy.
{ Include file related to viscous flow in (x,y) } { visc_xy.pde }
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1) { Unit vector fields }
   nx=normal( unit_x)     ny=normal( unit_y) { Direction cosines }
   tx=tangential( unit_x)     ty=tangential( unit_y)
   natp=visc*[ nx*div( grad( vx))+ ny*div( grad( vy))]
   force_vt=-visc*[ (dx(vx)*nx+ dy(vx)*ny)*tx+
      (dx(vy)*nx+ dy(vy)*ny)*ty] { Viscous force }
   force_vx=force_vt*tx
   force_vy=force_vt*ty
   force_px=p*nx     { Pressure force }
   force_py=p*ny
   force_x=force_vx+ force_px
   force_y=force_vy+ force_py

This file must be saved in the same folder as the other descriptors.
The force components on the obstacle are caused both by viscosity

and by pressure. The normal and tangential vectors also have signs,
and we may verify the signs assumed by FlexPDE by plotting
(nx,ny,tx,ty). Alternatively, we may check the signs by plotting each
force component.
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Forces on a Circular Cylinder

Let us now introduce the above commands into fex211 and calculate
the various force components. Here, we employ the standard name
'outline' for the contour of the obstacle.
TITLE     'Flow past a Circular Cylinder, Forces'                { fex211a.pde }
SELECT     errlim=1e-3     ngrid=1     spectral_colors
VARIABLES     vx      vy       p
DEFINITIONS
   Lx=2.0     Ly=1.0     a=0.2     visc=1e4
   delp=100 { Driving pressure }
   dens=1e3     Re=dens*globalmax( vx)*2*Lx/visc
#include 'visc_xy.pde'
   F_wall_x=line_integral( force_vx,'outer') { Force on walls }
   F_vx=line_integral( force_vx,'outline') { Viscous force }
   F_px=line_integral( force_px,'outline') { Pressure force }
   F_x=line_integral( force_x,'outline') { Sum of x-forces }
   F_vy=line_integral( force_vy,'outline') { Viscous force }
   F_py=line_integral( force_py,'outline') { Pressure force }
   F_y=line_integral( force_y,'outline') { Sum of y-forces }
EQUATIONS
   vx: dx( p)- visc*div( grad( vx))=0
   vy: dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))- 1e4*visc/Lyˆ2*div( v)=0
BOUNDARIES
region 'domain'  start 'outer' (-Lx,Ly)
   natural( vx)=0   natural( vy)=0    value(p)=delp         { In }
   line to (-Lx,-Ly)   value( vx)=0   value( vy)=0   natural(p)=0    { natp=0 }
   line to (Lx,-Ly)  natural( vx)=0   natural( vy)=0   value(p)=0    { Out }
   line to (Lx,Ly)   value( vx)=0   value( vy)=0   natural(p)=0       { natp=0 }
   line to close
   start 'outline' (a,0) { Exclude }
   value( vx)=0  value( vy)=0   natural(p)=0         { natp=0 }
   arc( center=0,0) angle=360 close
PLOTS
   contour( vx) report( Re)     elevation( force_vx) on 'outline'
summary
   report(F_wall_x)
   report(   F_vx) report(   F_px) report(F_x)
   report(   F_vy) report(   F_py) report(F_y)
END
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The last lines assemble the integral values under the common title
summary. FlexPDE lists all results in one column as shown below.

We first notice that the drag force F_px on the cylinder due to
pressure is of the same order of magnitude as the viscous force.
Evidently, the total vertical force F_y is smaller than the drag force by
a factor of about 500, consistent with vanishing lift force due to
symmetry.

Force Equilibrium

It is also interesting to compare the forces acting on the volume of the
liquid. In addition to those listed in the above table we have the forces
due to the pressure at the left and right ends, the sum being
delp*2*Ly=200. Although the liquid accelerates locally as it flows
through various regions, the mass does not accelerate as a whole. In
other words, we expect the forces acting on the liquid to balance.

From the above table we gather that the drag force on the walls is
119.2 and that on the cylinder 78.8. The forces acting on the liquid
are the negative of these values, or in total –198.0. Thus the forces on
the liquid volume balance to within 1%. Using the Professional
Version we may reduce this error to a very small value, at the expense
of a longer run time.

Let us now calculate the force on a solid object by a simpler
method, using the following modification of fex211a.
TITLE     'Forces on a Circular Cylinder'         { fex211b.pde }
…
region 'domain'  start 'outer' (-Lx,Ly)
   natural( vx)=0   natural( vy)=0    value(p)=delp { In }
   line to (-Lx,-Ly)   natural( vx)=0   value( vy)=0   natural(p)=0
   line to (Lx,-Ly)  natural( vx)=0   natural( vy)=0   value(p)=0  { Out }
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   line to (Lx,Ly)  natural( vx)=0   value( vy)=0   natural(p)=0
   line to close
…

The difference is that we now specify essentially slip (natural)
boundary conditions on the walls. This increases the average speed
and reduces the viscous force on the wall to negligible proportions.
We thus expect the drag force on the object to balance the pressure
force on the liquid domain.

The plot of vx below shows that the speed takes its maximum near
the wall. This increase is caused by the constriction of the flow due to
the presence of the obstacle.

The drag force reported in the table below is F_x=194.2, while we
obtain delp*2*Ly=200 for the same force from the applied pressure, the
difference being about 3%. The viscous force on the wall (F_wall_x) is
evidently negligible. Using the Professional Version we again obtain
much better agreement.
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Viscous Dissipation

Motion in a viscous medium involves internal friction that will
generate heat. From an expression for the rate of change of kinetic
energy and the N-S equation one obtains8p193,9p153 for the dissipated
power per unit volume
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The following descriptor, which is a modified fex211a, explores
the energy balance by comparing the dissipated power with the rate of
work done at the entrance.
TITLE     'Flow past a Circular Cylinder, Dissipation'         { fex211c.pde }
…
   P_diss=visc*[2*dx(vx)^2+ (dy(vx)+ dx(vy))^2+ 2*dy(vy)^2]
EQUATIONS
…
PLOTS
   contour( vm) painted     contour( P_diss)
   elevation( vx*p) from (-Lx,Ly) to (-Lx,-Ly)
END

The following plot shows that the dissipated power is largest on
the solid surfaces and close to the speed maximum, which could be
expected.
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The elevation plot below permits us to compare this dissipated
power (0.0685 per unit length in z) with the expended work (0.0669)
on driving the liquid through the channel. The integral values for the
rates of dissipated energy and work evidently agree rather well.
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Drag and Lift on an Inclined Plate

Having developed formalisms for forces we can now extend the
analysis to an inclined plate, combining features of fex193 and
fex211b. The elevation plot on p.249 suggests that the expressions for
the force components, involving derivatives of vx and vy, would be
difficult to integrate because of the sharp corners. Hence, we prefer
the boundary force formalism, based on the integrated force on the
liquid volume.
TITLE     'Drag and Lift on an Inclined Plate'                       { fex212.pde }
SELECT     errlim=1e-3     ngrid=1     spectral_colors
VARIABLES     vx      vy       p
DEFINITIONS
   Lx=1.0     Ly=1.0     a=0.5     d=0.1     visc=1.0
{ Geometric parameters for inclined plate }
      alpha=30* pi/180     { Angle of attack, radians }
      si=sin( alpha)     co=cos( alpha)
      x1=-d/2*si- a/2*co     y1=-d/2*co+ a/2*si
      x2=d/2*si- a/2*co     y2=d/2*co+ a/2*si
      x3=-x1     y3=-y1     x4=-x2     y4=-y2               
   delp=1e-5 { Driving pressure }
   dens=1e3     Re=dens*globalmax( vx)*2*Lx/visc
#include 'visc_xy.pde'
EQUATIONS
   vx: dx( p)- visc*div( grad( vx))=0
   vy: dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))- 1e4*visc/Lyˆ2*div( v)=0
BOUNDARIES
region 'domain'  start 'outer' (-Lx,Ly)
   natural( vx)=0   natural( vy)=0    value(p)=delp { In }
   line to (-Lx,-Ly)   natural( vx)=0   value( vy)=0   natural(p)=0
   line to (Lx,-Ly)  natural( vx)=0   natural( vy)=0   value(p)=0  { Out }
   line to (Lx,Ly)   natural( vx)=0   value( vy)=0   natural(p)=0
   line to close
   start 'outline' (x1,y1) { Exclude }
   value( vx)=0  value( vy)=0   natural(p)=0
   line to (x2,y2) to (x3,y3) to (x4,y4) to close
PLOTS
   contour( vx) report( Re)     contour( vm) painted     vector( v) norm
   contour( p) painted
   elevation( visc*dy( vx)) from (-Lx,-Ly) to (Lx,-Ly) { Fx on ''wall'' }
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   elevation( p) from (-Lx,-Ly) to (Lx,-Ly) { Force_y on liquid }
   elevation( p) from (-Lx,Ly) to (Lx,Ly)
   elevation( -p*normal( unit_y)) on 'outer'   { Total Fy on plate }
END

Here, we let the liquid slip over the upper and lower boundaries in
order to reduce the viscous drag on the walls compared to that acting
on the obstacle.

The figure below shows the velocity distribution. The vector field
may look somewhat like that on p.249, but notice that the speed now
vanishes on the surface of the plate.

From the first elevation plot we find that the viscous force on the
lower boundary is about –1.9e-8. The force on this boundary is thus
negligible compared with the pressure force on the entrance (2.0e-5).

The second and third elevation plots, with their integrals, yield the
y-component of the force. The pressure is higher on the lower wall,
and the result is that the liquid is subjected to a lift force of about
1.98e-6, which becomes transmitted to the plate.

The following plot on the outer boundary combines the two
preceding ones on the walls. The factor normal( unit_y) eliminates the
contributions from the ends and provides signs for the major forces.
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We have thus found that the combined force from both walls is
small compared to the force (2.0*delp=2e-5) applied by the driving
pressure. The lift force is only about 10% of the drag force on the
plate, which demonstrates that an airplane does not fly well at small
speed in a highly viscous medium.

Exercises

  From fex211a it might appear that the force on the wall is equal to
that on the obstacle. Change the radius to a=0.3 to decide whether this
is true.

 Change fex211a to calculate the drag force on a bar of square
cross-section, the side length being equal to the previous diameter.

 Calculate the viscous dissipation for a square obstacle across the
channel. Compare to the work supplied at the ends of the channel.

 Repeat the preceding exercise for a bar rotated by 450 around its
axis.

 Investigate how the drag and lift forces vary with the angle of
attack (alpha) in fex212. Try 0, 20 and 40 degrees.
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22   Irrotational Flow in (ρ,z) Space

In earlier chapters we solved flow problems in ( , )x y  space. The
present software also permits us to treat certain three-dimensional
problems as two-dimensional, specifically in cases where the
geometry, the forces, and the boundary conditions are axially
symmetric. To achieve this, we need to convert the descriptors to
cylindrical coordinates, i.e. ( , , )ρ ϕ z .

For irrotational flow without circulation (p.227) the PDE required
is

∇ ≡ = + =2
2

2

2

2 0φ φ ∂ φ
∂

∂ φ
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The expression for the gradient is similar in cylindrical coordinates,
but the divergence6p82 takes a different form in ( , )ρ z , viz.
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This equation may be solved as easily as the one in ( , )x y , after
applying the boundary conditions.
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Constricted Tube

We shall first apply this equation to a problem somewhat similar to
fex181, which involved a constricted channel. The descriptor below
defines a tube of circular cross-section with a reduced radius in the
lower part. We shall neglect the effect of gravity.

In the descriptor below we declare cylindrical coordinates, now
called (r,z), in a special segment. The command ycylinder means that
we choose the previous y-axis to be the axis of symmetry.
TITLE     'Constricted Tube'           { fex221.pde }
SELECT     errlim=1e-5     ngrid=1     spectral_colors
COORDINATES     ycylinder('r','z') { Student Version }
VARIABLES     phi
DEFINITIONS
   r0=0.5     r1=1.0     L=1.0
   vz1=1.0     p1=1e5     dens=1e3
   vr=dr( phi)     vz=dz( phi)
   v=vector( vr, vz)     vm=magnitude( v)
   p=p1+ 0.5*dens*(vz1^2-vm^2)
   div_v=1/r*dr( r*vr)+dz( vz)     curl_v=dz( vr)-dr( vz)
   K1l=line_integral( 2*pi*r*(-vz)*0.5*dens*vm^2, 'upper'){ Kinetic E. }
   K1=surf_integral( -vz*0.5*dens*vm^2, 'upper')
   K0=surf_integral(-vz*0.5*dens*vm^2, 'lower')
   W1=surf_integral(-vz*p, 'upper')      { Work }
   W0=surf_integral(-vz*p, 'lower')
EQUATIONS
   (1/r)*dr( r*dr(phi))+ dzz( phi)=0 { Gravity neglected }
BOUNDARIES
region 'domain'   start 'outer' (r1,3*L)
   natural( phi)=-vz1     line to (0,3*L) { In }
   natural( phi)=0     line to (0,0)
   value( phi)=0     line to (r0,0) { Out } 
   natural( phi)=0     line to (r0,L) to (r1,2*L) to close
feature     start 'upper' (r1,3*L) line to (0,3*L) { Lines for integration }
   start 'lower' (0,0) line to (r0,0)
PLOTS
   contour( vm) painted     contour( p) painted    
   contour( curl_v)     contour( div_v)     vector( v) norm
   elevation( p) from (0,3*L) to  (0,0)     elevation( vz) on 'outer'
summary
   report(K1l) report(K1) report(K0)
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   report(W1) report(W0)
   report(W1- W0) report(K0- K1)
END

At the top we inject liquid downward at uniform speed. From the
plot below we see that the flow causes increased speed and
consequently a pressure drop as the stream narrows toward the lower
end. To imagine a 3D picture one has to rotate this figure around the
vertical axis of symmetry.

The pertinent curl component is ( )∇× v ϕ , which is perpendicular
to the ( , )ρ z  plane, pointing into the screen. We may obtain that from
the determinant expression6p83
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The contour plot of curl_v evidently yields exactly zero, which
shows that the flow is irrotational, as we could also have inferred
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from p.290 2. The plot of div_v confirms that the flow also is
divergence-free.

The energy balance in this example is worth studying. The liquid
injected at the top eventually exits at the bottom at four times higher
speed. This means that the kinetic energy of a horizontal layer of
liquid increases considerably in going from entrance to exit. The
forces acting on the liquid at the entrance and exit surfaces supply this
increased kinetic energy. The entrance pressure acts on a larger area
and the pressure is also smaller at the exit, which means that the work
done is positive.

The following figure illustrates that the pressure decreases toward
the exit.

Let us compare the kinetic energy of the mass injected during a
small time interval δ t to that ejected during the same interval. The
vertical displacement of the liquid during this time is −v tzδ . In the
definitions segment we prepare for the calculation of the kinetic
energies per unit time (K0, etc.), i.e. we have divided by δ t.

Under feature we define the two radial lines that represent the
circular ends of the liquid volume. Since we have declared cylindrical
coordinates, FlexPDE assumes that there is axial symmetry. An
automatic integral for an elevation plot along a radial line would thus
refer to the corresponding circular area.
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The FlexPDE command line_integral explicitly integrates along a
curve, given by name. We may also use surf_integral to indicate that
the integration is to be taken over a surface.

Mathematically, we wish to integrate a function f ( )ρ  over a
circular cross-section, i.e.

f d d f d d f d
R R

( ) ( ) ( )ρ ρ ϕ ρ ρ ρ ρ ϕ π ρ ρ ρ
πzz z z z= =

0 0

2

0

2

Thus we may perform this integration in two ways, either explicitly
by line_integral according to the above expression, or implicitly by
means of a surface integral (surf_integral). For the kinetic energy we
use both ways for comparison. The table below shows the results.

The first two results are identical, as expected. The last two lines
demonstrate that the work agrees with the change in kinetic energy
within about 0.5%.

Constricted Tube with a Spherical Obstacle

We next proceed to a variation of the above example, where a ball on
the symmetry axis partly blocks the flow. The changes with respect to
the fex221 descriptor mainly concern the domain section. In this
projection, we define the ball by indenting the domain by a half-circle
on the axis of symmetry.
TITLE     'Constricted Tube with a Spherical Obstacle'      { fex221a.pde }
…
DEFINITIONS
   r00=0.4     r0=0.5     r1=1.0     L=1.0
…
region 'domain'
   start 'outer' (r1,3*L)   natural( phi)= -vz1   line to (0,3*L) { In }
   natural( phi)=0   line to (0,1.5*L+r00)   natural( phi)=0
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   arc( center=0,1.5*L) angle=-180  natural( phi)=0 line to (0,0)
   value( phi)=0   line to (r0,0) { Out }
   natural( phi)=0   line to (r0,L) to (r1,2*L) to close
…

The following vector plot illustrates the geometry of the tube and
the spherical obstacle.

The elevation plot below exhibits a gap over the region of the ball,
where no data are available. On the top and bottom sides of the
obstacle we notice the effect of stagnation, leading to excess pressure.
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It may be surprising to discover that the gain in kinetic energy per
unit time from input to output is closely the same as without the
obstacle.

Exercises

  Modify fex221 by introducing a sudden constriction at half-height.
  Expand fex221 to apply to a symmetrical Venturi tube.
  Calculate the total kinetic energy of the liquid in fex221.
  Solve for the velocity field around a short, solid cylinder in a

cylindrical tube.
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23   Viscous Flow in (ρ,z) Space

There are many axially symmetric problems that FlexPDE can solve
in cylindrical coordinates. We just need to transform the PDE and the
boundary conditions accordingly.

We start with the N-S equation (p.252)
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∂

ρ η0 0
2 0v v v F v

t
p+ ⋅∇ − + ∇ − ∇ =( )   

where we use ρ0  to denote the density, in view of the possible
confusion with the radial coordinate ρ . In the case of steady flow, the
first term vanishes and we are left with
ρ η0

2 0( )v v F v⋅∇ − + ∇ − ∇ =p            

The first term we leave unexpanded until it is needed in a later
chapter. The last term looks simpler but is awkward to transform,
because the formal definition of ∇2v really is6p36
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which happens to take a very simple form in ( , )x y  space (p.253). The
result of the expansion is8p60
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where we have combined the two first derivatives into one term,
knowing that FlexPDE prefers this form.

Collecting the above terms we obtain the component PDEs in the
form
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The third PDE, including the ∇⋅v term (p.254 2), is
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For any vector V we have, in ( , )ρ z space6p82,
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This is the 3rd PDE we need for the descriptor.

