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Preface

During my early years as a student at Uppsala University, Sweden, I
took a special interest in partial differential equations. To my mind,
these equations seemed to be important keys to the predictions in
space and time that physics is all about. Nevertheless, undergraduates
still regard them as esoteric objects that are part of the curriculum but
sadly useless.

Partial differential equations are indeed cumbersome, since few
analytical methods of solution exist, and numerical tools of
reasonable generality have been lacking. During a visit in the San
Francisco Bay area in 1992 I happened to see an advertisement about
a “Solver for Partial Differential Equations”, which caught my
attention since I was currently planning a course in applied finite
element analysis (FEA). When I started to work with this software I
had the feeling that a curtain was drawn, and that I could suddenly see
the fields of physics through the graphics on the computer screen. I
was absolutely stunned to find that almost any problem could be
solved, even if it involved several complicated, simultaneous
equations and often even if they were not linear. I simply could not
keep this extraordinary experience to myself.

My first book, Fields of Physics on the PC by Finite Element
Analysis (1994), was based on a DOS version and covered electro-
and magnetostatics, heat conduction, elasticity, and liquid flow. The
2nd edition (1996) exploited the additional software features that had
appeared during the intervening period. It also comprised applications
in the areas of vibration in fluids and solids, electromagnetic waves,
and quantum mechanics.

The software has since evolved to a significant degree. The pioneer
created a new program, FlexPDE, written in C language for
Windows 95/98/NT. This program was the basis of a third book,
Fields of Physics by Finite Element Analysis, An Introduction (1998),
with applications to electromagnetism and heat, exploiting the



convenient new features that had become available. It was intended as
a guide for students in individual or supervised laboratory work,
illustrating the corresponding physics courses.

The present textbook exploits version 5 of FlexPDE, which is
marketed both as a Professional Version and a Student Version. The
latter is limited to five simultaneous PDEs and also restricts the
number of node points in space. This version of FlexPDE may be
used with Linux and MacIntosh, as well as under MS Windows.

I am deeply indebted to my late friend Dr. Russell Ross, formerly
of the University of East Anglia, UK, for reading and criticizing
earlier typescripts, as well as for working through the examples. His
intelligence and vigilance made him the ideal pilot user.

Finally I gratefully acknowledge the support of Mr. Robert Nelson,
PDE Solutions, Inc., the demon programmer behind FlexPDE. His
prompt attention to my innumerable queries about the operation of his
software was essential to the success of this work.

Gunnar Backstrom

The finite-element software package used for this book (FlexPDE) is
marketed by

PDE Solutions Inc
PO Box 4217, Antioch, CA 94531-4217, USA
Phone: +1 925 776 2407
Fax: +1 925 776 2406
Email: sales@pdesolutions.com
http://www.pdesolutions.com
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1   Introduction

The classical fields of physics are governed by partial differential
equations. Some exact solutions are available, but not commonly in
cases of practical interest. Even when solutions exist, they tend to be
complicated and must be evaluated numerically for graphical
presentation in digestible form.

Finite element analysis (FEA) is a numerical approach in which the
field domain under study is divided into a multitude of regions, each
giving rise to one or more equations. The main task is to solve all
these hundreds of simultaneous equations, which was impracticable
before the days of transistorized computers.

An enormous number of textbooks on finite element analysis exist
today, and they all present the various mathematical procedures in
detail. They assume that the reader will make calculations on simple
systems by hand and then type FORTRAN code or other, provided in
an appendix, in order to handle more complex situations.

Some thirty years ago, the choice was between writing one’s own
programs or abstaining completely from FEA. Today, expert software
saves students from worrying about programming strategy, formatt-
ing, indices and graphics. The tools of FEA are now on anyone’s
desk, since the average personal computer is adequate for solving a
large number of such problems.

Now a program exists that permits you to enter the equations and
the boundary conditions required by your mathematical model, solve
them automatically, and present the results graphically in a variety of
ways.

The software that achieves these wonders is FlexPDE® from PDE
Solutions Inc. One of the attractive applications of this program is in
university education. An extremely large range of problems involving
classical fields may easily be studied in detail, and with realistic
boundary conditions. Non-linear equations and boundary conditions
as well as space-dependent materials properties are no longer serious
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limitations. The number of cases for study is virtually unlimited, and
by solving problems under various conditions the student may
develop an intuitive feeling for how fields behave.

No one would even consider taking courses in Object Oriented
Programming, with applications to advanced string, windows and
mouse handling, before using a modern word processor. We all leave
such chores to specialists, who spend years learning the tricks of their
profession and then devote more years to produce the software we use
every day.

Numerical algorithms and programming really have little to do
with the concepts of physical fields and if months, or even years, may
be gained by skipping the details of these items, then there is no
reason to hesitate. Every scientist has to make a choice about what to
learn and what to leave alone. No one can master all of physics, not
even all of classical physics. The real choice is between additional
ignorance within the discipline of physics or within some adjacent
field.

On the other hand, no scientist would be content to use a numerical
toolbox, such as FlexPDE, without knowing at least the principles of
operation. Some details are even essential for the formulation of
boundary conditions. In an attempt to include a general description of
the method and at the same time de-emphasize its importance to the
reader, I have included an appendix on this subject.

The main purpose of this volume is to illustrate how fields change
when you modify the geometry, introduce different materials, and
change the boundary conditions. It should be regarded as a
companion to ordinary physics textbooks. Most of the analytic
solutions in such texts may henceforth be replaced by FEA calcula-
tions, which yield better understanding of the physical phenomena.

Page References

As a reader, I have found that books generally contain much un-
necessary numbering, which is not only redundant but makes the text
tiresome to read. This made me choose a minimalist system for
internal references. Strictly speaking, the page number is the only
coordinate necessary. Hence, I have refrained from numbering figures
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and equations. Most often, there is only one figure on a page, and in
any case the risk of ambiguity is exceedingly small. Equations of
special importance have been marked by the bullet symbol  for later
reference. Hence, p.63 2 would point at the 2nd bullet on page 63.
Another simplification is that figures are discussed in the current text,
just before or after the figure.

The external reference2p37 is to be understood as “source 2, page
37”.

How to use this Book

This volume aspires to confer understanding of the fields of electro-
magnetism, heat transport, and electronic conduction by numerical
solutions of elementary problems. In a few, particularly simple, cases
we shall compare to known analytic solutions, but in most cases only
numerical methods are practicable.

The FEA method offers the advantage that similar problems may
be solved by the same procedure, mostly by mere modification of the
input data. Analytic methods, on the other hand, may require a
radically different formalism for handling a slightly different situa-
tion. In the case of non-linear equations, numeric solution normally is
the only option available.

To the ordinary physicist or engineer there is little point in
studying the analytic techniques for solving PDEs. This toil is for
specialized mathematicians, who devote their lives to extending the
range of problems tractable by exact means. For anyone interested in
applications, the analytic approach to PDEs is extremely time-
consuming, and the mathematical apparatus tends to obscure the
essential physical principles involved.

A better use of the student’s time and effort is to consider various
aspects of FEA solutions that illustrate the role of boundary con-
ditions and materials properties. The syntactic rules of FlexPDE are
simple and direct and may be learnt while solving elementary
problems. The investment made in getting acquainted with FlexPDE
is profitable, since PDEs occur in virtually all areas of physics and
engineering.
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FlexPDE allows us to treat finite-element analysis as a mathe-
matical tool, which means that the user does not have to know about
the numerous algorithms that constitute this powerful program
package. Basically, the latter is similar to other, more expensive,
products on the market. The insight gained by using FlexPDE will
thus prove to be valuable for future work with other programs.

Here are a few principles to keep in mind while studying this book.
♦ Do not be afraid of making errors. The computer does not go up in

smoke, and by correcting mistakes you learn the syntax.
♦ It is not enough to read the book. It shows a large number of

plotted results, but running the files yields additional figures that
are essential to understanding.

♦ Typing descriptor files is a way of learning. These lists illustrate
the practice of finite-element calculations, and the command words
constitute the language of FlexPDE.

♦ As you work with descriptors, take the opportunity of displaying
additional plots.

♦ Be inquisitive! Do not accept FlexPDE commands until you
understand what they achieve. Make a small test on your own by a
short descriptor file. Occasionally, modify examples in the book to
watch the effect.

♦ Allot time for the exercises. Some of them are simple variations of
examples in the same chapter. Others expect you to be more
independent. The important thing is to be active.

♦ Learn by doing!
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2   Graphical Facilities

When a solution to a partial differential equation has been obtained,
one would normally want to plot the results. Even if this is the last
stage of the process, it is the easiest one to learn. For this reason we
shall begin by studying the various modes of graphical presentation
available in FlexPDE.

Downloading the Free FlexPDE Program

There are two main modifications of the FlexPDE program, the
Professional Version and the (free) Student Version. These are
identical, except that in the latter the number of node points in space
and the number of equations are limited. This limitation is not serious,
however, since it permits almost all of the examples given in this
book to be run. In order to obtain a key file to open the Student
Version you just have to supply your name and address.

Both versions plus a number of examples are available on the
Internet under the address
www.pdesolutions.com
At this web site you are invited to download the latest version of the
program chosen. You should store the incoming file in a suitable
folder, such as flexpde5. The Student Version should be kept in a
separate folder, such as flexpde5s. After the data transmission, which
could take several minutes, you double-click on the file icon to install
the program. This final stage only takes seconds to complete.

Immediately after installation, FlexPDE is ready to be used. You
can now run the sample files included, and you may even modify the
numerical input values and obtain completely new results. A number
of the descriptor files found in this e-book will also be obtained on
downloading and may be run and modified for demonstration
purposes.
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Before starting to work with the program you should create a
special folder for your FlexPDE applications. Even if you could run
them from any folder, it is wise to create a special one, say
flexpde_exa, for your own problem descriptor files (scripts). First
open My Computer, select (C:) and then File, New, Folder and type
flexpde_exa over NewFolder.

The FlexPDE Editor

Double-clicking on the FlexPDE icon starts the program, and after
clicking on File in the left corner you will see the following menu.

Clicking on New Script makes a window appear where you browse
for the path (flexpde_exa) and then name your first problem
descriptor file, e.g. exa021. The extension (family name) is
understood to be .pde.

Naming gives rise to a new window, as illustrated below. The one
to the right is the editor, where you type the script using the headings
(red) already present as a guide.
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The lower left area is the status window, recording the operations
performed when an application is executed.

Plotting Functions of One Variable

We shall now create a file that defines your first task: just plotting a
function of one variable and its derivatives. We use the editor to enter
the following descriptor (script) file.

The upper-case words are reserved for the program and will be
used again and again in all descriptors. They mark the beginning of a
segment where you enter instructions and data pertinent to the
problem at hand. In this book, keywords will be printed in bold when
used for the first time, or else discussed in the text.

The editor automatically adds colors to different kinds of entries in
order to enhance readability.

In this book we use the Student Version 5, with few exceptions.

TITLE          { exa021.pde }
   'sin(x)+ x* cos(x)'
COORDINATES { Student Version 5 }
   cartesian1 { This is a one-dimensional application }
DEFINITIONS
   Lx=10
   f=sin(x)+ x* cos(x) { Function to be plotted }
   fx=dx(f) { First derivative }
   fxx=dxx(f) { Second derivative }
BOUNDARIES
region 'domain'  { Region for plot }
   start(-Lx) line to (Lx)  
PLOTS
   elevation(f, fx, fxx) from (-Lx) to (Lx)
END

Notice that a string of characters, such as the title, must be
delimited by quotes. The curly brackets { } enclose comments which
helps us to remember the purpose of various lines, and these portions
are not processed by the program. For instance, it is wise to include
the intended name of the descriptor file on the first line. The names in
this book use the chapter number for the first digits.
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The mathematical notation used under definitions is much like that
of most programming languages. The sign ∗ means “multiply” and ^
means “raise to a power”. FlexPDE is case-insensitive, which means
that f and F are treated as identical variables.

Standard functions are also available, such as sin( )x  above. In
addition, partial derivatives are allowed operators. The derivative
∂ ∂f x/  is simply denoted dx(f), and so on. A higher derivative may be
written dx(dx(f)), or simply dxx(f).

The last section specifies an elevation plot, which effectively is a
set of curves. You may plot several functions in the same figure, but
that is useful only if the function values are of comparable magnitude.

In order to make the script file more readable it is helpful to indent
lines containing your statements. You may design the page to suit
your personal taste, and the above style is only a suggestion.

Running the Problem Descriptor File

A click on the yellow lightning symbol at the top of the editor
window starts execution of the program and immediately produces
the figure below.
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In this plot, the three curves a, b and c may be identified by means
of their colors and the table on the right. The curves permit you, for
instance, to relate zero crossings to minimum and maximum points.

After this you may want to explore other functions f x( )  in a
similar manner. If an expression is more complicated than in the
above model descriptor, divide it into groups of terms and let it run
over two lines if necessary. The program interprets the contents of
each line in an intelligent manner, and no continuation signs are
needed. If this would make an expression more clear, you may
separate terms by extra spaces.

Plotting Functions of Two Variables

Next we shall study a function of two variables, which is what this
software is primarily designed to handle. When typing the new
descriptor file you have two options. Either you click on File, New
Script and type all the lines required, or you Open a previous file
(exa021), click on SaveAs to make a copy under a new name, and
then modify lines as needed. If the new file should be rather similar to
the previous one, the latter alternative is of course preferable.

As shown in the definitions segment, a line may contain two or
more assignments, without any marks (except spaces) to separate the
statements.

Since the present function depends on two variables, the program
requires that we reserve a region in ( , )x y  space, here of size 1 by 1.
In the boundaries segment we define the shape and size of this region
by a set of ( , )x y  coordinates, connected by straight lines. We always
draw the boundary of a region in the positive sense (counter-
clockwise), so that the interior of the region remains on our left as we
go around.

To obtain a region we must close the boundary by going back to
the starting point. The command close achieves this.

An elevation plot of a function f x y( , )  always refers to a line in
the ( , )x y  plane, specified by the from...to statement. This type of plot
displays the height of the function surface above the given line.
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TITLE          { exa022.pde }
   'x^2+ 2*y^2'
SELECT
   spectral_colors { Values from red to violet }
DEFINITIONS
   Lx=1     Ly=1     f=x^2+ 2*y^2
   grad_f=vector( dx(f), dy(f))     laplace_f=dxx(f)+ dyy(f)
BOUNDARIES
region 'domain'                     { Closed by return to start }
   start (-Lx,-Ly) line to (Lx,-Ly) to (Lx,Ly)  to (-Lx,Ly) close
PLOTS
   grid( x, y)     { Triangular mesh }
   surface( f) { Surface in 3 dimensions }
   elevation( f) from (-Lx,-Ly) to (Lx,Ly)   { Height of f(x,y) above line }
   contour( f)                     { Contour plot of function }
   contour( f) painted { Color coded in plane }
   vector( grad_f) as 'Gradient' { Arrow plot with a title }
   contour( laplace_f)               { Test if f(x) is harmonic }
END

When we run this file, the program presents all the plots as
miniatures on the screen. A double-click anywhere inside a selected
figure will enlarge it. Another double-click restores the mosaic of
miniatures.

A figure may be copied on paper by right-clicking and selecting
Print. Alternatively, you can use the PrtScr (print screen) key on your
PC and paste the plot to a word processor.
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In the final section of the script we begin by plotting the grid
(above), which shows how the domain is divided into cells. FlexPDE
computes one function value for each of the corners of a triangular
cell, and one value at each midpoint of a side. These are the reference
data, and in order to obtain values at intermediate points, and to form
derivatives, the program interpolates by fitting polynomials P x y( , )
to the known values. Normally, we do not need to request a grid plot,
because such a plot automatically appears below the status window.

The second figure (below) produced by this file is a plot of a
surface that presents function values as heights over the ( , )x y  plane.
This figure also presents f x y( , )  by the colors of the rainbow in the
order of the frequency (or energy) of light, i.e. the lowest values by
red and the highest ones by violet. This also associates with
temperature, in the sense that a metal first becomes red then bluish-
white when heated. Under select we specify spectral_colors, since the
reverse order is the default.

All points on the surface having values between 2.00 and 2.10, say,
are in the same color. This means that the borderline between two
colors corresponds to a value of f x y( , )  that may be read off the table
to the right of the plot.
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The above surface is viewed at a certain angle with respect to the
coordinate axes, but you can move the “camera” by right-clicking on
the plot, and then click on Rotate. The three values given just above
the list to the right indicate the current position of the viewpoint, i.e.
the camera coordinates ( , )x y  and the elevation angle in degrees.

The next figure (below) is an elevation plot on a diagonal line in
the ( , )x y plane.

The fourth figure is a contour plot (below) consisting of a set of
curves in the ( , )x y  plane, each curve corresponding to a constant
value of f. These function values may be read off the adjoining table,
which also indicates the minimum and maximum values over the
domain. This is similar to a surface plot viewed from above, the
borderlines between the different colors forming the contours.
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The painted contour plot below is simply a plot with colored
spaces between the contours.

Alternatively, this plot may be regarded as a picture of a surface
plot, taken straight from above. The color code yields a quick
overview of the surface representing the function.

A new feature under definitions is the vector grad_f, formally
defined by
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grad( )f f f
x

f
y

≡ ∇ ≡ +i j∂
∂

∂
∂

  

where i and j are vectors of unit length along the x and y axes. We
express this vector simply in terms of its components dx(f) and dy(f).
This permits us to represent the gradient field by arrows.

Each arrow shows the direction of maximum slope and (by its
length) the corresponding magnitude, also indicated by colors as
shown below.

In this particular case all arrows point away from the center, which
shows that a minimum is located at the origin (0,0).

The last figure on the screen shows the result of applying the
∇ -operator twice to obtain laplace_f, as follows.
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∂

∂
∂
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∂

                                      

The corresponding contour plot (below) exhibits no curves at all, and
the maximum and minimum values are both closely equal to 6.0,
differing only in the 4th decimal. This means that the function
laplace_f is constant. The fact that ∇2 ( )f  is different from zero also
indicates that f x( )  is not a harmonic function1p477.
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We notice that there are now two tabs on top of the editor,
corresponding to the scripts. Clicking on tabs, it becomes easy to
return to earlier scripts and plots from the same session.