Boundary Conditions

The value boundary conditions in cylindrical coordinates are similar
to those used before, but it remains to adapt the natural boundary
condition for pressure to the case of axial symmetry. This is almost
immediate, since we already have an expression for ∇2v. From the
form of the N-S equation in ( , )ρ z , we immediately find an expression
for the natural boundary condition.
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Steady Flow at Small Speeds

In this chapter we shall be concerned with small Reynolds numbers
(Re )<<1 . This means that we neglect the terms proportional to the
density ρ0 , which leaves us with the three PDEs
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The natural boundary condition for p also simplifies if we neglect
the term in ρ0 , i.e.
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Tube with Uniform Driving Pressure

In accord with our usual policy we first apply the equations to the
simplest possible case, that of laminar flow through a tube at Re<<1.
The expression vz_ex is the exact, analytical solution8p12 that we shall
use for testing the numerical accuracy.

As in Chapter 21 (pp.277ff) we switch between natp=0 and the full
expression for a comparison of results.
TITLE     'Viscous Flow in a Tube'           { fex231.pde }
SELECT     errlim=1e-3     ngrid=1     spectral_colors     stages=2
COORDINATES     ycylinder('r','z') { Student Version }
VARIABLES     vr     vz     p
DEFINITIONS
   L=1.0     r1=1.0     delp=100     visc=1e4     dens=1e3
   v=vector( vr, vz)        vm=magnitude( v)
   Re=dens*globalmax(vm)*r1/visc
   div_v=1/r*dr(r*vr)+ dz(vz)     curl_phi=dz(vr)-dr(vz)
   vz_ex=delp/(2*L* 4*visc)*(r1^2-r^2)     { Exact solution }
   natp=   if stage=2 then visc*[ 1/r*dr(r*dr(vr))- vr/r^2+ dzz(vr)]  else 0
   force_v=-visc*dr(vz)     force_p=delp*pi*r1^2
EQUATIONS
   vr: dr(p)- visc*[ 1/r*dr(r*dr(vr))- vr/r^2+ dzz(vr)]=0
   vz: dz(p)- visc*[ 1/r*dr(r*dr(vz))+ dzz(vz)]=0 { No gravity }
   p: 1/r*dr( r*dr(p))+ dzz(p)- 1e4*visc/L^2*div_v=0
BOUNDARIES
region 'domain' start 'outer' (0,-L)
   value(vr)=0   natural(vz)=0   value(p)=delp   line to (r1,-L)  { In }
   value(vr)=0   value(vz)=0  natural(p)=natp  line to (r1,L) { Wall }
   value(vr)=0   natural(vz)=0   value(p)=0   line to (0,L) { Out }
   value(vr)=0   natural(vz)=0   natural(p)=0   line to close { Axis }
PLOTS
   contour( vz) report(Re)     contour( vr)     contour( p) painted
   elevation(vz, vz_ex) from (0,0) to (r1,0)
   elevation(vz-vz_ex) from (0,0) to (r1,0) report(globalmax( vm))
   vector( v) norm
   elevation( vz) from (0,-L) to (r1,-L) { Flux… }
   elevation( vz) from (0,0) to (r1,0)
   elevation( vz) from (0,L) to (r1,L)
   elevation( force_v) from (r1,-L) to (r1,L) report(force_p)
   contour( div_v)   contour( curl_phi) painted
END
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On switching between the corresponding plots from stage=1 and
stage=2 we find no difference of importance. Hence, we shall adhere
to natp=0 for the remainder of this chapter, where Re<<1.

The plot below displays the parabolic velocity profile we have
already seen in the case of a 2D channel, only in this case we are
looking at a cross-section of axially symmetric flow. The curve for
the exact solution over-writes that of vz, and the integral values
indicate to what extent the functions are equal.

The elevation plot of the difference of the two solutions for vz
shows that the FEA solution is good to within 1 part in 1014.

The only vertical force acting on the liquid is viscous, and the
force per unit area (force_v) takes a particularly simple form in this
case. The last elevation plot automatically integrates that (constant)
quantity over the surface of the tube, taking the factor 2*pi*r into
account. The forces generated by the driving pressure (force_p) and
by the viscous drag have accurately equal magnitudes, as shown by
the reported value under the plot (not shown here).

The figure below shows that the vorticity, curlϕ ( )v , is non-zero
over the entire domain, except on the axis of symmetry. Evidently,
laminar flow need not be irrotational.
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Tube with Uniform Input Velocity

The preceding example was simple in the sense that it only involved
parallel flow. We shall now engage more terms in the equations by
imposing uniform vz0 at the input. Only a few modifications of
fex231 are necessary.

If we introduce uniform vz over the input, there will be a dis-
continuity at r=r1. The results show that FlexPDE is able to handle
this problem. Based on experience, we simplify by putting natp=0 in
this example and the following ones in this chapter.
TITLE     'Viscous Flow in a Tube, Constant Input vz'       { fex231a.pde }
SELECT     errlim=1e-4     ngrid=2     spectral_colors
COORDINATES     ycylinder('r','z')
VARIABLES     vr     vz     p
DEFINITIONS
   L=1.0e-2     r1=1.0e-2
   vz0=1e-4     visc=1.0     dens=1e3
   v=vector( vr, vz)        vm=magnitude( v)
   Re=dens* globalmax(vm)*r1/ visc
   div_v=1/r*dr(r*vr)+ dz(vz)     curl_phi=dz(vr)- dr(vz)
   unit_r=vector(1,0)     unit_z=vector(0,1)
   nr=normal( unit_r)     nz=normal( unit_z)
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   natp=0   { Simplification }
EQUATIONS
   vr: dr(p)- visc*[ 1/r*dr(r*dr(vr))- vr/r^2+ dzz(vr)]=0
   vz: dz(p)- visc*[ 1/r*dr(r*dr(vz))+ dzz(vz)]=0
   p: 1/r*dr( r*dr(p))+ dzz(p)- 1e4*visc/L^2* div_v=0
BOUNDARIES
region 'domain' start 'outer' (0,-L)
   natural(vr)=0   value(vz)=vz0   natural(p)=natp line to (r1,-L) { In }
   value(vr)=0   value(vz)=0   natural(p)=natp  line to (r1,L) { Wall }
   value(vr)=0   natural(vz)=0   value(p)=0   line to (0,L) { Out }
   value(vr)=0   natural(vz)=0   natural(p)=0   line to close { Axis }
MONITORS
   contour( vz)     elevation( vz) from (0,-L) to (r1,-L)
PLOTS
   contour( vz) report( Re)     contour( vr)     contour( p) painted
   vector( v) norm
   contour( div_v)   contour( curl_phi) painted
   elevation( vz) from (0,-L) to (r1,-L) { Fluxes }
   elevation( vz) from (0,0) to (r1,0)
   elevation( vz, -5e-3*dr( vz)) from (0,L) to (r1,L)
END

The first plot (below) shows how vz, which is constant at the
entrance, gradually changes to a distribution that looks parabolic.
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The following vector plot illustrates how the velocity finally takes
a direction parallel to the z-axis. The plot of p shows that the pressure
becomes uniform across the end.

The three elevation plots demonstrate the constancy of the flux
along the tube. The last plot (below) indicates that the derivative of vz
is linear, i.e. that the velocity profile has becomes parabolic.
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Viscous Flow by Gravity through a Funnel

Earlier, we completely ignored the influence of the gravitational field
on the flow, tacitly assuming the process to take place in a region of
zero gravity. The reason for this choice was that it is more
illuminating to consider one driving force at a time. We shall now
study a case of liquid flow driven only by gravity.

On p.297 we included a volume force F that could be used to take
gravitation into account. Let us set the z-axis to be vertical, so that
this force may be written as F gz = −ρ0 , the last factor being the
gravitational acceleration. In the following descriptor, this new term
occurs in the 2nd equation.

For the natural boundary conditions (natp) at the wall we apply the
expression from p.299 1, where Fz  now is non-zero.

TITLE   'Viscous Flow by Gravity through a Funnel'           { fex232.pde }
SELECT     errlim=1e-3     ngrid=5      spectral_colors
COORDINATES     ycylinder('r','z')
VARIABLES     vr     vz     p
DEFINITIONS
   L=1.0     r1=1.0     g=9.81     dens=1e3
   visc=1e4     Fz=-dens*g
   v=vector( vr, vz)     vm=magnitude( v)
   Re=dens*globalmax(vm)*r1/ visc
   div_v=1/r*dr(r*vr)+ dz(vz)     curl_phi= dz(vr)-dr(vz)
   unit_r=vector(1,0)     unit_z=vector(0,1)
   nr=normal( unit_r)     nz=normal( unit_z)
   natp=nz*Fz { Simplified }
EQUATIONS
   vr: dr( p)- visc*[ 1/r*dr( r*dr(vr))- vr/r^2+ dzz( vr)]=0
   vz: dz( p)- Fz- visc*[ 1/r*dr(r*dr(vz))+ dzz( vz)]=0 { Gravity }
   p: 1/r*dr( r*dr(p))+ dzz( p)- 1e4*visc/L^2*div_v=0
BOUNDARIES
region 'domain' start 'outer' (0,0)
   natural(vr)=0   natural(vz)=0   value(p)=0   line to (r1,0)   { Out }
   value(vr)=0   value(vz)=0   natural(p)=natp   line to (r1,L) to (3*r1,3*L)
   natural(vr)=0   natural(vz)=0   value(p)=0   line to (0,3*L) { In }
   value(vr)=0   natural(vz)=0   natural(p)=0   line to close
PLOTS
   contour( vz) report( Re)     contour( vr)     contour( p) painted
   vector( v) norm     contour( curl_phi) painted
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   elevation( vz) from (0,3*L) to (3*r1,3*L)
   elevation( vz, -0.5*dr(vz)) from (0,0) to (r1,0)   { Scale factor –0.5 }
END

The following contour plot of vz suggests that the velocity profile
approaches the shape of a parabola near the exit.

The next plot (p) is evidently completely different from what we
would expect from the flow produced by a pressure difference. The
latter now vanishes.
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The first elevation plot across the stream shows that the vertical
velocity vz is far from parabolic, except near the axis. The elevation
plot of vz over the exit does look parabolic, which we confirm by a
curve of the radial derivative in the same figure. We multiply by the
factor –0.5 in order to bring the derivative into the same plot frame.

Forces on the Funnel

We shall now carry the exploration of the preceding problem one step
further by calculating the forces on the funnel and by comparing that
to the driving force, which is the weight of the liquid within the
domain.

The expression for the force per unit area on a solid (p.280) may be
transformed directly to cylindrical coordinates as follows.
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where t is the tangential unit vector. For the corresponding com-
ponents we finally obtain
f f ttρ ρ= ,  f f tz t z=             

The following list shows how to modify fex232.
TITLE   'Flow by Gravity through a Funnel, Forces'         { fex232a.pde }
… 
   tr=tangential( unit_r)     tz=tangential( unit_z)
   force_vt=-visc*[( dr( vr)*nr +dz( vr)*nz)*tr
      +( dr( vz)*nr+ dz( vz)*nz)*tz]
   force_vz=force_vt*tz { Viscous force }
   force_pz=p*nz     force_z=force_vz+ force_pz
   force_g=vol_integral( -dens*g)
EQUATIONS
…
feature     start 'funnel' (r1,0) line to (r1,L) to (3*r1,3*L)
PLOTS
   elevation( force_z) on 'funnel'  report( force_g)
END
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We find the drag force by integrating over the feature named
'funnel', indicated in the plot below. The total force of gravitation on
the liquid we calculate by integrating ρg  over the volume. The
program automatically includes the volume element factor. According
to the values on the bottom line of the plot the total forces agree
within better than 1%.

Dissipation in the Funnel

As we have already discussed, viscous flow leads to the production of
heat in the liquid. For use with cylindrical coordinates, we obtain the
expression for the power of dissipation per unit volume (p.285)
simply replacing x by ρ, and y by z.
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This expression, integrated over the volume, yields the power
dissipated.

The decrease in potential energy (per unit time), as the liquid flows
downward in the gravitational field, must balance the increase in
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kinetic energy (p.293) plus dissipation. Under definitions we include
expressions for these power terms. The following are the changes
required with respect to fex232.
TITLE   'Flow by Gravity through a Funnel, Dissipation'    { fex232b.pde }
…
   K1=surf_integral( -vz*0.5*dens*vm^2, 'upper')
   K0=surf_integral( -vz*0.5*dens*vm^2, 'lower')
   P_d=visc*[ 2*dr(vr)^2+ (dz(vr)+dr(vz))^2+ 2*dz(vz)^2]
   P_diss=vol_integral( P_d) { Dissipation power }
   P_grav=vol_integral( -vz*dens*g) { Gravitational power }
EQUATIONS
…
feature
   start 'upper' (0,3*L) line to (3*r1,3*L)  { Lines for integration… }
   start 'lower' (0,0) line to (r1,0)
PLOTS
   contour(P_d) painted
   summary
   report( K1) report( K0) report( P_diss)
   report( P_grav) report( K0-K1+P_diss)
END

The plot below shows that the dissipation occurs mainly close to
the surface of the funnel, and there is a sharp maximum where the
cone meets the tube.
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The following summary lists th integral values.

The kinetic power terms, K1 and K0, are small in comparison with
the others. The last two values, which should balance, evidently do so
within about 3%.

Viscous Flow past a Sphere

We shall now study viscous flow around a spherical obstacle in a tube
with slip boundary conditions on the wall. Specifically, we shall
calculate the drag force on the sphere for later comparison to the
result of an analytic solution. The force terms on p.280 contain only
first-order derivatives, and we may simply replace the coordinates
( , )x y  with ( , )ρ z  in the expression for f t . The signs of the
components also have to be watched.

The following descriptor is similar to fex232a in several respects,
the essential differences being in the boundaries segment. We remove
the projection of the sphere from the domain by an indentation.
TITLE     'Viscous Flow around a Sphere'           { fex233.pde }
SELECT     spectral_colors
COORDINATES     ycylinder('r','z')
VARIABLES     vr     vz     p
DEFINITIONS
   L=1.0     r1=2.0     r0=0.3
   delp=1e3     visc=1e4     dens=1e3
   v=vector( vr, vz)     vm=magnitude( v)
   Re=dens*globalmax(vm)*r1/ visc
   div_v=1/r*dr(r*vr)+ dz(vz)     curl_phi=dz(vr)- dr(vz)
   natp=0   { Simplified }
   unit_r=vector(1,0)     unit_z=vector(0,1)
   nr=normal( unit_r)     nz=normal( unit_z)
   tr=tangential( unit_r)     tz=tangential( unit_z)
   force_vt=-visc*[ ( dr( vr)*nr +dz( vr)*nz)*tr
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      +( dr( vz)*nr+ dz( vz)*nz)*tz]
   force_vz=force_vt*tz { Viscous force }
   force_pz=p*nz     force_z=force_vz+ force_pz
   F_z=surf_integral( force_z, 'sphere') { Total force }
EQUATIONS
   vr: dr(p)- visc*[ 1/r*dr(r*dr(vr))- vr/r^2+ dzz(vr)]=0
   vz: dz(p)- visc*[ 1/r*dr(r*dr(vz))+ dzz(vz)]=0 { No gravitation }
   p: 1/r*dr( r*dr(p))+ dzz(p)- 1e4*visc/L^2*div_v=0
BOUNDARIES
region 'domain'   start 'outer' (0,-L)
   natural(vr)=0   natural(vz)=0   value(p)=delp   line to (r1,-L)   { In }
   value(vr)=0   natural(vz)=0   natural(p)=natp   line to (r1,L) { Wall }
   natural(vr)=0   natural(vz)=0   value(p)=0   line to (0,L) { Out }
   value(vr)=0   natural(vz)=0   natural(p)=0   line to (0,r0) { Axis }
   value(vr)=0   value(vz)=0   natural(p)=natp { Ball }
      arc(center=0,0) angle=-180
   value(vr)=0   natural(vz)=0   natural(p)=0   line to close { Axis }
feature     start 'sphere' (0,r0)  arc( center=0,0) angle=-180
MONITORS     contour( vm) painted report(F_z) report(pi*r1^2*delp)
PLOTS
   contour( vz) report(Re)
   contour( vm) painted report(F_z) report(pi*r1^2*delp)
   contour( p) painted     vector( v) norm
   contour( div_v)     contour( curl_phi) painted
END

The plot of vm below confirms that the speed vanishes on the
surface of the sphere.
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We have included a comparison with the force due to the driving
pressure, which evidently is 2.4% higher than the value obtained by
integration.

The following contour plot of p shows that most of the pressure
variation occurs close to the sphere. This variation is an order of
magnitude larger than the driving pressure applied between the ends.

Comparison with an Analytic Solution

There is a classical analytic solution by Stokes to the problem of a
spherical obstacle in a stream of viscous liquid for Re<<1. The
boundary conditions are different, however, in that the liquid is
unbounded in space. We shall now consider that situation, in order to
prepare for a detailed comparison with the FEA results.

The analytic solution8p109 due to Stokes is available in spherical
coordinates ( , )R θ  as follows.
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where θ is the angle to the symmetry axis (z) and r0 the radius of the
sphere. In the second member of each expression we have rewritten
the trigonometric functions in terms of cylindrical coordinates ( , )ρ z .

Transforming the velocity components as well into cylindrical
coordinates we have
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and for the pressure ( p0 being the ambient pressure)
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The drag force on the sphere is given by
D r vz= 6 0 0πη   

In order to compare the FEA results to this analytic solution we
must adapt the boundary conditions. The exact solution assumes that
the space for the liquid is unbounded, both radially and axially, and
that the axial velocity at infinite distance is vz0. In the preceding
example, however, the liquid was conducted through a tube, the ball
being on its axis.

For the comparison, let us introduce boundary conditions that are
identical for the two solutions. To achieve this, we use the exact
solution as the value boundary condition in the FEA descriptor. With
this strategy, the complication of infinite space does not arise. We
need to modify fex233 as follows.
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TITLE     'Viscous Flow Past a Sphere, Comparison'        { fex233a.pde }
…
   vz0=1e-3 drag=6*pi*visc*r0*vz0 { Due to Stokes }
   rad=sqrt( r^2+ z^2) { rad=R }
   vsr=vz0*z/rad*( 1- 3*r0/2/rad+ r0^3/2/rad^3)
   vst=vz0*r/rad*( -1+ 3*r0/4/rad+ r0^3/4/rad^3)
   vr_ex=vsr*r/rad+ vst*z/rad     vz_ex=vsr*z/rad- vst*r/rad
   p_ex=-visc*3/2*vz0*r0/rad^2*z/rad
EQUATIONS
…
region 'domain'   start 'outer' (0,-L)
   value(vr)=vr_ex   value(vz)=vz_ex   value(p)=p_ex
   line to (r1,-L) to (r1,L) to (0,L) to (0,r0)
   arc(center=0,0) angle=-180 line to close
feature
   start 'sphere' (0,-r0) arc( center=0,0) angle=180
PLOTS
   contour( vz) report( Re)
   contour( (vr- vr_ex)/globalmax( abs(vr)))
   contour( (vz- vz_ex)/globalmax( abs(vz))) report(F_z) report(drag)
   contour( (p- p_ex)/globalmax( abs(p)))
END

In this descriptor we plot the relative deviation from the Stokes
solutions, using the globalmax command.
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The above plot shows that the maximum relative error in the case
of vz is about 0.1%, but the largest values occur in a small region of
the domain. The agreement is roughly 1% for vr and p.

The drag force obtained by integration (F_z) agrees within about
1% with that given by Stokes. The Professional Version will yield
much better agreement.

Exercises

  Show analytically that the solution vz_ex in fex231 (with vr=0 and
a linear function for pressure) satisfies the PDEs and the boundary
conditions.

  Run fex231 again with the parameters L=r1=1e-3, delp=1.0, and
visc=1.0. 

  Modify fex232a to study the flow through a straight tube under the
influence of gravity only. Restore the plots from fex232.

  Change fex233 and fex233a to zero velocity conditions at the tube
wall.
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24   Seeping through Porous Materials

The resultant flow through a porous solid, such as sand or soil, may
be modeled as distributed leakage through narrow, meandering
channels. In most practical cases, the thickness of these channels
would be small enough to ensure Re<<1, even for liquids of modest
viscosity, such as water. This mode of flow is known as seeping or
percolation.

Percolation in (x,y) Space

As we have seen in the beginning of the preceding chapter, the
average speed in a tube is proportional to the pressure difference. If
we generalize to flow through a porous solid, we could write9p223

v = − ∇
k p
η

  

where k is the permeability to flow, which we assume to be constant
in space.

For this velocity field, we obtain

∇× = − ∇ ×∇ =v k p
η

0

which vanishes since the mixed derivatives in this expression cancel.
Seeping flow through a porous material under these conditions is thus
irrotational. If we assume that there is no source term, the divergence
( )∇⋅ v  must also vanish.

This means that we can use the auxiliary function φ  to express the
velocity components, as we did on p.226.

v
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In a practical calculation, we would want to specify boundary
conditions in terms of pressure. To obtain a second PDE involving p
we may take the divergence of p.316 1, assuming constant η k .

∇ = − ∇⋅ =2 0p
k
η v   

We shall now apply these equations to the seeping of water
through a block of concrete. The descriptor below refers to a cross-
section of the block, which extends far in the directions of ±z. The
two faces on the top and to the right are water-tight. The left face is
also watertight except over the middle third, while the bottom is open.

We furthermore let the left face be exposed to water from a big
reservoir, so that the pressure over the permeable part of the face is
constant at delp+p0, thus higher than the ambient pressure p0 at the
bottom.

On the right, impermeable boundary we specify natural(phi)=0,
which ensures vx = 0 according to p.316 2. Similar considerations
apply to the other walls. Over the seeping window, we use p.316 1
to specify a non-zero value for vx , remembering that the normal is
opposite to the direction of the x-axis.

As regards the pressure, we can only assume that it varies little
close to the impermeable walls, hence that natural(p)=0.
TITLE   'Percolation through a Concrete Block'           { fex241.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors
VARIABLES     phi     p               { Student Version }
DEFINITIONS
   L=1.0     visc=1e-3     k=1e-12
   p0=1e5     delp=1e3
   vx=dx( phi)     vy=dy( phi)     v=vector( vx, vy)     vm=magnitude( v)
EQUATIONS                  
   phi: div( grad( phi))=0
   p: div( grad( p))=0
BOUNDARIES
region 'domain' start 'outer' (0,0)
   value( phi)=0   value( p)=p0  line to (L,0)  { Bottom }
   natural( phi)=0   natural( p)=0   line to (L,L) to (0,L) to (0,2/3*L)
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   natural( phi)=k/visc*dx( p)   value( p)=delp+p0 { Seeping window }
   line to (0,L/3)
   natural( phi)=0   natural(p)=0 line to close
PLOTS
   contour( phi)     contour( p) painted     contour( vm) painted
   vector( v) norm     contour(div( v))     contour( curl( v))
   elevation( p) on 'outer'
END

The figure below shows the velocity field. Clearly, the boundary
conditions are satisfied.

Although this plot looks plausible, we did not include the force of
gravitation, which is of appreciable magnitude in this problem. In
fact, there is no obvious way of including any volume force in these
equations.

Percolation in (x,y) by Navier-Stokes PDE

The simplest model of percolation does not take gravity into account.
We may include this volume force by using the Navier-Stokes
equation (p.252) in a novel manner. For small values of Re, the N-S
equation takes the form (p.256 2)
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In other applications in this chapter, the wall or the obstacle
provided friction, which retarded the flow. In the case of a porous
substance, the friction is present all over the volume, and the
additional effect of a wall is of minor importance. Thus we apply slip
boundary conditions on the walls.

The viscosity η  occurs only in the 3rd term, which we may now
replace by the percolation force. From p.316 1 we obtain
∇ = −p k( )η v as the expression for the viscous volume force. With
the gravity force included, the Navier-Stokes PDE for percolation
(small Re) thus simplifies into
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The 3rd PDE (p.254 2) becomes

∇ −∇⋅ − ∇ ⋅ =∇
2 0p fF v     

The expression for natp (p.256 1) using the new PDE is

∂ ∂ ηp n n F n F k n v n vx x y y x x y y/ ( / )= + − +d i            

where we have replaced∇2vx  by ( / )1 k vx , and so on.
The descriptor based on these new principles is not much more

complicated than before, as is evident from the following. We define
the force per unit volume, Fgy, and use it in three lines. In the last of
these, we arrange for the average pressure over the seeping window to
be the same as in the preceding descriptor. Of course, gravitation
makes it vary with y. Over the same window, we put vx equal to an
expression derived in the same way as the natural condition used
before. At the walls we apply natural boundary conditions by natp.
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TITLE     'Percolation in (x,y) by Navier-Stokes'           { fex242.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors
VARIABLES     vx     vy     p
DEFINITIONS
   L=1.0     visc=1e-3     k=1e-12     dens=1e3
   p0=1e5     delp=1e3     Fgy=-dens*9.81  { Gravity }
   v=vector( vx, vy)     vm=magnitude(v)
   unit_x=vector(1,0)     unit_y=vector(0,1)
   nx=normal( unit_x)     ny=normal( unit_y)
   natp=nx*0+ ny*Fgy- visc/k*( nx*vx+ ny*vy)
EQUATIONS                  
   vx: dx( p)+ visc/k*vx=0
   vy: dy( p)- Fgy+ visc/k*vy=0
   p: div( grad( p))- 1e4*visc/L^2*div( v)=0
BOUNDARIES
region 'domain' start 'outer' (0,0)
   natural( vx)=0   natural( vy)=0    value( p)=p0  line to (L,0)  { Bottom }
   value( vx)=0   natural( vy)=0   natural( p)=natp   line to (L,L) { Slip: }
   natural( vx)=0   value( vy)=0   natural( p)=natp  line to (0,L)
   value( vx)=0   natural( vy)=0   natural( p)=natp   line to (0,2/3*L)
   value( vx)=-k/visc*dx( p)   value( vy)=0
      value( p)=p0+delp+(L/2-y)*Fgy   line to (0,L/3) { Seeping window }
   value( vx)=0   natural( vy)=0 natural(p)=natp line to close
PLOTS
   contour( vx)     contour( vy)
   vector( v) norm      contour( vm) painted
   contour( p) painted     elevation( p) on 'outer'
   contour( div( v))     contour( curl( v)) painted
   elevation( vx, vy) on 'outer' { Verification of BCs }
END

The vector plot of the velocity (not shown here) is rather similar to
what we have just seen. The following contour plot of the pressure,
however, exhibits some new features. The maximum value occurs at
the upper edge of the seeping window, and we find the lowest value
in the upper-right corner. The range of variation of p is nearly ten
times as large as before.
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The elevation plot of p below shows the difference even more
clearly. Here, the input pressure appears as a ramp between the points
5 and 6. The steep decrease between points 2 and 3 is an evidence for
the gravity term.

Let us now make a direct comparison between the above
descriptors by defining Fgy to be zero in fex242, giving the new file
the name fex242a. The contour plot of p becomes as follows.
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We find that the above plot of p is almost identical to what we saw
when running fex241. The same is true for the corresponding
elevation plots. This is remarkable in view of the difference in the
PDEs as well as in the boundary conditions.

Percolation in (ρ,z) Space

The relations analogous to those on p.316 for cylindrical coordinates
are

vρ
∂ φ
∂ρ

=  ,     v
zz =

∂ φ
∂

,      or v = ∇φ            

The assumption of vanishing divergence leads to

∇⋅ = + =
F
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KJ + =v 1 1 0

2

2ρ
∂
∂ρ

ρ ∂
∂ ρ

∂
∂ρ

ρ ∂ φ
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∂ φ
∂ρv v

z z
zd i

which is the familiar Laplace equation in cylindrical coordinates
(p.290 3).

In ( , )ρ z the pressure equation thus becomes
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We shall now apply these equations to an arrangement consisting
of a vertical tube, pushed into a pot containing concrete, with more
concrete being loaded inside the tube. The tube is then topped off
with water to provide driving pressure. The figure below illustrates
the axially symmetric geometry of the porous solid.

We formally assume that the liquid seeping through to the exit is
pumped back to the central tube, in order to keep levels unchanged. In
this case there is no water source inside the material.
TITLE   'Percolation through a Porous Material'           { fex243.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors
COORDINATES     ycylinder('r','z')
VARIABLES     phi     p
DEFINITIONS
   L=0.1     r1=0.1     r2=0.2     r3=0.3
   p0=1e5     delp=1e3     visc=1e-3     k=1e-12
   vr=dr(phi)     vz=dz(phi)
   v=vector( vr, vz)     vm=magnitude(v)
   div_v=1/r*dr(r*vr)+ dz(vz)     curl_phi=dz(vr)-dr(vz)
EQUATIONS                  
   phi: 1/r*dr( r*dr(phi))+ dzz(phi)=0
   p: 1/r*dr( r*dr(p))+ dzz(p)=0    
BOUNDARIES
region 'domain' start 'outer' (r1,4*L)      
   natural(phi)=-k/visc*dz(p)   value(p)=p0+delp   line to (0,4*L)  { In }
   natural(phi)=0   natural(p)=0   line to (0,0) to (r3,0)  to (r3,2*L)
   value(phi)=0   value(p)=p0   line to (r2,2*L) { vr=0 }         { Out }
   natural(phi)=0   natural(p)=0   line to (r2,L) to (r1,L) to close
PLOTS
   contour( phi)     vector( v) norm     contour( vm) painted
   contour( p)     contour( div_v)     contour( curl_phi)
END

The boundary conditions are nearly obvious. The first one stems
from two equations (pp.316, 322), which in ( , )ρ z  combine to yield

∂φ
∂ η

∂
∂z

v k p
zz= = −
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As regards the output side we should note that both the potential
phi and the pressure only occur in derivatives and may be assigned an
arbitrary value (zero).

The flow is driven by a slight overpressure on the central part, and
the figure below shows how the speed decreases as the water
approaches the free surface to the right. This is entirely a geometric
effect, due to the increasing annular area at larger radius.

We notice from the plots that phi and p are proportional. The
equations on p.316 and p.322 in fact give us

∇ + ∇ = ∇ +
F
HG

I
KJ =φ

η
φ

η
k p k p 0

which means that the expression in parentheses must be a constant,
which could be defined to be zero.

Percolation in (ρ,z) by Navier-Stokes

We may also take gravity into account as we just did in ( , )x y . By
analogy with p.319 1, the N-S equation takes the form (p.298 1)
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The third PDE for pressure remains as in fex241. The expression
for natp (p.319 3) must be revised, however, and by direct analogy
we obtain
∂ ∂ ηρ ρ ρ ρp n n F n F k n v n vz z z z/ ( / ) ( )= + − +   

TITLE     'Percolation by Navier-Stokes'           { fex244.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors
COORDINATES     ycylinder('r','z')
VARIABLES     vr     vz     p
DEFINITIONS
   L=0.1     r1=0.1     r2=0.2     r3=0.3     dens=1e3
   p0=1e5     delp=1e3     visc=1e-3      k=1e-12     Fgz=-dens*9.81
   v=vector( vr, vz)     vm=magnitude(v)
   div_v=1/r*dr(r*vr)+ dz(vz)     curl_phi=dz(vr)-dr(vz)
   unit_r=vector(1,0)     unit_z=vector(0,1)
   nr=normal( unit_r)     nz=normal( unit_z)
   natp=nz*Fgz- visc/k*( nr*vr+ nz*vz)
EQUATIONS                  
   vr: dr(p)+ visc/k*vr=0
   vz: dz(p)- Fgz+ visc/k*vz=0
   p: 1/r*dr( r*dr(p))+ dzz(p)- 1e4*visc/L^2*div_v=0
BOUNDARIES
region 'domain'  start 'outer' (r1,4*L)
   value(vr)=0   natural(vz)=0   value(p)=p0+delp   line to (0,4*L)   { In }
   value(vr)=0   natural(vz)=0   natural(p)=0   line to (0,0) { Symmetry }
   natural(vr)=0   value(vz)=0   natural(p)=natp   line to (r3,0)
   value(vr)=0   natural(vz)=0   natural(p)=natp   line to (r3,2*L)
   value(vr)=0   natural(vz)=0   value(p)=p0   line to (r2,2*L)   { Out }
   value(vr)=0   natural(vz)=0   natural(p)=natp   line to (r2,L)
   natural(vr)=0   value(vz)=0   natural(p)=natp   line to (r1,L)
   value(vr)=0   natural(vz)=0   natural(p)=natp   line to close
PLOTS
   vector( v) norm     contour( vm) painted
   contour( p)     contour( div_v)     contour( curl_phi)
   elevation( vr, vz) on 'outer'
END
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As seen from the following vector plot, the streamlines are much
like those we just obtained by the simpler approach. The maximum
speed is higher, however, no doubt due to gravity acting on the liquid
in the central tube, above half-height.

The plot of p below is indeed different from before. The pressure
maximum is now at the bottom of the pot.
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We may again compare the two formalisms by putting Fgz=0 in the
definitions section. The contour plots of pressure then become very
similar. The vector plots of the velocity are also much the same as
before. A sensitive test is to compare the plots of vm, where we note
that the volume integral now is 4.789e-8 against 4.820e-8 in fex243.
The agreement is remarkable, considering that the PDEs and the
boundary conditions are different.

Exercises

  Modify fex242 for a concrete block open for seeping over one-
third of the top face, where the pressure is 1e3 over the ambient
value. The rest of the top and the sides are impermeable while the
bottom face is open. Repeat the calculation without gravity.

  Modify fex244 to study the seeping flow through a porous
material in a straight, vertical tube.

  Adapt fex244 again to study seeping flow in a cylinder of concrete
with the height equal to the diameter, measuring 1.0. Let a circular
area, 0.5 in diameter at the bottom, be open to an overpressure of 1e4
while the rest of the bottom is impermeable. The cylindrical and top
surfaces are assumed to be open to the liquid at ambient pressure.
Compare to the velocity field in a gravity-free environment.
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25   Viscous Flow at Re>>1 in (x,y)

This book mostly concerns steady flow, where the velocity field does
not change with time. This of course requires that the boundary
conditions be independent of time. In this type of flow, fluid particles
seem to follow sheets as they travel through space and hence the flow
is often referred to as laminar. At large values of Re, however, a
transition to a turbulent state is known to occur, which is time-
dependent and random. When we find that FEA procedures for steady
flow do not converge we assume that time-dependent analysis would
be required and that it would exhibit turbulent flow.

We have seen that the Navier-Stokes equation for steady flow
( / )∂ ∂v t = 0  may be written (p.253 2)
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Since we can no longer neglect inertial terms proportional to ρ0, we
must transform the first term explicitly into derivatives as follows.
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With this expression for the first term, the N-S vector equation reads
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We also need to include the second term in the pressure equation
(p.254 2) as follows.

∇ + ∇⋅ ⋅∇ −∇⋅ − ∇ ⋅ =2
0

0
2 0p C

L
ρ η( )v v F v

We shall find that C = 104  is a suitable numeric value. Having already
expanded the expression within square brackets, we easily recast the
second term to obtain derivatives.
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The above expressions are non-linear in the dependent variables.
For instance, the last equation involves vx  multiplied by its derivative.
Analytic solutions are usually not available in such cases, which
means that numerical calculation is the standard solution procedure.

We have thus obtained the three PDEs required, and it only
remains to specify the natural pressure boundary condition in its
complete form (p.256 1). The expression in the last term we have in
fact already dealt with.
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We notice that the expressions within parentheses on the last line
occur several times in the PDEs, which we may utilize to simplify the
descriptor.

Viscous Flow in a Channel

In this first example, we shall study the simple case of flow between
two parallel walls. We utilize the stages feature, which permits us to
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chain several solutions with successive values of the input velocity.
The first value of the input velocity vx0 will be 1e-6, and so on.

We extend the channel far toward the exit, so that the flow
becomes reasonably parallel there.

By using the functions vxdvx, etc., which occur repeatedly, we
make the expressions for natp and the PDEs somewhat shorter.

In order to shorten the run as far as possible we limit the number of
nodes at 400. In addition, we tentatively put natp=0 and dens_term=0
in the 3rd PDE. The full expressions are second-order and are expected
to grow strongly with Re. Hence, we verify the solution in the last
stage by applying the full expressions.

In this and following examples we let FlexPDE decide about the
error limit and the initial gridding.