Help and Manual

FlexPDE offers a Help button, which provides information about the
various commands, including the syntax of their use. Refer to this
source whenever you encounter a command that does not seem
familiar. The program also comes with a printed manual.

Exercises

Explore the following functions, perhaps with modified values of Lx
and Ly.

 f x y= 2

 f x y= 2 2

 f x y= +sin( )5 52 2
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3   “Curly” Velocity Fields

In the preceding chapter we demonstrated various aspects of more or
less arbitrary functions. We are now about to study more realistic
fields, similar to those occurring in the mechanics of fluids, where a
velocity vector may be defined at every point of the field.

We shall consider a few simple cases where a fluid rotates around
an axis. This means that the velocity v at every point is perpendicular
to the radius vector and that its magnitude is v = ω r . These facts
may be summarized by a determinant expression, yielding the
velocity vector:

v w r
i j k

= × = =
−
−
−

R
S|
T|

U
V|
W|

ω ω ω
ω ω
ω ω
ω ω

x y z

y z

z x

x yx y z

z y
x z
y x

                    

We restrict our study to the ( , )x y  plane, i.e. vz  in the third row
must be zero. This generally requires ω ωx y= = 0 , leaving us with
only the z-component, which we shall simply call ω .

Liquid, Rotating as a Disk

In this case, ω  will be the same over the entire domain. The following
descriptor is what we need to explore the various features of this
motion. In order to define a circular domain we need the new
command arc, which permits us to draw a sequence of quarter-circles.
In the definitions segment we have included the special differentials
div(v) and ∇×va fz , the latter being the z-component of curl(v). The
definitions of these operations in ( , )x y  coordinates are

∇⋅ ≡ = +v vdiv( ) ∂
∂

∂
∂

v
x

v
y

x y      
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and

∇× ≡ = =
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−
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where we now use only the third (z) component.
TITLE                   { exa031.pde }
   'Liquid Rotating as a Disk'
SELECT { Student Version }
   spectral_colors
DEFINITIONS                                     { SI units }
   r1=1.0     rad=sqrt(x^2+y^2) { Radius=square root }
   omega=1.0      { Angular velocity }
   vx=-omega*y     vy=omega*x               { Velocity components}
   v=vector( vx, vy) { Velocity vector }
   vm=sqrt(vx^2+vy^2)                                   { Magnitude of v }
   div_v=dx(vx)+ dy(vy)     curl_z=dx(vy)- dy(vx)
BOUNDARIES
region 'domain'  start(r1,0)
   arc to (0,r1) to (-r1,0) to (0,-r1) close  { Circular arc }
PLOTS
   contour( vx)     contour( vy)     contour( vm)
   contour( div_v)     contour( curl_z)     vector( v)
END
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The above figure shows the vector plot of the velocity. The
divergence div_v turns out to be constant, with the value zero. The
contour plot of curl_z is also trivial, since the function has the almost
constant value 2.000. Of course, we could easily calculate these
functions exactly by hand in this simple case, but we shall find
similar plots convenient with other, more complicated velocity fields.

Non-Constant ω
We next explore a situation where the angular velocity ω varies with
the radius R. Such a variation could exist in a liquid, but we need not
discuss in detail what would be required to make it move the way we
specify. In the descriptor below, modeled after exa031, we choose the
function ω = 1 2/ R .
TITLE                   { exa032.pde }
   'Non-Constant Omega'
SELECT
   spectral_colors
DEFINITIONS                                     { SI units }
   r1=1.0
   rad=sqrt(x^2+y^2)     omega=1/rad^2  { rad=R }
   vx=-omega*y     vy=omega*x      { Velocity }
   v=vector( vx, vy)     vm=sqrt( vx^2+vy^2) { Magnitude }
   div_v=dx(vx)+ dy(vy)     curl_z=dx(vy)- dy(vx)
BOUNDARIES
region 'domain'
   start(r1,0) arc to (0,r1) to (-r1,0) to (0,-r1) close  
PLOTS
   contour(vx)     contour(vy)
   contour( abs(vx)) log   { Log10 of absolute value }
   contour( abs(vy)) log
   contour( div_v)     contour( curl_z)
   contour( vm) log     vector( v/vm) { Unit magnitude }
END

Evidently, the contour plots of vx and vy are trivial, because most
of the variation occurs close to the origin.

In order to follow the variation over a large range of function
values, we use the modifier log to request a contour plot with a
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10-logarithmic scale. The logarithmic plots of the magnitudes of vx
and vy now appear to be similar, except for a rotation through 900.

The plot of curl_z may seem peculiar. It actually consists of a
number of irregularly shaped zero contours. Other contours listed in
the table correspond to magnitudes below 10-12, whereas we obtained
2.0 in exa031. In view of the round-off errors always present in
numerical calculations we take this to mean that the value of curl_z is
zero over the whole region, which we can readily verify by exact
calculus. The divergence div_v also seems to be zero.

By a contour plot of vm and a normalized vector plot (v/vm) we
present both the speed and the direction at various points. Thus these
two graphs together completely characterize the vector field.

We now proceed to a similar case with ω = sin( )R , which only
requires the following changes of the descriptor exa032.
TITLE                 { exa032a.pde }
   'Non-Constant Omega'
…
   rad=sqrt( x^2+y^2)     omega=sin( rad)
...

Running this file, we find that curl_z becomes clearly different
from zero, although the liquid appears to circulate much the same
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way as it did before. The value of the divergence div_v, however, still
vanishes.

What kinds of rotary motion yield non-zero values of curl_z? In
textbooks on vector analysis we find the definition

curl( ) limv v v lz z CS S
d≡ ∇ × ≡ ⋅

→ za f
0

1                     

where the line integral is taken over a closed curve C of area S in the
( , )x y  plane. The situation is depicted in the next figure, where we
have drawn an area element (gray) that will eventually shrink to
negligible size. This element is limited by two radial and two circular
segments. The velocity v is directed along the circular paths; hence
the radial parts contribute nothing to the integral. The contribution
from a circular segment is just the speed vm multiplied by the length
of the arc, and since these two terms are of opposite sign they might
accidentally cancel.

In exa031 the outer path was longer and, in addition, the speed was
larger there. Each of these enhancing factors was proportional to the
radius and the result was a nonzero value of curl_z.

In the case of the liquid with ω = 1 2/ R , the smaller velocity on the
outer path compensates exactly for the increase of the path length,
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which makes curl_z equal to zero. Generally, one might say that a
vanishing curl is a rare accident.

In the following file, which is based on exa031, we first make an
elevation plot on the curve 'inner', which is a circle and may be
eccentric (due to r0). We define it by a feature, a curve that is closed
but does not form a region. Here, we use the convenient command
angle to draw the second circle.
TITLE                  { exa031a.pde }
   'Liquid Rotating as a Disk, Curl'
SELECT
   spectral_colors
DEFINITIONS                                     
   r1=1.0     r2=0.3     r0=0.2
…
region 'domain'
   start(r1,0)  arc to (0,r1) to (-r1,0) to (0,-r1) close  
feature
   start 'inner' (r0+r2, 0) arc( center=r0,0) angle=360
PLOTS
   elevation( tangential( v)/(pi*r2^2) ) on 'inner'  {  Curl_z }
   contour( vm/(pi*r1^2)) {  Average }
END

The software enables us to estimate curl_z by means of a line
integral. We need to calculate the integral of
 v l⋅ ≡d v dlt

along a closed curve, vt  being the component of v tangential to that
curve. The command tangential selects the vector component vt . The
program automatically calculates the integral of the function plotted,
and we divide that by the area S of the smaller circle. The result is
displayed on the bottom line of the following plot.

The line integral for ∇ × va fz  should really be taken to the limit of
vanishing r2, but in this simple case that would not be necessary. If
we were to decrease the radius of the curve by a factor of 10, say,
there would be too few triangular cells to guarantee reasonable
accuracy.
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In a contour plot of vm we automatically obtain the area integral
over ( , )x y  space. Dividing by the area of the domain we generate the
average value.

In the past examples we noticed that the divergence of the velocity
field was zero. In order to understand why this happens we consider
the integral definition

div( ) limv v v n≡ ∇ ⋅ ≡ ⋅
→
zz

V V
da

S0

1 ,   

where the integral is now taken over the surface S of a volume
element V as shown in an earlier figure (p.20). The cylindrical
surfaces of the box give no contributions to the integral, since v is
perpendicular to the normal n on these surfaces. Two of the limiting
planes are parallel to the ( , )x y  plane. The integral over these planes
also adds nothing, because the velocity is always confined in the
( , )x y  plane. As regards the radial planes, they give equal con-
tributions, but of opposite signs, since the velocity depends on the
radius R in the same way on both of them. Thus, whenever ω depends
on R only, the divergence must be zero.
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More General Velocity Fields

In previous examples we were concerned with rotation about an axis,
and the angular velocity depended only on the radius. That was
clearly a special case of fluid motion. We shall now look at a more
general field, where the velocity components are independent
functions of R. Let us introduce the following (arbitrary) definitions
into a copy of exa032, produced by SaveAs.
TITLE                   { exa033.pde }
   'More General Velocity Field'
SELECT
   spectral_colors
DEFINITIONS                                     
   r1=1.0   rad=sqrt(x^2+y^2)          
   vx=rad*tan( rad)   vy=exp( rad)
…

The resulting contour plot of the divergence shows non-zero
values, as seen in the figure below.