From this chapter onwards, the run times will generally be longer
than before, and it might be wise to run the files over coffee breaks.
TITLE   'Uniform Velocity of Injection at Re>>1'           { fex251.pde }
SELECT     stages=7     nodelimit=400
    spectral_colors     { Student Edition }
VARIABLES     vx     vy     p  { Pressure minus ambient }
DEFINITIONS
   Lx=6     Ly=1.0      visc=1.0 { Input velocities: }
   vx0=staged( 1e-6, 1e-4, 1e-3, 3e-3, 1e-2, 2e-2, 2e-2)
   dens=1e3     Re=dens*vx0*2*Ly/visc
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1)
   nx=normal( unit_x)     ny=normal( unit_y)
   vxdvx=vx*dx( vx)+ vy*dy( vx)     vxdvy=vx*dx( vy)+ vy*dy( vy)
   natp=  if stage=7 then
               visc*[ nx*div( grad( vx))+ ny*div( grad( vy))]
              -dens*[ nx*vxdvx+  ny*vxdvy] else 0
   dens_term=  if stage=7 then dens*( dx( vxdvx)+ dy( vxdvy)) else 0
EQUATIONS
   vx: dens*vxdvx+ dx( p)- visc*div( grad( vx))=0
   vy: dens*vxdvy+ dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))+ dens_term- 1e4*visc/Ly^2*div( v)=0
BOUNDARIES
region 'domain'  start 'outer' (0,Ly)
   value( vx)=vx0   natural( vy)=0  natural( p)=natp     { In }
   line to (0,-Ly)    value( vx)=0   value( vy)=0   natural( p)=natp { Wall }
   line to (Lx,-Ly) natural( vx)=0   value( vy)=0   value( p)=0 { Out }
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   line  to (Lx,Ly)  value( vx)=0   value( vy)=0   natural( p)=natp { Wall }
   line to close 
PLOTS
   contour( vx/vx0) report( Re)
   vector( v) norm report(Re)     contour( vm) painted
   contour( p) painted     contour( div( v))     contour( curl( v)) painted
   elevation( vx) from (0,-Ly) to (0,Ly)
   elevation( vx) from (Lx/2,-Ly) to (Lx/2,Ly)
   elevation( vx) from (Lx,-Ly) to (Lx,Ly)
END

For comparison at successive speeds we plot vx/vx0, which should
be the same in the regime of small Re. Any change of the initial
pattern must be due to the non-linear term.

The following contour plots show the velocity ratio vx/vx0 for the
first and the last stages, the latter corresponding to Re = 40 . Using
File,View to display all the plots we notice that the pattern around the
symmetry plane changes after the first stages.

        

The following elevation plot shows the variation of vx across the
entrance. The numerical integral is slightly smaller than the expected
flux vx0*2*Ly, because of the vanishing velocity at the walls.

The corresponding profiles of vx at the middle and at the end
approach a parabolic shape, with closely the same flux. After
specifying a small errlim, we shall find even better results with the
Professional Version, at the expense of longer run times.
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Viscous Flow past a Circular Cylinder

We shall next revisit the example on p.277, proceeding to larger
values of Re. Here, we let the liquid slip on the wall, thereby reducing
the drag force on the wall to a very small value. Also, we solve over
only one-half of the real domain, using appropriate boundary
conditions on the symmetry plane.

In view of the fact that the definition of Re is rather arbitrary in this
case, we use a modified reference value, MRe, which relates to the
size of the obstacle.
TITLE     'Flow past a Circular Cylinder'           { fex252.pde }
SELECT     stages=7     spectral_colors
VARIABLES     vx     vy     p
DEFINITIONS
   Lx=1.0     Ly=1.5     r0=0.2     visc=1.0
   delp=staged( 1e-6, 1e-3, 1e-2, 3e-2, 0.1, 0.2, 0.2)   { Pressures}
   dens=1e3     MRe=dens*globalmax( vx)*2*r0/visc   { Modified Re }
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1)
   nx=normal( unit_x)     ny=normal( unit_y)
   vxdvx=vx*dx(  vx)+ vy*dy( vx)     vxdvy=vx*dx( vy)+ vy*dy( vy)
   natp=    if stage=7 then visc*[ nx*div( grad( vx))+ ny*div( grad( vy))]
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      -dens*[ nx*vxdvx+  ny*vxdvy]   else 0
   dens_term=    if stage=7 then dens*( dx( vxdvx)+ dy( vxdvy))  else 0
EQUATIONS
   vx: dens*vxdvx+ dx( p)- visc*div( grad( vx))=0
   vy: dens*vxdvy+ dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))+ dens_term- 1e4*visc/Ly^2*div( v)=0
BOUNDARIES
region 'domain'  start 'outer' (-Lx,Ly)
   natural( vx)=0  natural( vy)=0   value( p)=delp { In }
   line to (-Lx,0)   natural( vx)=0   value( vy)=0   natural(p)=0   { Symm. }
   line to (-r0,0)   value(vx)=0   value(vy)=0   natural(p)=natp
      arc( center=0,0) angle=-180 to (r0,0) { Cylinder }
   natural( vx)=0   value( vy)=0   natural(p)=0 { Symmetry }
   line to (5*Lx,0)   natural( vx)=0   natural( vy)=0   value(p)=0  { Out }
   line to (5*Lx,Ly)   natural( vx)=0   value( vy)=0   natural(p)=natp
   line to finish       { Wall }
PLOTS
   contour( vm) painted report( MRe)    contour( vx/delp) report( MRe)
   vector( v) norm     vector( v) norm zoom(0,0, 3*r0,3*r0) report( MRe)
   contour( p) painted report( MRe) report( delp*2*Ly/MRe)
   elevation( vx) from (-Lx,0) to (-Lx, Ly)
   elevation( vx) from (5*Lx,0) to (5*Lx, Ly)
   contour( abs( dens*vxdvx/visc/div( grad(vx)))/(5*Lx*Ly) /MRe)
END
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The above plot shows the speed vm at MRe≅23. The left-right
symmetry we found at small MRe (p.278) is evidently broken. There
is now an extended region in the wake of the cylindrical obstacle
where the speed is very small.

At small MRe, the N-S equation is linear, and the velocity
components are hence proportional to the pressure gradient. If we use
File,View to compare the present contour plots of vx/delp, we find that
the flow pattern starts to change significantly above MRe≅1.

On the pressure plot we also report the ratio of the drag force to the
value of MRe. For small velocities we expect this to be constant, but
here we find that it rises noticeably after the first stage. This trend is
similar to that reported experimentally for a spherical object8p111.

The next figure zooms on a region to the right of the obstacle,
where we find evidence for slowly circulating flow. This circulation is
entirely absent in the result for small MRe.

The last plot shows the absolute value of the ratio of inertial-to-
viscous terms, divided by the domain area and by MRe. In view of the
equation on p.275 we expect this average ratio to be about equal to
unity. The plotted data are very scanty, but in essence the integrals
bear out this relation.
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Viscous Boundary Layer

It is well known that the Bernoulli equation (pp.226ff) describes the
flow rather well at large Re, even if it assumes that the liquid slips
freely over solid surfaces. This fact led to the idea that the liquid is
locked to the solid only over a thin layer, i.e. that the tangential speed
increases rapidly from zero to a large value, approximately corre-
sponding to the speed associated with the slip condition.

Let us explore whether we can find evidence for such a boundary
layer phenomenon using the N-S equation. The file below is based on
fex251, and we have introduced slip ( )∂ ∂v yx = 0  on the boundaries,
except for a length of 2a  on the lower wall.
TITLE     'Viscous Boundary Layer'           { fex253.pde }
SELECT     stages=7     spectral_colors     nodelimit=400
VARIABLES     vx     vy     p
DEFINITIONS
   Lx=3.0     Ly=3.0     a=0.3     visc=1e-3
   delp=staged( 1e-11, 1e-10, 1e-9, 3e-9, 1e-8, 3e-8, 3e-8)
   dens=1e3     Re=dens*globalmax( vx)*2*Ly/visc
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1)
   nx=normal( unit_x)     ny=normal( unit_y)
   vxdvx=vx*dx(  vx)+ vy*dy( vx)     vxdvy=vx*dx( vy)+ vy*dy( vy)
   natp=    if stage=7 then visc*[ nx*div( grad( vx))+ ny*div( grad( vy))]
      -dens*[ nx*vxdvx+  ny*vxdvy]   else 0
   dens_term=    if stage=7 then dens*( dx( vxdvx)+ dy( vxdvy))  else 0
EQUATIONS
   vx: dens*vxdvx+ dx( p)- visc*div( grad( vx))=0
   vy: dens*vxdvy+ dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))+ dens_term- 1e4*visc/Ly^2*div( v)=0
BOUNDARIES
region 'domain'  start 'outer' (-Lx,Ly)
   natural( vx)=0   value( vy)=0   value(p)=delp  { In }
   line to (-Lx,0)   natural( vx)=0   value( vy)=0   natural(p)=natp   { Slip }
   line to (-a,0)
   value(vx)=0   value(vy)=0   natural(p)=natp   line to (a,0)  { No slip }
   natural( vx)=0   value( vy)=0   natural(p)=natp   line to (4*Lx,0)
   natural( vx)=0   value( vy)=0   value(p)=0   { Out }
   line to (4*Lx,Ly)   natural( vx)=0   value( vy)=0   natural(p)=natp
   line to close
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PLOTS
   contour( vx) painted report( Re)     contour( p) painted
   vector( v) norm     contour( div( v))     contour( curl( v)) painted
   elevation( vx) from (0,0) to (0,Ly) report( Re)
END

The following plot shows that the flow pattern at Re≅170 spreads
out in the direction of motion and that the speed rises steeply close to
the sticky part of the wall.

The next plot gives us a more detailed view of the way vx varies
across the boundary layer.
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It is possible to make a rough estimate of the thickness δ  of the
boundary layer from a simplified N-S equation8p101, known as the
Euler equation. The result is

δ = Ly
1

Re
For the last stage of the calculations this gives us a thickness of 0.23,
which is about what we can read from the above plot.

Viscous Flow past a Rotating Cylinder

Next we shall study the flow past a rotating cylinder, using slip
conditions on the outer walls. Starting from fex251, we modify and
add lines to obtain the descriptor below. As we increase the driving
pressure and hence the speed of flow, we must also increase the speed
of rotation omega in order to obtain a sequence of roughly similar
velocity fields close to the cylinder.
TITLE     'Flow across a Rotating Cylinder'           { fex254.pde }
SELECT     stages=6     spectral_colors
VARIABLES     vx     vy     p
DEFINITIONS
   Lx=2.0     Ly=2.0     r0=0.3     visc=1.0
   delp=staged( 1e-5, 1e-3, 3e-3, 0.01, 0.03, 0.03)     omega=3*delp
   dens=1e3     MRe=dens*globalmax( vx)*2*r0/visc
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1)
   nx=normal( unit_x)     ny=normal( unit_y)
   vxdvx=vx*dx(  vx)+ vy*dy( vx)     vxdvy=vx*dx( vy)+ vy*dy( vy)
   natp=    if stage=6 then visc*[ nx*div( grad( vx))+ ny*div( grad( vy))]
      -dens*[ nx*vxdvx+  ny*vxdvy]   else 0
   dens_term=    if stage=6 then dens*( dx( vxdvx)+ dy( vxdvy))  else 0
   int_circ=line_integral( tangential( v),'circle') { Circulation }
   fx=delp*2*Ly { Force on liquid }
EQUATIONS
   vx: dens*vxdvx+ dx( p)- visc*div( grad( vx))=0
   vy: dens*vxdvy+ dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))+ dens_term- 1e4*visc/Ly^2*div( v)=0
BOUNDARIES
region 'domain'  start 'outer' (-Lx,Ly)



338

   natural( vx)=0   natural( vy)=0   value( p)=delp   { In }
   line to (-Lx,-Ly)   natural( vx)=0   value( vy)=0   natural( p)=natp { Slip }
   line to (3*Lx,-Ly)   natural( vx)=0   natural( vy)=0   value( p)=0   { Out }
   line to (3*Lx,Ly) natural( vx)=0   value( vy)=0   natural( p)=natp  { Slip }
   line to close                                
start 'outline' (r0,0) { Exclude cylinder }
   value( vx)=-omega*y   value( vy)=omega*x   natural(p)=natp
   arc( center=0,0) angle=360 close
feature
   start 'circle' (3*r0,0) arc( center=0,0) angle=360
PLOTS
   contour( vx) painted report(MRe)
   contour( vm) painted     vector( v) norm report(int_circ) report( fx)
   vector( v) norm zoom(-2*r0,-2*r0, 4*r0,4*r0)
   contour( p) painted     elevation( vx/2/Ly) from (3*Lx,-Ly) to (3*Lx,Ly)
   elevation( -p*normal( unit_y)) on 'outer' report(delp*2*Ly) { p.288 }
END

The following contour plot shows the final distribution of the speed
vm, corresponding to MRe=19.

In the above plot for the highest pressure, we notice that the region
of small speed, which was symmetrical for small MRe, now has
shifted downstream.

The vector plot below reports a positive value for the circulation
(p.243) on the circle enclosing the obstacle. This value is evidently
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smaller than what we obtain by integrating over the cylinder itself
(ω πr r0 02 0 051⋅ = . ).

A trivial consequence of the circulation ( Γ ) is increased speed in
the lower part of the plot and a corresponding decrease above the
cylinder. This is similar to what we obtained by imposing a
circulating field on a solution for a scalar potential (p.245).

Since the liquid slips over the walls, the horizontal force f x  on the
cylinder (per unit length) must be closely equal to the driving force on
the liquid at the left end. For the final stage we thus have
f Lyx = =2 012* * .delp .

We obtain the y-component of the force on the liquid from the
combined elevation plot on 'outer'. The pressure integral for the
highest value of MRe yields -0.27. This negative force on the liquid
implies a downward force on the cylinder.

Estimating the force on the cylinder by means of the Kutta-
Joukovski formula we find
f vy x= − ≅ − ⋅ ⋅ = −ρ 0

310 0 014 0 041 057Γ . . . ,
taking the average value of vx0  from the elevation plot. The result is
much larger than the pressure integral for f y , not surprising in view
of the different conditions assumed in the K-J theory.
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Inspecting the results for all stages we discover that the vertical
force is much smaller than the drag force for MRe << 1 and increases
to about 2.3 times the drag at the highest value.

Viscous Flow past an Inclined Plate

Using the same PDEs as in recent examples, we may now revisit that
of an inclined plate in an initially parallel stream. We need to modify
fex254 as follows, using parts of fex212 (p.287).
TITLE     'Flow past an Inclined Plate, Forces'           { fex255.pde }
SELECT     stages=6     spectral_colors
VARIABLES     vx     vy     p
DEFINITIONS
   Lx=1.5     Ly=1.5     a=1.0     d=0.2
   alpha=30*pi/180     { Angle of attack, radians }
   si=sin( alpha)     co=cos( alpha)
   x1=-d/2*si- a/2*co     y1=-d/2*co+ a/2*si
   x2=d/2*si- a/2*co     y2=d/2*co+ a/2*si
   x3=-x1     y3=-y1     x4=-x2     y4=-y2               
   visc=1.0     delp=staged(1e-5, 0.03, 0.1, 0.2, 0.4, 0.4)
   dens=1e3     MRe=dens*globalmax( vx)*a/visc
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1)
   nx=normal( unit_x)     ny=normal( unit_y)
   vxdvx=vx*dx(  vx)+ vy*dy( vx)     vxdvy=vx*dx( vy)+ vy*dy( vy)
   natp=    if stage=6 then visc*[ nx*div( grad( vx))+ ny*div( grad( vy))]
      -dens*[ nx*vxdvx+  ny*vxdvy]   else 0
   dens_term=    if stage=6 then dens*( dx( vxdvx)+ dy( vxdvy))  else 0
EQUATIONS
   vx: dens*vxdvx+ dx( p)- visc*div( grad( vx))=0
   vy: dens*vxdvy+ dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))+ dens_term- 1e4*visc/Ly^2*div( v)=0
BOUNDARIES region 'domain'  start 'outer' (-Lx,Ly)
   natural( vx)=0   natural( vy)=0    value(p)=delp   { In }
   line to (-Lx,-Ly)   natural( vx)=0   value( vy)=0   natural(p)=natp { Slip }
   line to (4*Lx,-Ly)  natural( vx)=0   natural( vy)=0   value(p)=0    { Out }
   line to (4*Lx,Ly)   natural( vx)=0   value( vy)=0   natural(p)=natp { Slip }
   line to close
   start 'outline' (x1,y1) { Exclude plate }
   value( vx)=0  value( vy)=0   natural(p)=natp
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   line to (x2,y2) to (x3,y3) to (x4,y4) to close
PLOTS
   contour( vx/delp) report(MRe)     contour( vm) painted report(MRe)
   vector( v) norm zoom( -a/2,-a,  2*a,2*a)
   contour( p) painted report(delp*2*Ly) { Force_x }
   elevation( -p*normal( unit_y)) on 'outer' report(delp*2*Ly) { p.288 }
END

There are several points to note in the results of this run. The
smallest driving pressure yields MRe<<1, and the corresponding
velocity plots are essentially left-right symmetric. As delp increases,
the velocity contours extend to the right and a region of small
velocities appears in the wake. The plot below shows this
phenomenon for the final stage at MRe≅62.

In the vector plot below we notice more details concerning the
region of small speed just to the right of the plate. The flow lines
indicate full circulation in the wake.
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The plot below demonstrates that the pressure at large MRe
becomes higher under the airfoil, which partly explains the lift force.
The plot also reports the force on the liquid domain, which should be
equal to the drag force on the slab.

From the combined integral in the elevation plot (below) we obtain
the lift force. For MRe≅62 it becomes 0.67, or only 56% of the drag.



343

The viscosity of air is five orders of magnitude smaller than in the
above example, the ensuing speeds being correspondingly higher, and
we may thus expect lift to dominate in the aerodynamic case.

Viscous Flow past an Airfoil

Before leaving the subject of lift on an obstacle we shall study a more
realistic case, viz. that of an airfoil. This example is mainly a
reminder that FlexPDE allows you to trace rather complicated shapes.