The contour plot of curl_z also exhibits non-zero values. The
vector plot of the velocity, however, reveals no signs of any
circulating motion that could lead us to suspect non-zero curl_z.
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The lesson to be drawn from the examples of this chapter is that
the appearance of a velocity field, as given by a vector plot, is not
sufficient to assess whether curl or div is zero or not. We always need
to apply the differential or integral definitions to make this distinc-
tion.

Exercises

  Try ω = 1 R  in one of the above descriptors.
  Try ω = R2 and estimate the curl by a line integral. Then do it

again with a different center for the smaller circle.
  Plot the vector fields curl( grad( x^2+y^2)) and curl( grad( x^2+y^3)).
  Invent your own functions of ( , )x y  for vx and vy and calculate the

curl and the divergence.
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4   Fields of Gravitation

Massive objects create a force field, acting on any other mass. This
force may be expressed in terms of a potential function U. For a point
mass at ( , )x y0 0 , the potential may be written

U G m
R

G m
x x y y

= − = −
− + −( ) ( )0

2
0

2

where G is the gravitational constant and R the radial distance from
the point mass to the field point.

Earth and Moon as Point Masses

Let us choose the Earth-Moon system as a concrete example, using
the following descriptor. Throughout this volume we shall use SI
units (kg, m, s, etc.) for all physical quantities.
TITLE          { exa041.pde }
   'Earth-Moon Gravitational Field'
SELECT { Student Version }
   spectral_colors     { From red to violet }
DEFINITIONS                                     { SI units }
   d=3.84e8     Lx=d     Ly=d
   m1=5.98e24     m2=7.35e22     { Masses of Earth and Moon }
   G=6.67e-11 { Graviational constant }
   U=-G*m1/sqrt(x^2+y^2)- G*m2/sqrt(x^2+(y-d)^2)
   gx=-dx(U)     gy=-dy(U)                 { Field components }
   gv=vector( gx, gy)     gm=sqrt( gx^2+ gy^2)  { Vector and magnitude }
BOUNDARIES
region 'domain' start(-Lx,-Ly/2)
   line to (Lx,-Ly/2) to (Lx,3/2*Ly)  to (-Lx,3/2*Ly) close
PLOTS
   contour( U)     contour(-U) log     surface(-U) log
   contour( abs( gx)) log     contour( abs( gy)) log
   contour( gm) log
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   vector( gv/gm) as 'Field directions'
END

For the potential U we simply write a sum of terms of the form
−Gm ri i/ , where G is the gravitational constant, mi  the masses of the
objects and ri the distances to the field point. The relation g = −∇U
then yields the gravitational field strength. We place the origin at the
center of the Earth, and the Moon at a distance d on the y-axis.

The contour plot of U yields curves that all lie close to the Earth.
In order to study the function over the full domain we request a
logarithmic plot of -U, rather than the direct value.

The logarithmic plot of the magnitude of g (below) demonstrates
how the Moon perturbs the Earth’s gravitational field. In fact, there is
a region (red) close to the Moon where the field seems to be zero.

The point where the magnitude of the field vanishes is also evident
from the vector plot below, where the field direction at that point
seems to be undetermined.
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Planets of Finite Size

Using the next descriptor we shall look more closely at the field
around each planet. In order to indicate these objects we cut out the
areas occupied by the Earth and the Moon from the domain. This is
also a better presentation in the sense that our potential strictly applies
only to the region outside the massive objects.

In order to exclude a region occupied by a planet we simply define
its contour. For drawing circles we use the command arc in the
simple way demonstrated on p.21. We just specify the center
coordinates and the angle for one full turn. The descriptor has much
in common with exa041.
TITLE                      { exa042.pde }
   'Earth-Moon Gravitation, Close to the Earth'
SELECT
   spectral_colors
DEFINITIONS                                                 
   d=3.84e8     r1=6.37e6     L=10*r1   
   m1=5.98e24     m2=7.35e22     { Masses of Earth and Moon }
   G=6.67e-11 { Graviational constant }
   U=-G*m1/sqrt(x^2+y^2)- G*m2/sqrt(x^2+(y-d)^2)
   gx=-dx(U)     gy=-dy(U)                 { Field components }
   gv=vector( gx, gy)     gm=sqrt( gx^2+ gy^2)  { Vector and magnitude }
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   gv_angle=sign(gy)*arccos( gx/gm)/pi*180             
BOUNDARIES
region 'domain'
   start(-L,-L) line to (L,-L) to (L,L) to (-L,L) close
   start(r1,0) arc( center=0,0) angle=360 { Exclude Earth }
PLOTS
   grid(x,y)
   contour( gm) as 'Magnitude'     contour( gm) log
   surface( gm) log
   vector( gv/gm)     contour( gv_angle)
END

The following grid plot shows that the program automatically
divides the area into smaller triangles as you approach an object, in
this case a planet. This is useful since we are going to inspect the
behavior of the gravitational field at close range.

The shrinking of cells size close to an object is the first example of
the adaptive gridding employed by the program. Inspecting the grid
plot we understand why it would not practicable to show both planets
in the same figure. Using the Student Version, this example requires
608 nodes, while the maximum allowed is about 800. For this reason,
we shall present the field close to the Moon separately.
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From the next plot we find that the maximum magnitude of the
gravitational field occurs on the surface of the Earth and has the value
9.83.

In the vector plot below, you will notice that some arrows seem to
penetrate into the region reserved for the Earth. This occurs because
an arrow presents the field existing at its base, not at the tip.
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Since a field normally has a direction at each point in space, we
may also request a contour plot of the angle of direction. This we do
in the last plot (not shown), just inverting the equation cos /θ = g gx m
and then converting from radians to degrees. This leaves an
ambiguity concerning the sign of the direction, which we resolve by
means of the sign function.

The next task will be to plot the field in the neighbourhood of the
Moon. To do this we only need to modify the geometry in exa042 as
follows.
TITLE                    { exa042a.pde }
   'Earth-Moon Gravitation, Close to the Moon'
SELECT
   spectral_colors
DEFINITIONS                                                 
   d=3.84e8     r2=1.74e6     L=10*r2
…
region 'domain'
   start(-L,d-L) line to (L,d-L) to (L,d+L) to (-L,d+L) close
   start(r2,d) arc( center=0,d) angle=360 { Exclude Moon }
PLOTS
…

The angle plot below shows that the field now is strongly
asymmetric, because of the influence of the Earth’s gravitation.
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Next, we explore the field in a region between the Earth and the
Moon. The following amendments to exa042 are required.
TITLE                    { exa042b.pde }
   'Earth-Moon Gravitation, Intermediate Region'
SELECT
   spectral_colors
DEFINITIONS                                                 
   d=3.84e8     r2=1.74e6     L=15*r2
…
region 'domain'
   start(-L,d-2*L) line to (L,d-2*L) to (L,d) to (-L,d) close
   start(-r2,d) arc( center=0,d) angle=180 line to (-r2,d) { Moon }
PLOTS
…

The following is a logarithmic contour plot of g  over a region that
includes the neighborhood of the Moon and extends somewhat in the
direction of the Earth. Here, a deep minimum indicates the point
where the gravitational field vanishes. The gradual deformation of the
circular contours around the Moon, caused by the Earth’s attraction,
is clearly visible.
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Divergence of g

Before leaving the gravitational field we should investigate whether
the divergence, ∇⋅ ≡ −∇g 2U , is equal to zero. For this purpose we
add the following definition before boundaries to a copy of exa041
and make the corresponding contour plot.
TITLE                    { exa041a.pde }
   'Earth-Moon Gravitation, Divergence'
…
   laplace_xy=dxx(U)+dyy(U)     { Divergence of gv in (x,y) coordinates }
BOUNDARIES
...
PLOTS
   contour( abs( laplace_xy)) log
END

To the reader who knows that the divergence of a gravitational
field in free space vanishes, the following plot of laplace_xy may
come as a shock.

We are in three dimensions, however, although the plots are in a
plane through the two planetary objects. If we had included the term
dzz(U), which is not allowed in the 2D version of the software, we
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would in fact have obtained the irregular contours suggesting zero
divergence.

Exercises

  Modify exa041 by adding a contour plot of curl(g)z.
  Change exa042 by making an elevation plot of gm along the line

y=0.
  Convert the contour plots in exa042b to painted. Also try a

logarithmic elevation plot along the line of symmetry.
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5   Fields around Electric Charges

Using basic knowledge of the electrostatic potential3p72 we may easily
explore the field E around a set of point charges. The starting point is
Coulomb’s law, which leads to the following expression for the
electrostatic potential of a point charge q at ( , )x y0 0 .

U q
R

q
x x y y

= =
− + −4 40 0 0

2
0

2πε πε ( ) ( )
  

Here, ε 0 is the permittivity of free space.