Under definitions we define the geometrical parameters of the
airfoil, assumed cylindrical. Three arcs are sufficient for creating a
symmetric shape. The radius of curvature is positive when the center
is to the left of the curve, with respect to the direction in which it is
traced.
TITLE     'Flow past an Airfoil'            { fex256.pde }
SELECT     stages=6     spectral_colors
VARIABLES     vx     vy     p
DEFINITIONS
   Lx=1.0     Ly=1.0     a=0.4     d=0.1*a
{ Geometric parameters for inclined airfoil: }
   alpha=30*pi/180     { Angle of attack, radians }
   si=sin( alpha)     co=cos( alpha)
   x1=-a*co- d*si     y1=a*si- d*co { New definitions }
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   x2=a*co     y2=-a*si
   x3=-a*co+ d*si     y3=a*si+ d*co
   visc=1.0     delp=staged(1e-4, 0.03, 0.1, 0.2, 0.4, 0.4)
   dens=1e3     MRe=dens*globalmax( vx)*a/visc
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1)
   nx=normal( unit_x)     ny=normal( unit_y)
   vxdvx=vx*dx(  vx)+ vy*dy( vx)     vxdvy=vx*dx( vy)+ vy*dy( vy)
   natp=    if stage=6 then visc*[ nx*div( grad( vx))+ ny*div( grad( vy))]
      -dens*[ nx*vxdvx+  ny*vxdvy]   else 0
   dens_term=    if stage=6 then dens*( dx( vxdvx)+ dy( vxdvy))  else 0
EQUATIONS
   vx: dens*vxdvx+ dx( p)- visc*div( grad( vx))=0
   vy: dens*vxdvy+ dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))+ dens_term- 1e4*visc/Ly^2*div( v)=0
BOUNDARIES region 'domain'  start 'outer' (-Lx,Ly)
   natural( vx)=0   natural( vy)=0    value(p)=delp   { In }
   line to (-Lx,-Ly)   natural( vx)=0   value( vy)=0   natural(p)=natp { Slip }
   line to (4*Lx,-Ly)  natural( vx)=0   natural( vy)=0   value(p)=0    { Out }
   line to (4*Lx,Ly)   natural( vx)=0   value( vy)=0   natural(p)=natp { Slip }
   line to close  
   start 'airfoil' (x1,y1)   { Exclude }
   value( vx)=0   value( vy)=0   natural(p)=natp
   arc( radius=6*a) to (x2,y2)
   arc( radius=6*a) to (x3,y3) arc( radius=1.006*d)   to close
PLOTS
   elevation( nx) on 'airfoil'    { Direction cosine }               
   contour( vx/delp) report(MRe)     contour( vm) painted
   vector( v) norm  zoom(-2*a,-2*a,  4*a,4*a) report(MRe)
   elevation( -p*normal( unit_y)) on 'outer' report(delp*2*Ly) { p.288 }
END

The first plot is just a test of the shape of the airfoil. It shows the
variation of the direction cosine along the border, and the resulting
curve should be continuous on the front surface. The present choice of
1.006*d as the smaller radius of curvature turns out to yield com-
patible directions at point 1.

The following figure is a zoomed vector plot of the velocity. The
flow lines show that there is circulation in the wake, but not as
pronounced as in the case of the slab.
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From the integral value on the last elevation plot we gather that the
lift now exceeds the drag for the largest MRe.

Exercises

  Introduce the pressure difference delp between the ends of the
channel in fex251 instead of the input velocity vx0. Use a suitable
number of stages and values up to delp=0.5.

  Using fex251 as a template, put vx equal to the analytic expression
for vx_ex in fex202. Furthermore, put vy=0 and p=-delp/3*x+ 2*delp/3.
Make contour plots of the left members of the PDEs to show that this
solution remains valid even at very large Re.

  Reduce the width of the channel in fex251 to one-half over the first
half of its length, using the same input velocities as before.

  Exploit the inherent symmetry of fex203a to halve the solution
domain. Write a staged descriptor that extends calculations Re>>1.

  Deform the obstacle in fex252 into a cylinder of ellipsoidal cross-
section. Let the diameter in the direction of the x-axis be 2*a.

  Explore the effects of changing the angle of attack in fex255 to
zero, then to 600.

  Modify fex256 to compare with the case where the airfoil is turned
through 180 degrees.
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26   Viscous Flow at Re>>1 in (ρ,z)

Let us now consider a few examples of steady, axially symmetric flow
at high speed. The PDEs for this case were developed in a previous
chapter (p.297). We found that the Navier-Stokes equation could be
written
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The first term of this equation may now be expanded as follows.
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which yields the first two Navier-Stokes PDEs in their final form
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For the third equation we had
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and it only remains to expand the term containing ρ0 . We already
have an expression for ρ0 ( )v v⋅∇  above, and it suffices to take the
divergence according to the definition for cylindrical coordinates
(p.290 1).
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Hence, the third PDE may be written
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We also need the complete expression for the natural boundary
condition for the pressure. From p.256 we recall the formula
∂ ∂ η ρp n/ = ⋅ + ⋅∇ − ⋅ ⋅∇n F n v n v v2

0 a f
(omitting the term with the time derivative). We have just dealt with
the expression within square brackets, so the result is almost
immediate.
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Parabolic Velocity Injection into a Tube

As a first application we change fex251 from flow in a channel to
flow in a tube. Using fex231 as a template, we now include the terms
proportional to ρ0  for high Re as follows. In order to avoid a dis-
continuity of vx at the input we introduce parabolic input velocity. For
shorter run times we use nodelimit. In the last stage we verify the
agreement with the full formalism.
TITLE     'Parabolic Velocity Injection into a Tube'           { fex261.pde }
SELECT     stages=8     spectral_colors
COORDINATES     ycylinder('r','z')   { Student Version }
VARIABLES     vr(1e-3)     vz(1e-3)     p(1e-3)     { Threshold }
DEFINITIONS
   L=2.0     r1=1.0     visc=1.0     dens=1e3
   vz00=staged(1e-6, 1e-3, 3e-3, 0.01, 0.03, 0.06, 0.1, 0.1)
   vz0=vz00*(1-(r/r1)^2)    { Parabolic input velocity }
   v=vector( vr, vz)     vm=magnitude( v)
   Re=dens*globalmax( vm)*r1/visc
   div_v=1/r*dr(r*vr)+ dz(vz)     curl_phi=dz(vr)-dr(vz)
   unit_r=vector(1,0)     unit_z=vector(0,1)
   nr=normal( unit_r)     nz=normal( unit_z)
   vrdvr=vr*dr(vr)+ vz*dz(vr)     vrdvz=vr*dr(vz)+ vz*dz(vz)
   natp=   if stage=8 then  visc*nr*[1/r*dr(r*dr(vr))- vr/r^2+ dzz(vr)]
    +visc*nz*[1/r*dr(r*dr(vz))+ dzz(vz)]- dens*[nr*vrdvr+  nz*vrdvz]   else 0
   dens_term=  if stage=8 then  dens*[1/r*dr(r*vrdvr)+dz( vrdvz)]   else 0
EQUATIONS
   vr: dens*vrdvr+ dr(p)- visc*[ 1/r*dr(r*dr(vr))- vr/r^2+ dzz(vr)]=0
   vz: dens*vrdvz+ dz(p)- visc*[ 1/r*dr(r*dr(vz))+ dzz(vz)]=0
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   p: 1/r*dr( r*dr(p))+ dzz(p)+ dens_term- 1e4*visc/L^2*div_v=0
BOUNDARIES
   region 'domain'  start  'outer' (0,0)
   natural(vr)=0    value(vz)=vz0   natural(p)=natp   line to (r1,0) { In }
   value(vr)=0   value(vz)=0   natural(p)=natp   line to (r1,L)  { Wall }
   natural(vr)=0   natural(vz)=0   value(p)=0   line to (0,L) { Out }
   value(vr)=0   natural(vz)=0   natural(p)=0   line to close { Axis }
PLOTS
   contour( vz/vz00) report( Re)     contour( vr)
   contour( p) painted     vector( v) norm
   elevation( vz) from (0,0) to (r1,0) report(Re) { Flux }
   elevation( vz) from (0,L/2) to (r1,L/2) report( Re) { Flux }
   elevation( vz) from (0,0) to (r1,0) report(Re) { Flux }
   elevation( p) from (0,0) to (r1,0) report(Re) { Force_z }
   elevation( visc*dr(vz)) from (r1,0) to (r1,L) { Viscous force }
END

Inspecting the plots of vz/vz00 for increasing Re by means of
File,View we find that there is virtually no change over the range of
Re from 1e-5 to 100. The results for the tube look similar to those for
the channel (p.260). The vector plots indicate parallel flow, the
distribution of vz over the cross-section remains parabolic, and the
flux is closely constant along the tube.

The next plot of the pressure reveals that this mode of flow
corresponds to linear variation of p along the tube, and the same
remains true for all values of Re.
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The last two elevation plots demonstrate the balance of driving
force and viscous force.

Jet into a Liquid

The next example illustrates the behavior of a thin pencil of liquid as
it enters a tube containing liquid of the same kind. Much of the fex261
descriptor remains valid, and the changes required should be clear
from the list below. This script requires the Professional Version,
although the nodelimit is only 800.
TITLE     'Jet into a Liquid'           { fex262.pde }
SELECT     ngrid=20     stages=4     spectral_colors
   nodelimit=800 { Professional Version }
COORDINATES     ycylinder('r','z')     
VARIABLES     vr      vz     p
DEFINITIONS
   L=3.0     r1=1.0     r0=r1/20     visc=1.0     dens=1e3
   delp=staged( 1e-3, 100, 200, 300) { Replaces vz0 }
   v=vector( vr, vz)     vm=magnitude( v)
   Re=dens*globalmax( vm)*r1/visc
   div_v=1/r*dr(r*vr)+ dz(vz)     curl_phi=dz(vr)-dr(vz)
   unit_r=vector(1,0)     unit_z=vector(0,1)
   nr=normal( unit_r)     nz=normal( unit_z)



351

   vrdvr=vr*dr(vr)+ vz*dz(vr)     vrdvz=vr*dr(vz)+ vz*dz(vz)
   natp= visc*nr*[1/r*dr(r*dr(vr))- vr/r^2+ dzz(vr)]
       +visc*nz*[1/r*dr(r*dr(vz))+ dzz(vz)]- dens*[nr*vrdvr+  nz*vrdvz]
EQUATIONS
   vr: dens*vrdvr+ dr(p)- visc*[ 1/r*dr(r*dr(vr))- vr/r^2+ dzz(vr)]=0
   vz: dens*vrdvz+ dz(p)- visc*[ 1/r*dr(r*dr(vz))+ dzz(vz)]=0
   p: 1/r*dr( r*dr(p))+ dzz(p)+ dens*[1/r*dr(r*vrdvr)+dz( vrdvz)]
   -1e4*visc/L^2*div_v=0
BOUNDARIES
region 'domain'  start 'outer' (0,0)
   value(vr)=0   natural(vz)=0   value(p)=delp   line to (r0,0)   { In }
   value(vr)=0   value(vz)=0   natural(p)=natp
   line to (r0,L/4) to (r1,L/4) to (r1,L)
   natural(vr)=0   natural(vz)=0   value(p)=0   line to (0,L) { Out }
   value(vr)=0   natural(vz)=0   natural(p)=0   line to finish
PLOTS
   contour( vz) painted report( Re)     contour( vr)     contour( p) painted
   vector( v) norm     contour( div_v)     contour( curl_phi) painted
END

The character of the flow changes dramatically after stage 1. In the
last stage, at Re ≅ 250 , the stream forms a long brush in the wider
cylinder (below).
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The corresponding vector plot shows that the axially symmetric
circulation involves almost all of the volume in the wider part of the
tube.

Viscous Flow past a Sphere

We shall now revisit the problem of a ball exposed to parallel flow
(fex233). Again we may reuse some of the code in fex261 as follows.

Under definitions, we define a modified Reynolds number MRe,
based on the diameter of the ball, rather than the diameter of the tube.
This is convenient for comparison with experimental data. On the
wall of the tube we apply slip conditions.
TITLE     'Viscous Flow past a Sphere at Large Re'           { fex263.pde }
SELECT     stages=7     spectral_colors
COORDINATES     ycylinder('r','z')
VARIABLES     vr     vz     p
DEFINITIONS
   L=3.0     r1=3.0     r0= 0.1
   visc=1.0     dens=1e3  
   vz0=staged( 1e-5,1e-3, 0.01, 0.02, 0.03, 0.04, 0.045)    { Input values }
   MRe=dens*vz0*2*r0/ visc { Modified Re }
   v=vector( vr, vz)     vm=magnitude( v)
   div_v=1/r*dr(r*vr)+ dz(vz)     curl_phi=dz(vr)-dr(vz)
   unit_r=vector(1,0)     unit_z=vector(0,1)
   nr=normal( unit_r)     nz=normal( unit_z)
   vrdvr=vr*dr(vr)+ vz*dz(vr)     vrdvz=vr*dr(vz)+ vz*dz(vz)
   natp= visc*nr*[1/r*dr(r*dr(vr))- vr/r^2+ dzz(vr)]
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      +visc*nz*[1/r*dr(r*dr(vz))+ dzz(vz)]- dens*[nr*vrdvr+  nz*vrdvz]
   drag_S=6*pi*visc*r0*vz0 { After Stokes for small MRe }
EQUATIONS
   vr: dens*vrdvr+ dr(p)- visc*[ 1/r*dr(r*dr(vr))- vr/r^2+ dzz(vr)]=0
   vz: dens*vrdvz+ dz(p)- visc*[ 1/r*dr(r*dr(vz))+ dzz(vz)]=0
   p: 1/r*dr( r*dr(p))+ dzz(p)+ dens*[1/r*dr(r*vrdvr)+dz( vrdvz)]
             -1e4*visc/L^2*div_v=0
BOUNDARIES
region 'domain' start(0,-L)       
   natural(vr)=0   value(vz)=vz0   natural(p)=natp   line to (r1,-L)  { In }
   value(vr)=0   natural(vz)=0   natural(p)=natp   line to (r1,2*L) { Wall }
   natural(vr)=0   natural(vz)=0   value(p)=0   line to (0,2*L) { Out }
   value(vr)=0   natural(vz)=0   natural(p)=0   line to (0,r0) { Axis }
   value(vr)=0   value(vz)=0   natural(p)=natp
      arc( center=0,0) angle=-180
   value(vr)=0   natural(vz)=0   natural(p)=0   line to close
PLOTS
   contour( vz/vz0)     contour( vm) painted report( MRe) 
   contour( p) painted     vector( v) norm
   contour( div_v)     contour( curl_phi) painted
   elevation( p/drag_S) from (0,-L) to (r1,-L) report(MRe)    { Force_z }
END

The above contour plot of vm shows the speed distribution in the
last stage of the calculation. The low-speed region extends far toward
the exit.
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The ratio of the force obtained by FEA to that due to Stokes is
particularly interesting, because experimental data for this ratio are
available as a function of MRe. We obtain the force on the sphere
from the final elevation plot of pressure. There we plot p/drag_S,
which yields force/drag_Stokes after integration.

The first stage, for MRe<<1, reports a drag force that is about 1%
larger than what we obtain from the Stokes formula. The latter is
based on a parallel velocity vz0 at infinite distance, however, and the
small deviation is probably caused by the limited size of our domain.

At higher speeds, this ratio increases to reach 1.84 at MRe=9
(figure below), which means that the FlexPDE results are in
reasonable agreement with experimental data8p111.

Exercises

 Reverse the direction of flow in fex262.
 Using fex232 as a template, superimpose a pressure difference on

gravity so as to produce upward flow. First study the low-pressure
range where the velocity goes to zero, then use a pressure high
enough to correspond to Re=100.

 Modify fex263 to incorporate a cylindrical obstacle with its length
equal to its diameter.

 Modify fex263 by replacing the sphere with a cone of height equal
to the diameter. Try both orientations.
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27   Transient Viscous Flow at Re<<1

In previous chapters we have been concerned with steady motion of
liquids. We shall now study a few cases of time-dependent flow in the
regime of small Reynolds number (Re << 1).

Let us start with the time-dependent form of the Navier-Stokes
equation (p.252 1), which was based on Newton’s law of motion.
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Here, we have separated the mass-acceleration term from the force
terms by brackets. Since Re << 1 we neglect the non-linear part,
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The third PDE for pressure (p.254 2) similarly becomes

∇ −∇⋅ − ∇ ⋅ =2
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Analogously, the natural boundary condition for pressure (p.256 1)
may be written (for Re<<1)

∂ ∂ η ρ ∂ ∂p n n F n F n v n v v tx x y y x x y y n/ /= + + ∇ + ∇ −2 2
0d i

The last term, −ρ ∂ ∂0 v tn / , may be omitted on a fixed boundary.
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Transient Flow due to a Moving Wall in (x,y)

Our first example is related to fex201 (p.257). The liquid is
constrained by two walls, one stationary and one moving to the right
at constant speed, starting at time t = 0. Before that instant, the entire
volume is at rest.

Time-dependent problems require three new descriptor features,
highlighted in the following descriptor. For the error estimate it is
necessary to provide some coarse indication about the range of the
dependent variables (see Help, Threshold).

In the segment initial values we need to specify values for the
dependent variables at t = 0. We also need to declare the problem to
be time-dependent, and this is expressed by the time command. The
statement under time specifies that the calculations are to start at time
zero and to be continued up to a maximum value of 5e-2.

Finally, the plot segment includes a line beginning by for t=. It
obviously lists the times at which we want plots. Since the last plot
time should be the same as the last calculation time, we may use
endtime to avoid entering a different value by oversight.
TITLE   'Transient Flow due to a Moving Wall, Re<<1'  { fex271.pde }
SELECT     spectral_colors  { Student Version }
VARIABLES     vx( threshold=1e-5)     vy(1e-5)     p(1e-5)    
DEFINITIONS
   Lx=1.0     Ly=1.0     vx0=1e-3     visc=1e4
   dens=1e3     Re=dens*vx0*2*Lx/visc { Reynolds number }
   v=vector( vx, vy)     vm=magnitude( v)
INITIAL VALUES
   vx=0     vy=0     p=0 { For t<=0 }
EQUATIONS     { For Re<<1 }
   vx: dens*dt(vx)+ dx( p)- visc*div( grad( vx))=0
   vy: dens*dt(vy)+ dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))- 1e4*visc/Ly^2*div(v)=0
BOUNDARIES { Normal velocity vn=0 on boundary }
region 'domain' start 'outer' (-Lx,Ly)
   natural( vx)=0   value( vy)=0   value(p)=0   line to (-Lx,-Ly)
   value( vx)=0   value( vy)=0   natural(p)=-visc*div( grad( vy))  { Wall }
   line to (Lx,-Ly)   natural( vx)=0   value( vy)=0   value(p)=0 
   line to (Lx,Ly)   value( vx)=vx0   value( vy)=0   { Wall }
   natural(p)=visc*div( grad( vy))   line to close
TIME
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   from 0 to 5e-2
PLOTS
   for t=1e-4, 1e-3, 2e-3, 5e-3, 1e-2, 2e-2, endtime
   elevation( vx) from (0,-Ly) to (0,Ly) report( Re)
   contour( vx) painted     vector( v) norm   contour( p) painted 
END

The plot below displays the variation of the horizontal velocity at
t=0.05, recorded along a central line.

There is an analytic solution9p191 in terms of Fourier series that
could be used for comparison. At large times we would expect to
recover the linear result from fex201.

Transient Flow Due to a Localized Force

Let us next consider the flow caused by a vertical volume force Fy
acting from t = 0 at the center of the domain. We may imagine this
force to be generated by a laser beam heating the liquid over a thin
cylinder along the z-axis, providing buoyancy. We disregard,
however, the buoyancy force on the cooler liquid being transported
away from the center.