Field around Two Positive Point Charges

Under definitions in the following descriptor, we enter an expression
for the potential U. It is just the sum of two terms of the above type,
one for each of the charges. Here, we introduce short forms for the
gradient and magnitude of a vector, which the program expands
exactly as we did explicitly in earlier descriptors.
TITLE          { exa051.pde }
   'Two Equal Point Charges'
SELECT { Student Version}
   spectral_colors { From red to violet }
DEFINITIONS                                     { SI units throughout }
   Lx=1     Ly=1     d0=Ly/2     r0=8e-2     q=1    { Both charges positive }
   eps0=8.85e-12     c=1/(4*pi*eps0)
   U=q*c/sqrt(x^2+(y+d0)^2)+ q*c/sqrt(x^2+(y-d0)^2)
   Ex=-dx(U)     Ey=-dy(U)                  { Field components }
   E=-grad(U)     Em=magnitude(E)                      
   E_angle=sign(Ey)*arccos(Ex/Em)/pi*180 { Degrees }
BOUNDARIES
region 'domain'
   start(-Lx,-Ly)  line to (Lx,-Ly) to (Lx,Ly)  to (-Lx,Ly) close
   start(r0,-d0) arc( center=0,-d0) angle=360 { Exclude circle }
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   start(r0,d0) arc( center=0,d0) angle=360 { Exclude circle }
PLOTS
   contour( U)   contour( Ex)   contour( Ey)
   contour( abs(Ex)) log   contour( abs(Ey)) log
   contour( Em) log   vector( E/Em)   contour( E_angle)
END

Under boundaries we exclude small circular regions containing the
singularities at the point charges, as we already did with the Earth
(p.28). In this way, we avoid very large potential and field values,
which would dominate the plots.

We see that the plot of the magnitude Em below is much simpler
than the logarithmic plots for the magnitudes of Ex  and Ey .

The field directions are illustrated by the vector plot, or alter-
natively by the contour plot of the angle, shown next. In the latter
figure, the contours corresponding to 1800 have degenerated into
bands, which may be an unintended feature of the software.
Unfortunately some curve identifications are missing in this plot, but
the contours may still be assigned to the angles given in the table
since we know that the field lines must leave a point charge in a radial
direction. This fact and the alphabetic order permit us to assign angles
to all the curves.



36

Positive and Negative Point Charges

It is interesting to study a slight variation of the preceding descriptor.
Let us change the sign of the first charge to negative in the expression
for U shown below.
TITLE          { exa052.pde }
   'Positive and Negative Point Charges'
SELECT
   spectral_colors
DEFINITIONS                                     
   Lx=1     Ly=1    d0=Ly/2     r0=8e-2     q=1          
   eps0=8.85e-12     c=1/(4*pi*eps0)
   U= -q*c/sqrt(x^2+(y+d0)^2)+ q*c/sqrt(x^2+(y-d0)^2) { Signs: -, + }
…

Signs are of course hidden in the plots involving absolute values.
The plot of the magnitude E , however, does differ from what we saw
in the preceding case, especially as regards the field halfway between
the charges.
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The corresponding vector plot illustrates how the field lines
proceed from the upper to the lower charge.

The Dipole Field

We now proceed to an extreme case of the preceding example: the
electric dipole. This object is a combination of a positive and a
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negative charge (±q), at a distance of 2 0d  from each other. The
product 2 0d q is known as the dipole moment, and at distances much
larger than d0 the resulting field is similar to that of an infinitesimally
small dipole having the same moment. The electric dipoles occurring
in the real world are of course of finite extension, but the expression
for the field3p83 becomes simpler in the limit of vanishing d0.

The high precision of FlexPDE permits us to plot the dipole field
directly from the point charge potentials we used in exa052. We
change the name to exa052a and reduce the charge distance to a very
small value. We also prefer to exclude a single region centered on the
dipole.
TITLE        { exa052a.pde }
   'Dipole of Point Charges'
SELECT
   spectral_colors
DEFINITIONS                                     
   Lx=1     Ly=1     d0=Ly*1e-6     r0=3e-2     q=1      
…
   start(r0,0) arc( center=0,0) angle=360    { Replaces two circles }
PLOTS
…

The first of the following figures shows the characteristic vector
plot of E for the dipole field.
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The second figure (the contour plot of Em) is remarkably simple.
Together with the vector plot it uniquely describes the field. Looking
back at the corresponding figure of the previous configuration we may
imagine how the contours gradually transform as we go from the near
field to the far field.

Field around Charged Wires

The three-dimensional field due to two equal point charges has a
counterpart where the field is caused by charged wires perpendicular
to the ( , )x y  plane. In that configuration, the fields in all planes
parallel to the base plane are identical, and the field may thus be
called two-dimensional (2D).

Let qw denote the charge per unit length of the wire and R the radial
distance. The expression for the electrostatic potential of a wire
through the origin is known to be3p89

U q R q x y q x y
w

w w w= − = −
+

= −
+ln( ) ln( ) ln( )

2 2 40

2 2

0

2 2

0πε πε πε

In order to study this new field you only need to change a few lines
in the definitions segment of exa051 and add two plots. The most
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convenient way is to save that file as exa053 and modify the latter as
follows.
TITLE          { exa053.pde }
   'Positively Charged Wires'
SELECT
   spectral_colors
DEFINITIONS
   Lx=1     Ly=1     d0=Ly/2     r0=8e-2     qw=1 { Both charges positive }
   eps0=8.85e-12     c=1/(4*pi*eps0)
   U=-qw*c*ln(x^2+(y+d0)^2)- qw*c*ln(x^2+(y-d0)^2) { Natural logarithm }
…
   contour( del2(U)) { Plot of Laplacian }
   contour( dx(Ey)- dy(Ex))   { Plot of curl_z }
END

The 2D field will look much the same as the cross-section of the
3D field through the point charges, but a closer inspection reveals
certain differences. Comparing the plots of the angle, for instance, we
find that the contour for the angle zero now looks circular, whereas it
was definitely oval in the case of point charges (exa051).

In this file we use the short form del2(U) for ∇2U , which the
program automatically transforms into derivatives. The plot of this
expression indicates a vanishing Laplacian, and the same is true of the
z-component of curl(E).
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Dipole of Charged Wires

The 3D dipole field has its 2D counterpart generated by two adjacent,
charged wires. The changes to exa053 required to study this case are
shown below.
TITLE        { exa053a.pde }
   'Dipole of Charged Wires'
SELECT
   spectral_colors
DEFINITIONS
   Lx=1     Ly=1     d0=Ly*1e-6     r0=3e-2     qw=1
   eps0=8.85e-12     c=1/(4*pi*eps0)
   U=qw*c*ln(x^2+(y+d0)^2)- qw*c*ln(x^2+(y-d0)^2)
…
   start(r0,0) arc( center=0,0) angle=360     { Replaces two circles }
PLOTS
…

The resulting plots are hard to distinguish from those due to point
charges, but there are definite differences, as illustrated by the
following figures. Surprisingly, the field direction is constant along
any radial line. It appears that the line corresponding to 180o is
diagonal for the wire dipole but rotated anti-clockwise for the point
dipole.
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The Gauss Integral

We may relate an integral of the field to the total charge Q qi= ∑  by
the Gauss relation3p324

D s⋅ =zz d
S

Q

where D E= ε 0  and S is the surface enclosing the set of charges Q.
Here, the vector ds is directed along the outward normal to the
surface S and its magnitude is equal to the area element.

A convenient feature of FlexPDE is that an elevation plot auto-
matically presents the integral of a function along a given line in the
plane. This information is displayed at the bottom of such a plot.

We now extend exa053 to calculate the Gauss integral over two
different, closed surfaces, both parallel to the z-axis. We obtain the
integral per unit length by an elevation plot over the intersection of a
surface with the ( , )x y  plane.

The first intersection ('box') includes the full domain, and the
second one ('half_box') contains half of the domain. In the following
descriptor, these curves are defined under boundaries.
TITLE          { exa054.pde }
   'Charged Wires, Gauss Integral'
SELECT
   spectral_colors
DEFINITIONS                                     
   Lx=1     Ly=1     d0=Ly/2     r0=8e-2     qw=1 { Both charges positive }
   eps0=8.85e-12     c=1/(4*pi*eps0)
   U=-qw*c*ln(x^2+(y+d0)^2)- qw*c*ln(x^2+(y-d0)^2)
   Ex=-dx(U)     Ey=-dy(U)     E=-grad(U)     Em=magnitude(E)
   D=eps0*E { Vector D }
BOUNDARIES
region 'domain'
   start 'box' (-Lx,-Ly)  line to (Lx,-Ly) to (Lx,Ly)  to (-Lx,Ly) close
   start(r0,-d0) arc( center=0,-d0) angle=360 { Exclude circle }
   start(r0,d0) arc( center=0,d0) angle=360 { Exclude circle }
feature  start 'half_box' (-Lx,-Ly)  { For line integral }
   line to (Lx,-Ly) to (Lx,0) to (-Lx,0) to (-Lx,-Ly)
PLOTS
   elevation( normal(D)) on 'box'     elevation( normal(D)) on 'half_box'
END
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In the first elevation plot we use normal to extract the component
Dn  and take the integral over the 'box' already created. The following
curve is the result.