In order to reduce the run time we distribute the force in a Gaussian
way, rather than specify a constant value inside a circular cylinder,
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which would create a space discontinuity. We stop the heating after
part of the run by means of the discontinuous function ustep.
TITLE     'Transient Flow Due to a Localized Force'           { fex272.pde }
SELECT     spectral_colors
VARIABLES     vx(1e-9)     vy(1e-9)     p(1e-5)  { Thresholds }       
DEFINITIONS
   Lx=1.0     Ly=1.0     visc=100     dens=1e3
   rad=sqrt(x^2+y^2) { Radius }
   Fy=1e-2*exp(-rad^2/0.1^2)*ustep( 0.1- t) { Force }
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1) { Unit vector fields }
   nx=normal( unit_x)     ny=normal( unit_y) { Direction cosines }
   natp=ny*Fy { Simplified }
   Re=dens*globalmax(vm)*2*Lx/visc { Reynolds number }
   P_diss= { Power dissipation }
      vol_integral( visc*[ 2*dx(vx)^2+ (dy(vx)+ dx(vy))^2+ 2*dy(vy)^2] )
   E_k=vol_integral( 1/2*dens*vm^2) { Kinetic energy }
   Q=E_k/P_diss
INITIAL VALUES
   vx=0     vy=0     p=0
EQUATIONS     
   vx: dens*dt( vx)+ dx( p)- visc*div( grad( vx))=0
   vy: dens*dt( vy)- Fy+ dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))- dy(Fy)- 1e4*visc/Ly^2*div(v)=0
BOUNDARIES
region 'domain' start 'outer' (-Lx,-Ly)  point value(p)=0
   value( vx)=0   value( vy)=0   natural(p)=natp
   line to (Lx,-Ly)  to (Lx,Ly) to (-Lx,Ly) to close
TIME
   from 0 to 1.0
PLOTS
   for t=1e-3, 0.01, 0.03, 0.1, 0.2, 0.3, 0.6, endtime
   contour( Fy) painted     contour( p) painted
   vector( v) norm report(Re) report(P_diss) report(E_k) report(Q)
   history( Fy)     history( E_k) report(visc)
END

The following vector plot shows the velocity at an intermediate
time, before the force has been interrupted. The maximum speed is
just above the center and there are regions of circulation to the left
and right of the volume being heated. While the heating is on, the
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velocity component vy is mostly positive and increasing in the central
region.

In the definitions segment we prepared to calculate the total kinetic
energy (per unit depth of the domain), and also the total power of
viscous dissipation (P_diss, p.285). We have combined these to form
a ratio Q, analogous to the quality of a resonant cavity.
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The above figure is a history plot displaying the variation of the
kinetic energy versus time. Evidently, the accumulated energy
increases steadily while the force is on, but after the latter is reduced
to zero it gradually decreases. This obviously means that the residual
motion of the fluid for t > 0 1.  dissipates the kinetic energy stored.

It is instructive to extend the above problem to a liquid of much
smaller viscosity, but still in the regime of Re<<1. In the next
descriptor, only the viscosity value is different.
TITLE     'Transient Flow Due to a Localized Force'         { fex272a.pde }
…
   Lx=1.0     Ly=1.0     visc=0.3     dens=1e3
…

The new plot of E_k is shown below.

While the Q-value in the preceding case was much smaller than
unity, it is now about 8.8. The above curve demonstrates the striking
fact that the major part of the kinetic energy remains at the end of the
run (1.0 s).
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Heat Transport by Conduction and Convection

A common case of transient flow is natural convection, where a non-
uniform temperature induces flow by buoyancy. In order to treat that
kind of problem, we need to include the temperature as a dependent
variable. As a first step in this development, we study a combination
of heat transport by forced convection (liquid motion) and by
conduction.

We are already somewhat familiar with convection from the
preceding example. Heat conduction was briefly treated on p.120 in
Deformation and Vibration. The fundamental PDE of heat conduc-
tion, in the case of a stationary medium5p10, is
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where λ  is the thermal conductivity, T the temperature, h the heating
power per unit volume, ρ0 the mass density, and cp the specific heat
capacity.

This is valid for a stationary volume element. In a moving medium
the time derivative must allow for the volume element traveling along
the stream, just as in the analysis of viscous motion (p.252). If T is a
function of ( , , )t x y , we obtain
DT
Dt

T
t

T
x

d x
dt

T
y

d y
dt

T
t

T
x

v T
y

v T
t

Tx y= + + = + + = + ⋅∇
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

v

Substituting the expression for this new derivative we obtain

∇⋅ − ∇ − + + ⋅∇ =( )λ ρ ∂
∂

ρT h c T
t

c Tp p0 0 0v                                               

or for constant conductivity λ
λ

ρ ρ
∂
∂

∂
∂

∂
∂0

2

0
0

c
T h

c
T
t

v T
x

v T
yp p

x y∇ + − − − =       

Let us demonstrate simultaneous transport by the following
example. We define a temperature distribution by an expression under
initial values. Furthermore, we impose vertical liquid flow at the
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boundaries by suitable conditions. Then we expect the hot region to
spread by conduction while it travels vertically (natural convection).
TITLE     'Conduction and Convection'           { fex273.pde }
SELECT     spectral_colors
VARIABLES     vx(1e-5)     vy(1e-5)     p(1e-5) { Thresholds }
   temp(1e-3) { Temperature excess }
DEFINITIONS
   Lx=1.0     Ly=1.5     visc=1e2     dens=1e3
   cond=0.5     rcp=3e6     vy0=1e-5     rad=sqrt(x^2+y^2)
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1) { Unit vector fields }
   nx=normal( unit_x)     ny=normal( unit_y) { Direction cosines }
   natp=0 { Simplified }
   Re=dens*globalmax(vm)*2*Lx/visc { Reynolds number }
INITIAL VALUES
   vx=0     vy=vy0     p=0     temp=10*exp(-rad^2/0.05^2)
EQUATIONS     
   vx: dens*dt( vx)+ dx( p)- visc*div( grad( vx))=0
   vy: dens*dt( vy)+ dy( p)- visc*div( grad( vy))=0
   p: div( grad( p))- 1e4*visc/Lx^2*div(v)=0
   temp: (cond/rcp)*div( grad( temp))- dt( temp)
                   - vx*dx( temp)- vy*dy( temp)=0
BOUNDARIES
region 'domain'  start 'outer' (-Lx,-Ly/3)
   point value(p)=0   point value( temp)=0
   value( vx)= 0   value( vy)=vy0   natural(p)=natp   natural( temp)=0
   line to (Lx,-Ly/3) to (Lx,Ly) to (-Lx,Ly) to close
TIME
   from 0 to 8e4
PLOTS
   for t=1e3, 3e3, 2e4, 4e4, 6e4, endtime
   contour( temp) painted report( Re)     vector(v) norm report( Re)
END

The plots below show the temperature distribution corresponding
to the smallest and largest value of time. The hot region evidently
expands while it rises.
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Natural Convection in (x,y)

Local heating of a liquid causes a buoyancy force, which induces
flow. This motion in turn transports heat, in addition to the well-
known thermal conduction. The next example illustrates this effect.
Here, the liquid is initially at rest, both inside the volume and on the
boundary. The liquid is heated from below by a metal foil, which
maintains a local temperature distribution while transmitting the
ambient pressure.

We must now introduce the buoyancy force into the 2nd PDE,
containing vy. Although heating will influence the density ρ0  of the
liquid, we assume this change to be small enough to be neglected in
the Navier-Stokes equation. We take it into account, however, in the
form of a vertical force
F g Ty = α δ   

where g is the acceleration of gravity, α  the volume thermal
expansivity, and δT  the temperature excess.

In order to shorten the calculation time we introduce an additional
approximation. From the preceding examples we have seen that the
propagation of fluid velocity is orders-of-magnitude faster than the
conduction of heat. Thus we neglect the time derivative terms in the
Navier-Stokes PDEs but retain that in the 4th PDE. We shall later
verify, in an exercise, that this yields practically identical results.
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TITLE     'Natural Convection in (x,y)'                     { fex274.pde }
SELECT     spectral_colors
VARIABLES     vx(1e-5)      vy(1e-5)     p(1e-3)     temp(1e-3)
DEFINITIONS
   Lx=1.0     Ly=2.0     visc=1.0     dens=1e3
   cond=0.5     rcp=3e6     rad=sqrt(x^2+y^2)
   Fy=1e-2*temp { Volume force with g*alpha=1e-2 }
   v=vector( vx, vy)     vm=magnitude( v)
   unit_x=vector(1,0)     unit_y=vector(0,1) { Unit vector fields }
   nx=normal( unit_x)     ny=normal( unit_y) { Direction cosines }
   natp=ny*Fy { Simplified }
   y_shift=area_integral( y*temp)/area_integral( temp)
   Re=dens*globalmax(vm)*2*Lx/visc { Reynolds number }
INITIAL VALUES
   vx=0     vy=0     p=0     temp=0
EQUATIONS
   vx: dx( p)- visc* div( grad( vx))=0
   vy: dy( p)- Fy- visc*div( grad( vy))=0
   p: div( grad( p))- dy(Fy)- 1e4*visc/Lx^2*div(v)=0
   temp: (cond/rcp)*div( grad( temp))- dt( temp)- vx*dx( temp)-
vy*dy( temp)=0
BOUNDARIES
region 'domain'  start 'outer' (-Lx,0)
   value( vx)=0   value( vy)=0 { On all boundaries }
      value( p)=0   value( temp)=exp(-(10*x/Lx)^2) { Heating }
   line to (Lx,0)   natural( p)=natp   natural( temp)=0
   line to (Lx,Ly) to (-Lx,Ly) to close
TIME
   from 0 to 8e4
PLOTS
   for t=1e3, 2e4 by 1e4 to endtime { At constant intervals }
   contour( temp) painted report( Re)     vector(v) norm report( Re)
HISTORIES
   history( y_shift)
END

The following is the contour plot of the temperature corresponding
to the maximum time. Evidently, the hot region rises and expands into
a shape reminiscent of the well known “mushroom cloud” caused by a
nuclear explosion.
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The following vector plot of the velocity suggests a mechanism
that could create the “mushroom hat”.

The history plot shows the mean position of the temperature
distribution as a function of time.
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Natural Convection in (ρ,z)

In order to extend natural convection to ( , )ρ z  we just expand p.297 1
to obtain
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For the 3rd PDE, we may adopt p.298 3 as it reads.
We quote the pressure natural boundary condition from p.256 1,

using the definition of ∇2v  from the preceding equation. We also
note that the time derivative ∂ ∂v tn /  vanishes on a fixed boundary.

The 4th PDE, however, requires some revision of the formalism for
a stationary medium5p10. The equation for T in that case is
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We have already used the appropriate expression for the divergence
operator ∇  (p.290 1). To transform the last term is easy. For constant
λ  the last PDE finally becomes
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The following example is analogous to fex274, but the conditions
are now axially symmetric.
TITLE     'Natural Convection in (r,z)'            { fex275.pde }
SELECT     nodelimit=400     spectral_colors
COORDINATES     ycylinder('r','z')
VARIABLES     vr(1e-4)     vz(1e-4)     p(1e-4)     temp(1e-4)
DEFINITIONS
   Lr=1.0     Lz=1.0     visc=1.0     dens=1e3
   cond=0.5     rcp=3e6 
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   rad=sqrt(r^2+z^2)     v=vector( vr, vz)     vm=magnitude( v)
   Fz=1e-2*temp
   Re=dens*globalmax(vm)*2*Lr/visc { Reynolds number }
   div_v=1/r*dr(r*vr)+ dz(vz)     curl_phi=dz(vr)-dr(vz)
   unit_r=vector(1,0)     unit_z=vector(0,1)
   nr=normal( unit_r)     nz=normal( unit_z)
   natp=nz*Fz { Simplified }
   z_shift=vol_integral( z*temp)/vol_integral(temp)
   heat=vol_integral( temp)
INITIAL VALUES
    vr=0     vz=0     p=0     temp=10*exp(-rad^2/0.05^2)
EQUATIONS     { Simplified }
   vr: dr(p)- visc*[ 1/r*dr(r*dr(vr))- vr/r^2+ dzz(vr)]=0
   vz: dz(p)- Fz- visc*[ 1/r*dr(r*dr(vz))+ dzz(vz)]=0
   p: 1/r*dr( r*dr(p))+ dzz(p)- dz(Fz)- 1e4*visc/Lr^2*div_v= 0
   temp: (cond/rcp)* [1/r*dr( r*dr( temp))+ dz( dz(temp))]-
      dt( temp)-  vr*dr( temp)- vz*dz( temp)=0
BOUNDARIES
region 'domain' start 'outer' (0,-Lz/3)
   value( vr)=0   value( vz)=0   natural(p)=natp   natural( temp)=0  { Wall }
   line to (Lr,-Lz/3)   point value(p)=0   point value(temp)=0
   line to (Lr,Lz) to (0,Lz)
   value( vr)=0   natural( vz)=0   natural(p)=0   natural( temp)=0     { Axis }
   line to close
TIME
   from 0 to 2e4
PLOTS
   for t=1e2, 1e3, 2e3, 4e3, 6e3, 8e3, 1e4, endtime
   contour( temp) painted report( Re) report( z_shift) report( heat)
   history( z_shift)
END

The figures below show the first and last plots of the temperature.
Here, an initially spherical distribution of hot liquid rises due to the
density difference. The size of the heated volume also increases with
time. We note that the full sequence of plots reports approximately
constant values of the total amount of heat, as we should expect.
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Exercises

  Modify fex271 to study the flow after stopping the moving wall.
  In fex274 we neglected the time derivatives of the velocity

components. Modify this file to take these derivatives into account.
Be warned that the run may take twice as long. Compare the resulting
history curve with that obtained before, by superimposing the printed
plots.

  Modify fex274 by injecting the heat flux density
20*exp(-(10*x/Lx)^2)*ustep(1e4-t) from the bottom.

  After the model of fex273, modify fex274 by introducing the initial
temperature temp=2*exp(-rad^2/0.05^2) and the boundary condition
value(temp)=0 on the bottom side.

  Change the initial value for the temperature in the preceding
exercise to the anti-symmetric function
temp=20*x*exp(-rad^2/0.05^2)
Try to predict the results, and then execute the file.

  Using fex274 as a model, modify fex275 to study the
corresponding natural convection process in (r,z), using the function
value( temp)=2*exp(-(10*r/Lr)^2).
Compare and interpret the heat integrals.
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28   Viscous Flow in Three Dimensions

In previous chapters, we have confined the flow analysis to problems
in two dimensions, including some axially symmetric configurations.
We shall now give examples of more general 3D calculations.

In the preceding volume on Deformation and Vibration we
explored electric fields (p.141) by plotting analytic expressions
corresponding to point charges, and there is no need to repeat those
illustrations here. It would be wise to review this introduction to 3D,
however, before reading further.

Extension of the Formalism to 3D

The Navier-Stokes equation takes the same general form in three
dimensions, viz.

ρ ∂
∂

ρ η0 0
2 0v v v F v

t
p+ ⋅∇ − + ∇ − ∇ =( )   

but we must be aware that v and F now have three components. The
derived PDE for pressure also looks the same as before, i.e.

∇ + ∇⋅ ⋅∇ −∇⋅ =2
0 0p ρ ( )v v F  

In order to reduce the divergence towards the ideal vanishing value
we subtract the term ∇⋅ v , multiplied by a suitably chosen constant,
on the left side. This leaves us with
∇ + ∇⋅ ⋅∇ −∇ ⋅ − ∇ ⋅ =∇

2
0 0p fρ ( )v v F v    

where f C L∇ = η / 2 , where C is a number, has the correct dimension.
The expansion of these equations for v = { , , }v v vx y z  is straight-

forward. The same is true of the natural boundary conditions, since
we have
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∂
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/ ( )= ⋅∇ = ⋅ + ⋅∇ − ⋅ − ⋅ ⋅∇n n F n v n v n v v2
0 0                 

We shall restrict the examples in this chapter to steady flow at small
speeds, which means that the last two terms will vanish.

Flow through a Rectangular Duct

As an elementary problem, we shall study flow through a duct of rect-
angular cross-section. A pressure difference will drive the liquid
through the tube in the direction of increasing z, from bottom to top.

The maximum number of nodes in the 2D Student Version is 800,
but for 3D it has been increased to 1600.

In the boundaries segment, under surfaces, we specify the pressure
values delp and 0.

The section region defines a rectangle on the bottom plane. The
duct is generated by extrusion of this curve into z space.  Here, we
also specify vanishing speed on the extruded walls.
TITLE     'Rectangular Duct, Pressure Driven'                      { fex281.pde }
SELECT     errlim=1e-3     ngrid=4    spectral_colors    
COORDINATES     cartesian3 { Student Version }
VARIABLES     vx     vy     vz     p
DEFINITIONS
   Lx=1.0     Ly=2.0     Lz=10.0     visc=1e4     delp=1e2
   vz_a=delp/Lz/(2*visc)*(Lx^2- x^2) { Analytic solution for channel }
   dens=1e3     Re=dens*globalmax( vz)*2*Ly/visc
   v=vector( vx, vy, vz)     vm=magnitude( v)
   unit_x=vector(1,0,0)     unit_y=vector(0,1,0)     unit_z=vector(0,0,1)
   nx=normal( unit_x)     ny=normal( unit_y)     nz=normal( unit_z)
{ Natural boundary condition for p }
   natp=0 { Simplified }
EQUATIONS { For Re<<1 }
   vx: dx( p)- visc*div( grad( vx))=0
   vy: dy( p)- visc*div( grad( vy))=0
   vz: dz( p)- visc*div( grad( vz))=0
   p: div( grad( p))- 1e4*visc/Lx^2*div( v)=0
EXTRUSION { Parallel surfaces }
   surface 'bottom' z=0
   layer 'liquid' { Layer containing liquid }
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   surface 'top' z=Lz
BOUNDARIES
   surface 'bottom'  natural(vx)=0    natural(vy)=0   natural(vz)=0
      value(p)=delp
   surface 'top'    natural(vx)=0    natural(vy)=0   natural(vz)=0
   value(p)=0
region 'domain' { Curve to be extruded }
   start 'outer' (-Lx,-Ly)   value( vx)=0   value( vy)=0   value( vz)=0
   natural( p)=natp   line to (Lx,-Ly)  to (Lx,Ly)  to (-Lx,Ly)  to close
MONITORS
   contour( vz) painted on x=0     contour( vz) painted on z=5.0
PLOTS
   grid( x, y, z)
   contour( p) painted on x=0 report(Re)
   contour( vz) painted on x=0   contour( vz) painted on y=0
   contour( vz) painted on z=0   contour( vz) painted on z=5.0
   contour( vz) painted on z=Lz
   elevation( p) from (0,0,0) to (0,0,Lz)
   elevation( vz, vz_a) from (0,0,0) to (0,0,Lz)
END

The following figure shows the geometry of the duct. The flow is
upwards, in the direction of the z-axis. Of the two transverse sides, the
one in the x direction is the smaller one.
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The contour plot below shows the distribution of vz, which appears
to be parabolic across the duct as in the 2D case (p.260). The variation
along the stream is rather small and is probably due to random
fluctuations in the numerical results.