The value of the integral becomes closely equal to 2 per unit length
in the z direction, which is to be expected since the surface includes
two wires with qw=1. The second integral yields one-half of that
value.

Positive and Negative Charges in (ρ,z)

In the preceding section and in the whole chapter on gravitation
(pp.25-33) we displayed fields in ( , )x y  space, although they are in
fact three-dimensional. What we illustrated there was a cross-section
of the field in a plane going through the objects. That plane is unique,
in the sense that the field vectors are confined in that plane. If we had
chosen a parallel plane at a certain distance from the objects, we
would have missed the field component perpendicular to that plane.

In the case of point charges located on a straight line, the field will
be axially symmetric. Consequently, if we make plots in a plane going
from the common axis outwards, we may completely describe the
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field. In the next example we shall thus use cylindrical coordinates
( , )ρ z  for the graphical presentation.

To study the field around opposite charges in this manner you only
need to save exa052 as exa054 and modify the latter as follows. The
first charge will now be of negative sign. Here, we introduce the new
segment coordinates, which specifies axial symmetry by ycylinder.
The components of E take the same form as in an ( , )x y  system.

TITLE          { exa055.pde }
   'Positive and Negative Point Charges in (r,z)'
SELECT
   spectral_colors
COORDINATES
   ycylinder( 'r', 'z')
DEFINITIONS                                     
   Lr=2     Lz=1     d0=Lz/2     r0=5e-2     q=1          
   eps0=8.85e-12     c=1/(4*pi*eps0)
   U=-q*c/sqrt(r^2+(z+d0)^2)+ q*c/sqrt(r^2+(z-d0)^2)
   Er=-dr(U)     Ez=-dz(U)                  { Field components }
   E=vector( Er, Ez)   Em=magnitude(E)                      
   E_angle=sign( Ez)*arccos( Er/Em)/pi*180 { Degrees }
   D=eps0*E { Vector D }
BOUNDARIES
region 'domain' { With half-circular indentations }
   start (0,-Lz) line to (Lr,-Lz) to (Lr,Lz) to (0,Lz) to (0,d0+r0)
   arc(center=0,d0) angle=-180 to (0,d0-r0) line to (0,-d0+r0)
   arc(center=0,-d0) angle=-180 to (0,-d0-r0) line to close
feature  { For line integrals }
   start 'can' (0,-Lz)  line to (Lr,-Lz) to (Lr,Lz)  to (0,Lz)
   start 'half_can' (0,-Lz) line to (Lr,-Lz) to (Lr,0) to (0,0)
PLOTS
   contour( abs(U)) log
   contour( abs(Er)) log   contour( abs(Ez)) log
   contour( Em) log   vector( E/Em)   contour( E_angle)
   elevation( normal(D)) on 'half_can'
   elevation( normal(D)*2*pi*r) area_integrate on 'half_can'
   elevation( normal(D)) on 'can'
END

Here, have excluded half-circular regions around the charges. Since
these are at the very boundary, we simply create two indentations.
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Even before we run this file, we may click on Controls, Domain
Review to verify that the boundary looks as we intended.

The following plot of Em confirms that we have excluded the
singularities. It also gives a rough idea about the field distribution,
when combined with a direction plot.

The above plot reports a value for vol_integral (which we shall not
use). This means that FlexPDE automatically integrates Em over 3D
space whenever cylindrical coordinates are declared.

In this descriptor we have defined two rectangular features named
'can' and 'half_can'. We generate a Gauss enclosure by defining three
lines: for the bottom, top and cylindrical surfaces. The enclosure
('can') may be thought of as generated by rotating this rectangle
around the axis.

We now need to integrate over a 3D surface, rather than along a
line. This means that we would have to multiply the integrand Dn  by
d s dl= 2πρ  (dl being the length of the line element) before sum-
mation to obtain the integral over cylindrical surface elements.

When ( , )ρ z  coordinates have been declared, however, the program
automatically includes the factor 2πρ , as is evident from the integral
of normal(D). As demonstrated, we may also supply the factor 2*pi*r
explicitly and attach the modifier area_integrate to eliminate the
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internal 2πρ  factor. The two integrals agree very well, but of course
the actual plots differ. The first alternative gives us the actual
variation of normal(D) along the feature.

This figure reports surf_integral to remind us that the integral is
automatically taken over a surface of rotation. The elevation plot of
Dn  is for the 'half-can'. The discontinuities of the integrand at the
corners are caused by the sudden changes of the normal direction. The
integral value is evidently what we should expect.

The last elevation plot yields the charge included by 'can', which
should be zero. The numeric value obtained by integration does not
vanish exactly, but it is very small compared to the value obtained for
'half_can'.

Exercises

Exploit SaveAs and the Copy, Paste facilities to simplify the
following tasks.

  Add a contour and a surface plot of Ex to exa051 and choose a
suitable viewing angle before printing.

  Modify exa052 by putting d0 equal to 0.1, to explore the transition
to a dipole field.
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  Using exa052a as a guide, plot a dipole field with the two charges
on a horizontal, rather than a vertical, line. How is the resulting field
different? Then plot the combined field due to both dipoles and study
the results.

  Add contour plots of div(E) and curlz(E) to exa052a. Explain the
different character of the results.

   Add contour plots of div(E) and curlz(E) to exa053a. Compare
the results to those of the preceding exercise.

  Type the expressions for the dipole field components3p83, into the
definitions segment of exa052a (notice that d=2*d0). Add logarithmic
contour plots of the analytic expressions for abs(Ex) and abs(Ey) and
compare to the previous results.



48

6   Laplace and Poisson Equations

We are finally coming to the core of this book: calculating a field
from the governing partial differential equation (PDE) and certain
knowledge about conditions on the boundary.

Known Values on Boundaries

The first example is the simplest one possible. We shall solve the
Laplace equation

∇ ≡ ∇⋅∇ ≡ = + =2
2

2

2

2 0U U U U
x

U
y

div grad( ( )) ∂
∂

∂
∂

  

using known values of U x y( , ) on a rectangular boundary. FlexPDE
accepts both div and grad as operators and transforms them internally
into the above 2nd-order PDE.

The following descriptor for this problem makes use of a few new
commands, given in bold characters. First we specify the maximum
relative error of the solution by the optional statement errlim=1e-5.
We can request this high accuracy, because we suspect that the
problem will be an easy one.

The next new keyword is variables, which heads the segment for
the dependent variable: the one to solve for. Then comes the
equations segment with the Laplace PDE.

The solution area limited by the boundary is called the domain. In
the boundaries segment, we specify values of the dependent variable
U on each of the four sides of the rectangle by value statements.

We could have supplied almost any function for the boundary
values, but the skeptical reader might want to convince himself that
the solution emerging is correct. The best way of checking the
numerical results is to use boundary values taken from an analytic
solution. It is known1p477 that the real as well as the imaginary part of
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any simple complex function f z( )  satisfies the Laplace equation.
Thus we specify U z x y= = −Re( )2 2 2 for every point on the
boundary. The program cannot “know” that U_ex actually is the
solution; it only uses the values on the boundary and the PDE. This
means that our test is non-trivial.
TITLE          { exa061.pde }
   'Laplace Equation'
SELECT { Student Version }
   spectral_colors     errlim=1e-5          { Requested relative accuracy }
VARIABLES
   U { Unknown }
DEFINITIONS
   Lx=1     Ly=1     U_ex=x^2- y^2 { Exact solution }
EQUATIONS
   div( grad( U))=0 { Laplace PDE }
BOUNDARIES
region 'domain' start(-Lx,-Ly)         
   value(U)=U_ex   line to (Lx,-Ly)  { U known on boundary }
   value(U)=U_ex   line to (Lx,Ly)
   value(U)=U_ex   line to (-Lx,Ly)
   value(U)=U_ex   line to close
PLOTS
   contour( U)     surface( U)     contour( U_ex)     contour( U-U_ex)
END
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In seconds, the program produces the above contour plot of the
solution.

The plots of U and U_ex are indistinguishable to the naked eye. In
anticipation we added a plot of U-U_ex, which presents the error of
the numerical solution. As you see from the next plot the error is less
than 10-9 of the maximum value of U for this number of nodes.

In this example we specified values on a rectangular boundary, but
we could just as well have made it triangular, circular or half-circular.
We could even have cut out areas inside the domain, supplying values
on the inner boundaries too. Rigorous literature on PDEs proves that
the Laplace equation has exactly one solution, if the values on the
boundaries are known.

Values and Derivatives on Boundaries

As an alternative to function values we could have specified values of
the normal derivative, ∇ ⋅ ≡U U nn ∂ ∂/ , taken in a direction n perpen-
dicular to the boundary, and outwards from the solution domain. Let
us use such a condition in a new descriptor, based on exa061, where
the region segment reads as follows.
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TITLE          { exa062.pde }
   'Laplace Equation'
...
region 'domain' start(-Lx,-Ly)
   value(U)=U_ex   line to (Lx,-Ly)       
   natural(U)=2*x   line to (Lx,Ly) { Outward derivative, dx(U) }
   value(U)=U_ex   line to (-Lx,Ly)
   value(U)=U_ex   line to close
…

The FlexPDE notation for ∂ ∂U n/  is natural(U), for obscure tradi-
tional reasons. Running this descriptor we again find excellent
agreement with the exact solution.