The figure below illustrates that the longitudinal velocity
component vz vanishes on the other walls, as required. The integral
value gives us the flux through the cross-section. Comparing the three
corresponding plots we find that the flux values are closely the same,
which confirms that mass is conserved.
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The last elevation plot shows that the actual velocity is about 10%
lower than the analytical result for the channel (p.259). In the latter
case, however, the larger side is infinite and hence the drag forces
from the two distant walls are absent.

Let us next consider a modified example, where the input velocity
has a constant value, vz0. The changes with respect to fex281 are as
follows.
TITLE 'Rectangular Duct, Input vz=vz0'                               { fex282.pde }
…
   Lx=1.0     Ly=2.0     Lz=10.0     visc=1e4     vz0=0.1
…   { No analytic estimate }
BOUNDARIES
   surface 'bottom'  natural(vx)=0    natural(vy)=0   value(vz)=vz0
      natural(p)=0
   surface 'top'    natural(vx)=0    natural(vy)=0   natural(vz)=0
   value(p)=0
…
   elevation( vz, vz0) from (0,0,0) to (0,0,Lz)
END

The plot of vz below is similar to that for a simple channel. The
flux through successive cross-sections is still constant, although the
first plot at z=0 looks different. This anomaly is caused by the
discontinuity at the bottom, which FlexPDE cannot quite handle.
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Flow through a Box with Two Orifices

In the following problem we introduce three regions, one box and two
circular cylinders. The latter, smaller objects are extruded from circles
on the base plane. After this operation, the total volume becomes
divided into three sub-regions, two cylinders and the remainder,
which has a more complicated shape. The liquid properties are the
same in all of them, but the cylinders trace out different parts of the
bottom and top surfaces, which makes it possible to assign different
pressures to the orifices.

We first assign global boundary conditions to the flat bottom and
top surfaces. Under 'box' we then supply the corresponding conditions
for the other sides of the envelope. Under the regions 'in' and 'out' we
over-write conditions for the pressure on the orifices.
TITLE   'Flow through a Box with Two Orifices'                    { fex283.pde }
SELECT     errlim=1e-3     ngrid=4     spectral_colors
COORDINATES     cartesian3
VARIABLES     vx     vy     vz     p
DEFINITIONS
   Lx=3.0     Ly=2.0     Lz=2.0     r0=1.0     visc=1e4     delp=1e2
   dens=1e3     Re=dens*globalmax( vz)*2*Ly/visc
   v=vector( vx, vy, vz)     vm=magnitude( v)
   unit_x=vector(1,0,0)     unit_y=vector(0,1,0)     unit_z=vector(0,0,1)
   nx=normal( unit_x)     ny=normal( unit_y)     nz=normal( unit_z)
{ Natural boundary condition for p }
   natp=0 { Simplified }
EQUATIONS { For Re<<1 }
   vx: dx( p)- visc*div( grad( vx))=0
   vy: dy( p)- visc*div( grad( vy))=0
   vz: dz( p)- visc*div( grad( vz))=0
   p: div( grad( p))- 1e4*visc/Lx^2*div( v)=0
EXTRUSION { Parallel surfaces }
   surface 'bottom' z=-Lz
   layer 'liquid' { Layer containing liquid }
   surface 'top' z=Lz
BOUNDARIES
   surface 'bottom'   value( vx)=0   value( vy)=0   value( vz)=0
      natural( p)=natp
   surface 'top'   value( vx)=0   value( vy)=0   value( vz)=0
      natural( p)=natp
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region 'box' { Full solution domain }
   start 'outer' (-Lx,-Ly)
   value( vx)=0   value( vy)=0   value( vz)=0   natural( p)=natp
   line to (Lx,-Ly)  to (Lx,Ly)  to (-Lx,Ly)  to close
region 'in'
   surface 'bottom'   natural( vx)=0   natural( vy)=0   natural( vz)=0
      value( p)=delp
   start (-2.5,-0.5)  arc( center=-1.5,-0.5) angle=360 close
region 'out'
   surface 'top'   natural( vx)=0   natural( vy)=0   natural( vz)=0
      value( p)=0
   start (2.5,0.5)  arc( center=1.5,0.5) angle=360 close
MONITORS
   contour( p) painted on z=-Lz report(Re)
PLOTS
   contour( p) painted on z=-Lz report(Re)
   contour( vz) painted on z=-Lz     contour( vz) painted on z=Lz
   vector( v) norm  on y=0     vector( v) norm on y=2/3*x
   vector( v) norm on x=-2.0     vector( v) norm on x=2.0
END

The following figure shows the geometrical arrangement and the
surface mesh.

During the run, monitors show that the pressure is as intended over
the left and right orifices. The monitor plots of vm on two
perpendicular planes confirm that the magnitude of the velocity is
zero on the boundaries.

The plot below shows the distribution of vz over the input orifice.
The corresponding plot over the topside is similar.
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The following vector plot illustrates the symmetry of this problem,
further substantiated by the plot over the diagonal plane. There is no
evidence for inertia, which is compatible with the very small value of
Re.
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Viscous Flow around a Cubical Obstacle

Here we shall consider viscous flow in a tube of circular cross-section
containing a cube, partially blocking the stream. We use the tube
radius r0 in Re and in the second term of the last PDE.

In this example, we have 3 liquid layers, cut by an extruded sub-
region of square cross-section. This means that there are 6 distinct
compartments, one of them constituting the cubical obstacle. We
exclude the latter from the solution domain by the void declaration.
TITLE   'Flow around a Cubical Obstacle'                            { fex284.pde }
SELECT     errlim=1e-3     ngrid=4     spectral_colors
COORDINATES     cartesian3
VARIABLES     vx     vy     vz     p
DEFINITIONS
   r0=1.0     Lc=0.3     Lz=2.0     visc=1e4     delp=1e2
   dens=1e3     Re=dens*globalmax( vz)*2*r0/visc
   v=vector( vx, vy, vz)     vm=magnitude( v)
   unit_x=vector(1,0,0)     unit_y=vector(0,1,0)     unit_z=vector(0,0,1)
   nx=normal( unit_x)     ny=normal( unit_y)     nz=normal( unit_z)
   { Natural boundary condition for p }
   natp=0 { Simplified }
EQUATIONS { For Re<<1 }
   vx: dx( p)- visc*div( grad( vx))=0
   vy: dy( p)- visc*div( grad( vy))=0
   vz: dz( p)- visc*div( grad( vz))=0
   p: div( grad( p))- 1e4*visc/r0^2*div( v)=0 { Tube radius r0 }
EXTRUSION { Parallel surfaces }
   surface 'bottom' z=-Lz
   layer '1' { Three liquid layers, 1-3 }
   surface 'low' z=-Lc
   layer '2'
   surface 'high' z=Lc
   layer '3'
   surface 'top' z=Lz
BOUNDARIES
   surface 'bottom'  natural(vx)=0    natural(vy)=0   natural(vz)=0
      value(p)=delp
   surface 'top'    natural(vx)=0    natural(vy)=0   natural(vz)=0
   value(p)=0
region 'domain' { Full solution domain }
   start (r0,0)   value( vx)=0   value( vy)=0   value( vz)=0
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      natural( p)=natp
   arc( center=0,0) angle=360
region 'cube'
   surface 'low' value(vx)=0   value(vy)=0   value(vz)=0
       natural(p)=natp { Surfaces pertaining to cube }
   surface 'high'   value(vx)=0   value(vy)=0   value(vz)=0
       natural(p)=natp
   layer '2' void { Cube excluded from domain }
   start (-Lc,-Lc) layer '2'   value(vx)=0   value(vy)=0   value(vz)=0
   natural(p)=natp { These BCs limited to layer 2 }
   line to (Lc,-Lc) to (Lc,Lc) to (-Lc,Lc) to close
MONITORS
   contour( vm) painted on z=0     contour( vm) painted on x=0
PLOTS
   contour( p) painted on x=0 report(Re)
   contour( vz) painted on x=0     contour( vz) painted on y=0
   contour( vz) painted on z=-Lz     contour( vz) painted on z=0
   contour( vz) painted on z=Lz
   vector( v) norm on x=0 zoom(-r0,-r0, 2*r0,2*r0)
   elevation( p) from (0,0,-Lz) to (0,0,Lz)
   elevation( vz) from (0,0,-Lz) to (0,0,Lz)
END

In the contour plot of vz below we see the transverse and
longitudinal surfaces limiting the cube. The velocity component vz
evidently vanishes on the solid surfaces. The highest values occur
around the axis and in an annular region around the cube.
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The next figure shows the direction of flow in the region close to
the cube. It confirms that the speed vanishes on all the faces of the
cube.

The three cross-sectional plots of vz show that the integrals have
closely the same value, compatible with vanishing divergence of v.

The plot below illustrates that the highest vz is in fact concentrated
to four symmetric sites, approximately at mid-distance between the
cube surfaces and the outer wall.
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Viscous Flow by Gravity through a Funnel

In the next problem a liquid flows through a funnel under the
influence of gravity and a downward driving pressure.

The extrusion scheme used in FlexPDE involves parallel extrusion,
as from a tube of toothpaste. We obtain much more freedom if we
define a volume inside the extruded volume and declare remaining
parts as void. The final shape we want to achieve is illustrated in the
figure below.

We create the region 'domain' by extruding a circle with radius r1,
starting from the base plane, i.e. z=0. Thus, we initially obtain a
volume limited by the planes '1' and '3' and a circular cylinder. It
remains to exclude the parts outside the cone and the smaller cylinder
below.

To generate the conical surface ('2'), we first define a set of points
in ( , )x y  space by specifying that rad be larger than or equal to r0.
Finally, we define this surface using zfun.

We thus have a cylindrical outer surface (r1) and two plane end
surfaces. In addition there is a conical surface over part (L) of the
length. Hence, there are two layers, one below the cone and one
above. The inner cylinder (r0) we then create thus has two
compartments of length L.

When the region 'domain' is first defined, it comprises the entire
volume inside r1. When the region 'cylinder' is added, however, the
'domain' becomes redefined to mean everything outside the central
cylinder of radius r0. If we thus specify the boundary conditions of
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surface '2' under 'domain', those boundary conditions become valid on
the conical surface only.

In order to create empty space outside the funnel, we first declare
the layer 'lower' (below the conical surface) to be void. The upper
layer, on the other hand, is assigned the default viscosity value (visc).

When we come to the cylinder of radius r0 the situation is simpler.
Here, we assign the viscosity value visc to the lower layer. It is only in
the layer 'lower', that the cylinder should have boundary conditions,
which is the reason for specifying the name of the layer before
imposing these conditions.

Gravitation produces a volume force Fz, which enters in the third
PDE. We add a driving pressure delp on the boundary planes.
TITLE   'Viscous Flow through a Funnel'                              { fex285.pde }
SELECT     errlim=1e-3     ngrid=4     spectral_colors
COORDINATES     cartesian3
VARIABLES     vx     vy     vz     p
DEFINITIONS
   r0=1.0     r1=3.0     L=2.0     visc=1e4     delp=1e4
   dens=1e3     g=9.81      Fz=-dens*g {Force due to gravity }
   Re=dens*globalmax( vz)*2*r0/visc
   v=vector( vx, vy, vz)     vm=magnitude( v)
   rad=max( r0, sqrt( x^2+y^2))
   zfun=L+L*(rad-r0)/(r1-r0)
   unit_x=vector(1,0,0)     unit_y=vector(0,1,0)     unit_z=vector(0,0,1)
   nx=normal( unit_x)     ny=normal( unit_y)     nz=normal( unit_z)
   natp=nz*Fz { Simplified }
EQUATIONS { For Re<<1 }
   vx: dx( p)- visc*div( grad( vx))=0
   vy: dy( p)- visc*div( grad( vy))=0
   vz: dz( p)- Fz- visc*div( grad( vz))=0
   p: div( grad( p))- 1e4*visc/r0^2*div( v)=0
EXTRUSION
   surface '1' z=0
   layer 'lower' 
   surface '2' z=zfun
   layer 'upper'
   surface '3' z=2*L
BOUNDARIES
   surface '1'  natural(vx)=0   natural(vy)=0   natural(vz)=0   value( p)=0
   surface '3'  natural(vx)=0   natural(vy)=0  natural(vz)=0   value( p)=delp
region 'domain'    { Outer region }
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   layer 'lower'  void { Empty space }
   surface '2' value(vx)=0   value(vy)=0   value(vz)=0   natural(p)=natp
   layer 'upper'
   start 'outer' (r1,0)  arc( center=0,0) angle=360 close
limited region 'cylinder' { Limited to the lower layer }
   layer 'lower' { Redefine void as visc }
   start (r0,0) layer 'lower'   
   value(vx)=0   value(vy)=0   value(vz)=0   natural(p)=natp
   arc( center=0,0) angle=360 to close
MONITORS
   contour( vz) painted on x=0
PLOTS
   contour( vz) painted on x=0     contour( vm) painted on x=0
   vector( v) norm on x=0     contour( p) painted on x=0
   contour( vz) painted on z=0.01     contour( vz) painted on z=0.99*L
   contour( vz) painted on z=1.01*L     contour( vz) painted on z=1.95*L
END

The figure below demonstrates that the velocity in fact vanishes on
the walls. The final contour plots verify that the flux is constant
through various cross-sections.

The following vector plot of the velocity shows the expected flow
pattern.
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Rotating Flow through a Funnel

We now impose a rotating motion on the liquid at the top of the
funnel. Most of the descriptor may be taken from the preceding
example. For this example we require a larger number of nodes.
TITLE   'Rotating Flow through a Funnel'                     { fex286.pde }
SELECT     errlim=1e-3     ngrid=4     spectral_colors
…
   r0=2.0     r1=5.0     L=5.0     visc=1e4     delp=1e4     v0=20.0
…
BOUNDARIES
   surface '1'  natural(vx)=0   natural(vy)=0     natural(vz)=0
      value( p)=0
   surface '3'  value(vx)=-v0*y/sqrt(x^2+y^2) { Rotation }
       value(vy)=v0*x/sqrt(x^2+y^2)  natural(vz)=0   value( p)=delp
region 'domain'    
…
PLOTS
   contour( vz) painted on x=0     contour( vm) painted on x=0
   vector( v) norm on z=2.0*L
   vector( v) norm on z=1.5*L zoom(-4,-4, 8,8)
   vector( v) norm on z=L on 'cylinder'
END
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At the top surface, the horizontal rotational speed is uniform at the
impressed value (20.0), as confirmed by the following vector plot at
z=2.0*L.

The next plot shows how the initial rotation is attenuated during the
downward flow. The maximum vm in the plane z=1.5*L is now only
2.4, and the maximum occurs at an intermediate radius.

The figure below illustrates that the downward motion causes an
inward spiral pattern. The velocity in the plane z=L is less than 1% of
that impressed by rotation. The vertical velocity component
dominates, as indicated by the contour plot.
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Seeping through a Concrete Plate with a Pillar

The following example concerns percolation through a concrete plate,
in contact with a pillar as shown in the first figure. The bottom is
exposed to pressure and the top is open for outflow. The other
boundaries are impermeable.

Here, we shall exploit the novel extension of the N-S equations to
percolation that we already applied in 2D (p.320). The PDEs are
trivial generalizations of those for 2D.

Under extrusion we first define the three parallel surfaces delimit-
ing the components. Then we extrude a cylinder through a circle in
the bottom plane. Region 'domain' thereby refers to the space outside
the cylinder. Under 'domain', we thus declare the upper layer to be
void, or empty space.
TITLE   'Seeping through Plate and Pillar'                            { fex287.pde }
SELECT     errlim=1e-3     ngrid=4     spectral_colors
COORDINATES     cartesian3 { Student Version }
VARIABLES     vx     vy     vz     p
DEFINITIONS
   L=1.0     r0=0.15     z0=0.2
   visc=1e-3     k=1e-12     delp=1e4
   dens=1e3    Fgz=-dens*9.81 
   v=vector( vx, vy, vz)     vm=magnitude( v)
   unit_x=vector(1,0,0)     unit_y=vector(0,1,0)     unit_z=vector(0,0,1)
   nx=normal( unit_x)     ny=normal( unit_y)     nz=normal( unit_z)
   natp=nz*Fgz- visc/k*( nx*vx+ ny*vy+ nz*vz) { natural(p) }
EQUATIONS { For Re<<1 }



386

   vx: dx( p)+ visc/k*vx=0
   vy: dy( p)+ visc/k*vy=0
   vz: dz( p)- Fgz+ visc/k*vz=0
   p: div( grad( p))- 1e4*visc/r0^2*div( v)=0
EXTRUSION { Parallel surfaces }
   surface 'bottom' z=0
   layer 'plate'  
   surface 'middle' z=z0 { Interface }
   layer 'pillar'
   surface 'top' z=L
BOUNDARIES
   surface 'bottom'
   natural(vx)=0   natural(vy)=0   natural(vz)=0   value(p)=delp
   surface 'top'
   natural(vx)=0   natural(vy)=0   natural(vz)=0   value(p)=0
region 'domain'    { Full solution domain }
   layer 'pillar'  void { Exclude space outside pillar }
   surface 'middle' { Upper surface of plate }
   natural(vx)=0   natural(vy)=0   value(vz)=0   natural(p)=natp
   start 'outer' (0,0) { Rectangle to be extruded, impermeable sides }
   value(vx)=0   value(vy)=0   natural(vz)=0   natural(p)=natp
   line to (L,0)  to (L,L) to (0,L)  to close
region 'cylinder'   start (L/3+r0,L/3)
   layer 'pillar'   value(vx)=0   value(vy)=0   natural(vz)=0   natural(p)=natp
   arc( center=L/3,L/3) angle=360 to close
MONITORS
   contour( vm) painted on x=L/3
PLOTS
   contour( vz) painted on z=z0/2     contour( vz) painted on z=L
   contour( vm) painted on x=L/3     vector( v) norm on x=L/3
   contour( p) painted on x=L/3
END

The plot below shows the velocity in a cross-section through the
axis of the pillar.

The speed fluctuations (vm) in the lower part of the pillar will
gradually vanish as we use higher node numbers and the Professional
Version.
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Exercises

  Using fex282 as a template, study the flow through a tube of radius
r0=1.5 and uniform input velocity.

  In the preceding exercise, exploit the axial symmetry by solving
over only one quarter of the tube.

  Try to introduce uniform input vz into fex283. Create a feature,
concentric with the input orifice and with 20% smaller radius.

  Using fex205 as a model, add two walls parallel to the (y, z) plane
at a distance of 1.0 from each other (see figure below). The liquid
hence enters from below through a square entrance, and the cavity is
now cubic.

Hints: First create a rectangular box containing the entire structure
and introduce the BCs appropriate to the vertical walls. Then intro-
duce a region of square base for the cavity and declare the empty
cubes on the left side as void. Specify wall BCs on the sides facing the
void by features comprising single line segments in layers 1 and 3.
Assign the remaining BCs on the cavity by surface statements in the
appropriate region.
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29   Simplified PDEs for Viscous Flow

There is an alternative formulation of the PDEs for viscous flow,
which does not require a supplementary equation for pressure12. The
fundamental idea is to consider a liquid as being compressible, but in
the limit of vanishing compressibility. In 2D, that concept leads to
two equations only, which could be expected to shorten the solution
time.

On reflection we realize that the flow itself may be thought of as
inducing the pressure p. By imposing a velocity at the input boundary
we create motion, and if the streaming liquid passes into a
constriction, say, the ensuing force on it will produce local pressure.
If the liquid is slightly compressible, this pressure should proportional
to −∇ ⋅v . This pressure may hence be written

p c= − ∇⋅v     

where c is a constant to be found by trial and error. It should be large
enough to make ∇⋅v  nearly vanish. In practice we make it pro-
portional to viscosity, in order to obtain the correct dimension. The
value chosen for c will then be valid for any liquid.

The general N-S equation is (p.253)
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where p now is to be copied from the above expression. We shall
expand the second term when we need it.

The first few examples concern steady flow at small Re, which
means that the two first terms vanish.
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Steady Flow in a Constricted Channel at Re<<1

The following is a simplification of fex203a. On the input and output
faces we specify ∂ ∂v xy / =0 , assuming negligible change in vy  close
to the ends, and we proceed similarly for vx at the exit.

TITLE   'Constricted Channel'           { fex291.pde }
SELECT     errlim=1e-5     ngrid=4     spectral_colors
VARIABLES     vx     vy        { Student Version }
DEFINITIONS
   L=1.0     coef=0.5     visc=1e4
   vx0=1e-3 { Input velocity }
   dens=1e3     Re=dens*vx0*2*L/visc
   v=vector( vx, vy)     vm=magnitude( v)
   c=1e4*visc     { Dimension of viscosity required }
   p=-c*div(v) { To be substituted into the PDEs }
EQUATIONS
   vx: dx( p)- visc*div( grad( vx))=0 { 2D and F=0 }
   vy: dy( p)- visc*div( grad( vy))=0
BOUNDARIES
region 'domain'  start 'outer' (0,L)
   value( vx)=vx0   natural( vy)=0 line to (0,-L) { In }
   value( vx)=0   value( vy)=0   { Wall }
   line to (L,-L) to (2*L,-L*coef) to (3*L,-L*coef)  { Wall }
   natural( vx)=0   natural( vy)=0  { Out }
   line  to (3*L,L*coef)  value( vx)=0   value( vy)=0
   line to (2*L,L*coef) to (L,L) to close { Wall }
PLOTS
   vector( v) norm report(Re)     contour( vm) painted
   contour( div( v))     contour( curl( v)) painted
   contour( p)
   contour( p) painted  zoom( 1.5*L,-L, 2*L,2*L)
   elevation( vx) from (0,-L) to (0,L)
   elevation( vx) from (L,-L) to (L,L)
   elevation( vx) from (2*L,-L*coef) to (2*L,L*coef)
   elevation( vx) from (3*L,-L*coef) to (3*L,L*coef)
   elevation( dy( vx)) from (3*L,-L*coef) to (3*L,L*coef)
END

The run time is about the same as for fex203a, but the maximum
error obtained is much smaller. The plot of vm (below) demonstrates
that the speed indeed vanishes on the walls.
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The plot of pressure, however, is very erratic in this case with high
spots that only suggest the regular variation we found in fex203a.

The elevation plots of vx across the channel show that the initially
flat velocity distribution gradually changes to parabolic. The flux
values reported at the bottom of each figure are closely the same,
which indicates that mass and volume are conserved.
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Flow past a Circular Cylinder at Re<<1

Here, we revisit the example fex211b, using slip conditions on the
outer boundaries. We also integrate over the entrance to explore
whether the pressure can be used to estimate the force on the obstacle.
TITLE     'Viscous Flow past a Circular Cylinder'           { fex292.pde }
SELECT     errlim=1e-5     ngrid=4     spectral_colors
VARIABLES     vx      vy
DEFINITIONS
   Lx=2.0     Ly=1.0     a=0.2     visc=1e4     vx0=1e-3
   dens=1e3     Re=dens*globalmax( vx)*2*Lx/visc
   v=vector( vx, vy)     vm=magnitude( v)
   c=1e4*visc     p=-c*div( v)
EQUATIONS               { F=0 }
   vx: dx( p)- visc*div( grad( vx))=0 
   vy: dy( p)- visc*div( grad( vy))=0
BOUNDARIES
region 'domain'  start 'outer' (-Lx,Ly)
   value( vx)=vx0   natural( vy)=0 { In }
   line to (-Lx,-Ly)   natural( vx)=0   value( vy)=0 { Wall}
   line to (Lx,-Ly)   natural( vx)=0   natural( vy)=0 { Out }
   line to (Lx,Ly)   natural( vx)=0   value( vy)=0   line to close { Wall }
   start 'cylinder' (a,0) { Exclude }
   value( vx)=0  value( vy)=0   arc( center=0,0) angle=360 close
PLOTS
   contour( vx) painted report( Re)     contour( vy) painted
   elevation( vx) from (-Lx,-Ly) to (-Lx,Ly)
   elevation( vx) from (0,-Ly) to (0,Ly)
   elevation( vx) from (Lx,-Ly) to (Lx,Ly)     contour( vm) painted
   vector( v) norm     vector(v) norm  zoom(-2*a,-2*a, 4*a,4*a)
   contour( curl( v)) painted     contour( p) painted
   contour( p) painted zoom(-2*a,-2*a, 4*a,4*a)
   elevation( p) from (-Lx,-Ly) to (-Lx,Ly) {  Force on liquid }
   elevation( p) from (Lx,-Ly) to (Lx,Ly)
END

The following plot shows that the uniform distribution of vx at the
entrance again becomes essentially uniform near the exit. The
elevation plots over the cross-sections indicate that mass is conserved.
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We have already seen that the present formalism yields only scanty
information about pressure. This impression is further illustrated by
the zoomed contour plot of p. The pressure over the entrance also
exhibits large scatter, as the plot below demonstrates.

The above plot suggests that it should be possible to trust the force
value, obtained by integration over the entrance, to within a few
percent.
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Flow through a Box with Two Orifices (3D)

Let us now use the simplified formalism with an example similar to
fex283, extending the PDEs to three dimensions. Here, it is not
possible to apply uniform pressure over the entrance as before. It is
also difficult to obtain uniform vz over the orifice with a reasonable
number of node points. What we can do, however, is to specify a
paraboloidal distribution of vz over the entrance.
TITLE    'Flow through a Box with Two Orifices'                 { fex293.pde }
SELECT     errlim=1e-4     ngrid=4     spectral_colors
COORDINATES     cartesian3
VARIABLES     vx     vy     vz
DEFINITIONS
   Lx=3.0     Ly=2     Lz=1.0     r0=1.0     visc=1e4     vz0=1e-3
   r_in=sqrt( (x+1.5)^2+ (y+0.5)^2)
   dens=1e3     Re=dens*globalmax( vz)*2*Ly/visc
   v=vector( vx, vy, vz)     vm=magnitude( v)
   c=1e4*visc     p=-c*div( v)
EQUATIONS
   vx: dx( p)- visc*div( grad( vx))=0 
   vy: dy( p)- visc*div( grad( vy))=0
   vz: dz( p)- visc*div( grad( vz))=0
EXTRUSION { Parallel surfaces }
   surface 'bottom' z=-Lz
   layer 'liquid' { Layer containing liquid }
   surface 'top' z=Lz
BOUNDARIES
   surface 'bottom'   value( vx)=0   value( vy)=0   value( vz)=0
   surface 'top'   value( vx)=0   value( vy)=0   value( vz)=0
region 'box' { Full solution domain }
   start 'outer' (-Lx,-Ly)
   value( vx)=0   value( vy)=0   value( vz)=0
   line to (Lx,-Ly)  to (Lx,Ly)  to (-Lx,Ly)  to close
region 'in'
   surface 'bottom'   natural( vx)=0   natural( vy)=0
   value( vz)=vz0*(1- (r_in/r0)^2)   { Paraboloid }
start (-2.5,-0.5)  arc( center=-1.5,-0.5) angle=360
region 'out'
   surface 'top'   natural( vx)=0   natural( vy)=0   natural( vz)=0
start (2.5,0.5)  arc( center=1.5,0.5) angle=360
MONITORS
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   contour( vz) painted on z=-Lz     contour( vz) painted on z=Lz
   contour( vm) painted on z=0   contour( vm) painted on x=0
PLOTS
   contour( vz) painted on z=-Lz report(Re)
   contour( vz) painted on z=Lz    contour( vm) painted on z=0
   vector( v) norm  on y=0
   vector( v) norm on x=-2.0     vector( v) norm on x=2.0
   vector( v) norm on y=x/2 { Through centers of orifices }
END

In the following miniature plot the regions are indicated by colors.

The next figure is a plot of vz over the entrance plane, the integral
yielding the flux, to be compared to the value at the exit.
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The next plot shows the flow in a plane going through the centers
of both the entrance and the exit. The symmetry is evident.

Steady Viscous Flow at Re>>1

In order to proceed to higher speeds, we have to include the second
term in the PDE (p.328). In 3D it becomes
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Flow past a Circular Cylinder at Re>>1

We shall now revisit the example fex252. As before, we let the liquid
slip on the wall.

In view of the fact that the definition of Re is somewhat arbitrary
in this case, we use a modified reference value, MRe, which relates to
the size of the obstacle.

We attempt to calculate the driving pressure force_x by two line
integrals over the ends.
TITLE     'Flow past a Circular Cylinder at Re>>1'           { fex294.pde }
SELECT     errlim=1e-5     ngrid=4     stages=5     spectral_colors
VARIABLES     vx     vy
DEFINITIONS
   Lx=1.0     Ly=1.0     r0=0.1     visc=1.0
   vx0=staged( 1e-5, 1e-4, 0.01, 0.03, 0.1)    { Input vx }
   dens=1e3     MRe=dens*globalmax( vx)*2*r0/visc    { Modified Re }
   v=vector( vx, vy)     vm=magnitude( v)
   vxdvx=vx*dx(vx)+ vy*dy(vx)     vxdvy=vx*dx(vy)+ vy*dy(vy)
   c=1e4*visc     p=-c*div( v)
   force_x=line_integral( p,'in')- line_integral( p,'out')
EQUATIONS
   vx: dens*vxdvx+dx( p)- visc*div( grad( vx))=0 
   vy: dens*vxdvy+ dy( p)- visc*div( grad( vy))=0
BOUNDARIES
region 'domain'  start 'outer' (-Lx,Ly)
   value( vx)=vx0  natural( vy)=0 { In }
   line to (-Lx,0)   natural( vx)=0   value( vy)=0 { Symmetry }
   line to (-r0,0)   value(vx)=0   value(vy)=0
      arc( center=0,0) angle=-180 to (r0,0) { Cylinder }
   natural( vx)=0   value( vy)=0 { Symmetry }
   line to (4*Lx,0)   natural( vx)=0   natural( vy)=0 { Out }
   line to (4*Lx,Ly)   natural( vx)=0   value( vy)=0   { Slip on wall }
   line to close       
feature
   start 'in' (-Lx,0) line to (-Lx,Ly)     start 'out' (4*Lx,0) line to (4*Lx,Ly)
PLOTS
   contour( vm) painted report( MRe) report( force_x/MRe) 
   contour( vx/vx0) report( MRe)
   vector( v) norm     vector( v) norm zoom(0,0, 5*r0,5*r0) report( MRe)
   elevation( p) on 'in'     elevation( p) on 'out'     contour( p) painted
END
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The following plot shows the speed distribution and reports the
ratio of the force on the liquid (and the cylinder) to the value of MRe.
As we have noted before, this ratio rises markedly above MRe>1.

The following plot of the pressure distribution over the entrance is
rather ragged, but it should yield an integral value reliable within a
few percent.
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Using File,View we may inspect the flow pattern as the speed
increases. At MRe≅25 we find the vector plot below, which is very
similar to that obtained before by a different formalism (p.334).

In summary, this example in its two versions provides a
convincing demonstration of the reliability of the formalisms used
and of the FlexPDE software.

Flow in (ρ,z) past a Sphere at Re>>1

Let us now extend the simplified PDEs to a case of axial symmetry,
repeating the calculations in fex263. Only a few modifications are
required.
TITLE     'Viscous Flow past a Sphere at Large Re'           { fex295.pde }
SELECT     errlim=1e-5     ngrid=1     stages=7     spectral_colors
COORDINATES     ycylinder('r','z')
VARIABLES     vr     vz
DEFINITIONS
   L=1.5     r1=2.0     r0= 0.1
   visc=1.0     dens=1e3  
   vz0=staged( 1e-6, 3e-3, 0.01, 0.02, 0.04, 0.07, 0.1)      { Input values }
   MRe=dens*vz0*2*r0/ visc { Modified Re }
   v=vector( vr, vz)     vm=magnitude( v)
   vrdvr=vr*dr(vr)+ vz*dz(vr)     vrdvz=vr*dr(vz)+ vz*dz(vz)



400

   curl_phi=dz(vr)-dr(vz)
   drag_S=6*pi*visc*r0*vz0 { After Stokes for small MRe }
   c=1e4*visc     p=-c*div( v)
EQUATIONS
   vr: dens*vrdvr+ dr(p)- visc*[ 1/r*dr(r*dr(vr))- vr/r^2+ dzz(vr)]=0
   vz: dens*vrdvz+ dz(p)- visc*[ 1/r*dr(r*dr(vz))+ dzz(vz)]=0
BOUNDARIES
region 'domain' start(0,-L)       
   natural(vr)=0   value(vz)=vz0   line to (r1,-L)  { In }
   value(vr)=0   natural(vz)=0   line to (r1,3*L) { Wall }
   natural(vr)=0   natural(vz)=0   line to (0,3*L) { Out }
   value(vr)=0   natural(vz)=0   line to (0,r0) { Axis }
   value(vr)=0   value(vz)=0   
      arc( center=0,0) angle=-180
   value(vr)=0   natural(vz)=0   line to close
PLOTS
   contour( vz)     contour( vm) painted report( MRe) 
   contour( p) painted     vector( v) norm
   contour( div( v))     contour( curl_phi) painted
   elevation( p/drag_S) from (0,-L) to (r1,-L) report(MRe)    { Force_z }
END

The following plot shows the resulting speed distribution, which is
again similar to what we found before, using three PDEs (p.353).
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Because of the poor pressure data, the drag force differs con-
siderably from the Stokes expression at the smallest values of MRe,
the integrated ratio p/drag_S being as small at 0.13 in the first stage.
Above stage 3, however, it is still possible to recognize the variation
versus MRe that we recorded before.

Exercises

  Repeat fex292 with zero-speed boundary conditions on the walls.
  Solve the problem in fex204 using the simplified PDEs. Specify

suitable vx0 and errlim. Try modifying the geometrical parameters and
the viscosity.

  Solve the problem in fex212 using the simplified PDEs. Replace
visc_xy by its first line only.

  Solve the problem in fex285 by the simplified PDEs.
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Vocabulary of FlexPDE

The following table is a reminder of the syntax rules, given as
descriptor fragments. Commands in color pertain to 3D. The numbers
refer to pages in Deformation and Vibration and in this book, where
the usage has been illustrated by examples. More details are available
under Help while using the program.

             pages

 SELECT
    spectral_colors 10, 228
    errlim=1e-5     nodelimit=400 228, 330
    ngrid=1     stages=2 228, 302

 COORDINATES
    ycylinder('r','z')                                      { Default: (x,y) } 291
    cartesian3                                                          { x,y,z } 370

 VARIABLES
    U 36

 DEFINITIONS                                                  { SI units }
    v=vector(vx,vy)     vm=magnitude(v) 18, 231
    globalmax(vx) 260
    natp=  if stage=1   then 0    else  … 303
    #include 'visc_xy.pde' 282
    unit_x=vector(1,0) 245

  INITIAL VALUES
    vx=0 356

 EQUATIONS
    div(grad(phi))=0 231
        vx:    dx( p)- visc*div( grad( vx))=0                { Tagged }

CONSTRAINTS                         { Integral relations only }

257
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EXTRUSION                                                     { 3D only }
    surface 'bottom' z=0 370
    layer 'liquid' 370

 BOUNDARIES                     { Drawn counterclock-wise }
 region 'domain' start 'outer' (0,Ly) … to close 7, 228
    start (r1,0) arc to (0,r1) to (-r1,0) to (0,-r1) close 18
    start 'obstacle' (a,0) … arc(center=0,0) angle=360 231
    value(phi)=0     natural(phi)=0 228
    layer '2' void 378
    limited region 'cylinder' 382
 feature    { Curve defined like domain, but without close } 243

 TIME                             { For time-dependent problems }
    from 0 to 5e-2 356

 MONITORS                           { For debugging of scripts }
 { Same syntax as for PLOTS } 303

 PLOTS
    elevation(vm) on 'outer'     elevation(p) from ... to … 228, 234
    grid(x,y)     vector(grad_f) as 'Gradient'     surface(f) 10
    contour(vm) painted     report(brute_force) 228, 236
    elevation(tangential(v)) on 'outer' 241
    elevation(p) on 'circle' on 'domain' 245
    vector(v) norm 228
    contour(p) painted on 'domain' 245
    contour(p) zoom(1.5*Lx,0,  Lx,Ly) 228
    grid(x,y,z)) 371
    report(val(Ez,0,0.84,1)) 142
    elevation(vz,vz_a) from (0,0,0) to (0,0,Lz) 371
    contour(p) painted on x=0 report(Re) 371
    vector(v) norm on y=2/3*x 375
    history(E_k) report(visc) 358

 END
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