Multiplying through the PDE

There is an important point to notice about natural boundary
conditions. One would think that multiplying all the terms of a PDE
by the same factor would not change the solution, but this is not so. In
fact, we need to multiply the natural boundary conditions by the same
factor. This occurs because the program integrates the PDE by parts,
making this factor appear in the result. Let us illustrate this by a
modification of exa062.
TITLE        { exa062a.pde }
   'Laplace Equation, Multiplied'
...
   div( 5*grad( U))=0 { Laplace PDE }

   natural(U)=5*2*x   line to (Lx,Ly) { Outward derivative, dx(U) }
…

Running this file we find the same small error as before. If we
erase the multiplier in the natural boundary condition, however, the
error becomes very large.

We shall encounter several examples in this book, where a
multiplier occurs in this position inside the PDE. Usually, the factor is
not an integral number but a materials property.
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Derivative Boundary Conditions Only

Now let us proceed to the extreme case, supplying only derivative
conditions on all of the four boundary lines, using the modifications
to exa061 indicated below. For the line at the bottom of the rectangle
we must enter the downward derivative, ∂ ∂U y y/ ( )− = 2 .

TITLE          { exa063.pde }
   'Laplace Equation'
...
region 'domain' start(-Lx,-Ly)
   natural(U)=2*y   line to (Lx,-Ly)     { Outward derivatives }
   natural (U)=2*x   line to (Lx,Ly)
   natural (U)=-2*y   line to (-Lx,Ly)
   natural (U)=-2*x   line to close
...

The deviation of the numeric solution from the exact one is no
longer small, but it takes an almost constant value. This may be no
surprise, if you thought (correctly) that a function could not be
uniquely determined by its derivatives.

You may now guess that derivative boundary conditions are
sufficient except for a constant, and fortunately the program also
allows us to assign a value to a single point. Using this feature we
modify exa063 as follows.
TITLE        { exa063a.pde }
   'Laplace Equation'
...
region 'domain'   start(-Lx,-Ly)   point value(U)=U_ex
...

The point value statement must be typed immediately after the
parentheses containing the point coordinates. The value applies only
to that point and takes no effect later in the descriptor. Running this
descriptor file we obtain an error almost as low as for exa061.
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Solution over a Quarter-Circle

We shall now solve the Laplace equation over the first quadrant of a
circle, using Im( )z2  for the boundary values, as explained by the
partial descriptor below, based on exa061. Here we must supply
coordinates for the center of the arc in order to specify uniquely the
boundary curve we want.
TITLE          { exa064.pde }
   'Laplace Equation'
...
DEFINITIONS   
   r0=1     U_ex=2*x*y { Exact solution }
   ...
region 'domain'  start(0,0)
   value(U)=U_ex   line to (r0,0)
   value(U)=U_ex   arc(center=0,0) to (0,r0)
   value(U)=U_ex   line to close
...

Running this new descriptor you obtain the plot below for U. The
last plot (not shown here) indicates that the actual error in U is larger
than that estimated (RMS Error, MAX Error) at a number of spots close
to the curved boundary. The error is largest inside the cells having a
curved side, but it remains smaller than errlim over the rest of the
domain.
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The Poisson Equation

The Poisson equation is similar to the Laplace PDE, the only
difference being that the right member is a function, rather than zero.
It is difficult to find exact solutions to such problems, but it is easy to
find a PDE that corresponds to a given exact solution. We need only
apply ∇2  to a function of our choice to obtain the corresponding right
member of the equation. To that solution we could then add any
known solution to the Laplace equation (e.g. x*y), since that would
contribute zero to the right side of the PDE.
TITLE          { exa065.pde }
   'Poisson Equation'
SELECT
   errlim=1e-3     spectral_colors               
VARIABLES
   U
DEFINITIONS
   Lx=1     Ly=1     U_ex=(x^3+y^2)+ x*y { Exact solution }
EQUATIONS
   div( grad( U))=6*x+2
BOUNDARIES
region 'domain'  start(-Lx,-Ly)   value(U)=U_ex
   line to (Lx,-Ly)  to (Lx,Ly)   to (-Lx,Ly)  close
PLOTS
   contour( U)     surface( U)     contour( U_ex)     contour( U-U_ex)
END

Here, the value boundary condition takes the same form for all four
sides of the square. In such a case, the program permits us to type the
expression for the value only once, making it automatically valid for
the following segments of the boundary.

The next figure shows the surface plot of the solution. The last
figure (not shown here) indicates that the solution is inside the error
limit requested, except at one point.
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Exercises

 In exa061, try using the function U_ex=x^2+y^2 (which is not an
analytic solution to the PDE). Do you still obtain a numeric solution?

 Solve exa061 over a rectangular region of the same size using
value boundary conditions from U_ex=x/(x^2+y^2) (which is the real
part of 1/z). Locate your domain so that it does not include the
singular point at the origin.

 Solve the Laplace equation in exa064 over the first quadrant, but
specify normal derivatives on the two straight boundaries and values
on the arc.

 Modify exa065 with respect to the boundary conditions. Let the
values be known on the horizontal boundaries, and introduce
derivative boundary conditions on the vertical lines. Remember to use
the outward derivative.

 Modify exa065 again, specifying derivative boundary conditions
on all boundaries and adding a point value at one of the corners.

  Change the boundary values in exa065 to U_ex=sin(x)+y^2 and
modify the Poisson equation accordingly.
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7   Electrostatic Fields in (x,y) Space

We are now ready to treat some simple problems related to the real
world. The electric potential U is the key to all the examples to
follow. For a static (time-constant) electric field in the vacuum3p153 we
have
E = −∇U   

and
∇⋅ =E 0   

The last of these equations expresses the trivial fact that charge is
neither created nor destroyed in any volume element. These two
relations combine to yield the Laplace equation
∇⋅ = ∇ ⋅ −∇ ≡ −∇ ⋅∇ =E U Ua f 0   

which we have already solved. Once the solution is known we may
apply the gradient operator to obtain the field E.

Metal Rod in a Metal Box

We first consider a rectangular box of metallic material, extending far
both ways in the z direction, in which a metal rod is suspended by
insulating wires at the ends. The descriptor below applies to a cross-
section at the middle of this system.

In the boundaries segment we define the geometry of the box,
which is at constant potential. The actual value is arbitrary, and we
choose to put U = 0. The boundary of this box consists of four line
segments, but it is not necessary to assign a potential value to each of
these, since the program remembers the first assignment and
automatically applies it to the following ones.

The second part of this segment defines the geometry of the rod.
The space containing the field will be that between the square and the
circle, which means that the circular area does not belong to the
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solution domain. We therefore exclude a circular region. The potential
is constant (U_rod) for the surface of the rod.
TITLE { exa071.pde }
   'Metal Rod in a Box'
SELECT    { Student Version }
   errlim=1e-3     spectral_colors
VARIABLES
   U
DEFINITIONS
   L=1    r0=0.3     U_rod=1.0
   Ex=-dx(U)     Ey=-dy(U)     E=-grad(U)     Em=magnitude(E)
EQUATIONS
   div( grad( U))=0
BOUNDARIES
region 'domain'
   start 'box' (-L,-L)  value( U)= 0 { Metal box }
   line to (L,-L)  to (L,L)  to (-L,L)  close
   start 'rod' (r0,0) { Cutout for rod }
   value(U)=U_rod   arc( center=0,0) angle=360  
PLOTS
   contour( U)     surface( U)
   elevation( U) on 'box' range(-0.0001,0.0001)   { Plot range for U }
   elevation( U) on 'rod' range(0.999,1.001)
   contour( Em)     elevation( Em) on 'box'     vector( E) norm
END

The first two plots represent the potential U. It is clear already from
these figures that the boundary values are those specified in the file.
The two corresponding elevation plots confirm this in more detail.
The variation of U is so small that we need to specify a plot range.

The resulting field is presented graphically by three plots per-
taining to E. The contour plot of Em and the related elevation plot
indicate that the field near the box is strongest halfway between the
corners.

The following vector plot shows the direction of the field. The
trailing modifier norm makes the lengths of all vectors equal, but the
colors roughly indicate the actual magnitude. Here, we notice that the
vectors are radial close to the rod and gradually redirect to meet the
square enclosure at right angles.
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Evidently, the MAX Error given in the monitor window is about as
small as we requested, and the RMS Error is much smaller. The error
would become further reduced if we used the Professional Version.

Metal Bar in a Tube

The next example is a variation of exa071, and you can easily use
SaveAs and then rearrange the list to create the following file. The
circular boundary is now on the outside.
TITLE { exa072.pde }
   'Metal Bar in a Tube'
SELECT
   errlim=1e-3     spectral_colors
VARIABLES
   U
DEFINITIONS
   r0=1.0     b=0.3     U_bar=1.0
   Ex=-dx(U)     Ey=-dy(U)
   E=-grad(U)     Em=magnitude(E)
EQUATIONS
   div( grad( U))=0
BOUNDARIES
region 'domain'
   start 'tube' (r0,0)  value(U)=0  arc( center=0,0) angle=360  
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   start 'bar' (-b,-b) value( U)=U_bar { Cutout for bar }
   line to (b,-b) to (b,b) to (-b,b)  close
PLOTS
   contour( U)     surface( U) 
   elevation( U) on 'tube'     elevation( U) on 'bar'
   contour( Em)     elevation( Em) on 'tube'     elevation( Em) on 'bar'
   vector( E) norm
END

The results of this example are qualitatively different from what we
just saw. The contour plot below shows that Em is strongly peaked at
the corners of the bar. This field concentration at outer corners is of
great practical importance in electrical engineering. Sharp metal tips
in a field provoke discharge, for instance, and may even be the
starting point of lightning.

We should also note that the maximum error reported in the
monitor window is higher than what was asked for, because of the
imposed node limit of the Student Version. The maximum error
probably occurs at a corner of the bar.



60

Metal Rod across a Parallel Field

Let us now consider a problem where the potential on the outer
boundary is not constant. We start with a homogeneous, parallel field
E0 and then place a metal rod across it. Sufficiently far from the rod
the field may still be considered to be homogeneous and parallel. In
the following descriptor the horizontal boundaries are thus specified
to have zero outward derivative, ∂ ∂U n/ , which means that the field is
not allowed to cross those lines.

The vertical boundaries are required to pass a field component Ex
equal to E0x. Since the normal of the exit (right) boundary is in the
direction of positive x, the outward normal derivative becomes
dx(U)=-Ex=-E0x. On the input boundary the normal is in the direction
of negative x, and hence ∂ ∂U n/  becomes -dx(U)=Ex=E0x.

The inner boundary is a metallic surface, having constant potential.
Since we are free to choose this value, we specify U=0. In the present
example, the domain thus has value as well as natural boundary
conditions, and we need not supply an additional point value.
TITLE { exa073.pde }
   'Metal Rod across a Parallel Field'
SELECT
   errlim=1e-4     spectral_colors     ngrid=1
VARIABLES
   U
DEFINITIONS
   L=1    r0=0.3     E0x=1e3
   Ex=-dx(U)     Ey=-dy(U)     E=-grad(U)     Em=magnitude(E)
EQUATIONS
   div( grad( U))=0
BOUNDARIES
region 'domain'
   start 'outer' (-L,-L)  natural ( U)=0  line to (L,-L)
   natural( U)=-E0x line to (L,L)  { Outward dU/dx }
   natural( U)=0 line to (-L,L)
   natural( U)=E0x   line to close   { Outward dU/dx }
   start 'rod' (r0,0)  { Cutout for rod }
   value(U)=0  arc( center=0,0) angle=360  
PLOTS
   contour( U)     surface( U)
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   elevation( U) on 'outer'     elevation( U) on 'rod'
   contour( Em)     vector( E) norm
   elevation( Ex) on 'outer'     elevation( Em) on 'rod'
END

In this problem, we are concerned with a field that becomes
homogeneous at large distance from the central rod. Hence, the
potential U is not expected to vary much on the outer boundary lines.
The initial number of triangular cells on a straight boundary is 10 for
the Student Version, as we already saw on p.10. The presence of the
rod in the current example modifies the node density locally as
needed. This means that we may make better use of the nodes by
choosing a smaller initial number of cells. Hence, we specify ngrid=1
for the above descriptor.

The following vector plot shows that the parallel field enters from
the left and leaves on the right side. The color code on the screen
indicates the magnitude of E as well as the direction. We notice that
E  takes very small values near the bottom and top surfaces of the rod,
which is explained by the constant value of U on the surface.

In the elevation plot of Ex (below), we notice that the segments
pertaining to the vertical boundaries confirm that Ex has the specified
magnitude and sign. The potential U, on the other hand, is not
constant on these lines.
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The other figures should be interpreted and compared to each other
for a full understanding of all the aspects of the problem. Generally, it
is rewarding to ask yourself if all the plots are in accord with the
others and with your intuitive expectations.

Exercises

 Change exa071 by displacing the center of the rod diagonally by
L/3 in the x and y directions.

 Add a plot of div( grad(U)) in exa071 to verify that the PDE is also
satisfied.

  Modify exa072 by putting the square bar in a square enclosure
with sides equal to 2*r0.

 Replace the central rod in exa073 by a “half-moon”, keeping the
right half of the circle and returning by the point (r0/2,0). Also explore
how the solution changes when you reverse the external field.
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8   Electrical Conduction in (x,y) Space

In the preceding chapter, the entire volume of a metal object was at
constant potential. If a voltage is applied between different parts of a
given metallic object, however, this is no longer true and an electric
current field will flow within the volume. In an ordinary metal, the
electrical current density J is simply related to the field strength E
by3p203

J E= = − ∇σ σ U   

where σ is the electric conductivity.
Conservation of charge requires that

∇⋅ + =J ∂ρ
∂ t

0    

where ρ  is the charge density, and the equation simply means that the
current diverging from a volume element is equal to the rate of
decrease of its charge. Since we shall be dealing with static
phenomena, the time derivative is zero. Combining these relations we
then obtain

∇⋅ = −∇ ⋅ ∇ = −
F
HG
I
KJ −
F
HG
I
KJ =J ( )σ ∂

∂
σ ∂
∂

∂
∂

σ ∂
∂

U
x

U
x y

U
y

0   

This is a PDE of the Laplace type, but the conductivity σ  may vary in
space and hence cannot be taken out of the parentheses. The program
is able to solve it, however, as easily as in previous examples.

In a descriptor, we may simply type the above PDE as div(J)=0.
FlexPDE contains a symbolic manager that looks for the definition of
J in terms of E, and then E in terms of U. The final result is that we
effectively solve a 2nd order PDE with U as the unknown variable.
After solving for U, we obtain E and J from the definitions.
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Conduction in a Rectangular Plate

Let us apply our scheme to the simplest possible example. We apply a
voltage over a rectangular plate, so that the potential U of the lower
edge is zero and that of the upper edge is 1.0 V.

Although we only consider a solution in the ( , )x y  plane, we allow
the object to have extension in the z direction. We always assume,
however, that the dependent variable (U) does not vary with respect
to z. In other words, the solution is assumed to be valid in any parallel
plane within the plate. The problem descriptor is shown below.
TITLE { exa081.pde }
   'Conduction in a Rectangular Plate'
SELECT { Student Version }
   errlim=1e-5     spectral_colors
VARIABLES
   U
DEFINITIONS
   Lx=0.5     Ly=1.0     cond=5.99e7                { Conductivity of Cu }
   Ex=-dx(U)     Ey=-dy(U)     E=-grad(U)     Em=magnitude(E)
   Jx=cond*Ex     Jy=cond*Ey     J=cond*E     Jm=magnitude(J)
   U_ex=y/Ly*1.0 { Exact solution for 1.0 V }
EQUATIONS
   div( J)=0 { 2nd order PDE in U }
BOUNDARIES
region 'domain'
   start(-Lx,0)  value(U)=0  line to (Lx,0)
   natural(U)=0 line to (Lx,Ly)      { Insulated, Ex=Jx=0 }
   value(U)=1.0 line to (-Lx,Ly)
   natural(U)=0 line to close       { Insulated }
PLOTS
   contour( U)     surface( U)     vector( E)
   contour( Jx)     contour( Jy)     contour( Jm)     contour( U-U_ex)
END

Having run the above file you will notice that the solution satisfies
the boundary conditions for U on the upper and lower surfaces and
that the error is smaller than requested by errlim. You also find that
the current density Jx is smaller than Jy by a factor of nearly 1012 .
We could not expect it to become exactly zero, however, since a
numerical solution is always approximate.
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Conduction in a Trapezoidal Plate

We now attempt to solve a problem that does not have an elementary
solution. Let us change the rectangle into a trapezoid by the following
modified version of exa081.
TITLE                   { exa082.pde }
   'Conduction in a Trapezoidal Plate'
SELECT
   errlim=3e-5     ngrid=1     spectral_colors
VARIABLES
   U
DEFINITIONS
   L1=0.5     L2=0.25     Ly=1     cond= 5.99e7               { Copper }
   Ex=-dx(U)     Ey=-dy(U)     E=-grad(U)     Em=magnitude(E)
   Jx=cond*Ex     Jy=cond*Ey     J=cond*E     Jm=magnitude(J)
EQUATIONS
   div( J)=0
BOUNDARIES
region 'domain'
   start(-L1,0)  value(U)=0  line to (L1,0)
   natural(U)=0 line to (L2,Ly)    { Insulated }
   value(U)=1.0 line to (-L2,Ly)
   natural(U)=0 line to close     { Insulated }
PLOTS
   contour( U)     surface( U)     vector( E)  norm
   contour( Jx)     contour( Jy)     contour( Jm)
END

From the following plot of U we see that the boundary conditions
are satisfied on the upper and lower edges of the plate. We also note
that the contours of U meet the sloping boundaries at right angles,
which demonstrates that the normal derivatives vanish.

In the vector plot there are no arrows pointing outwards through
the insulated surfaces.
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We are thus convinced that the boundary conditions have been
respected, but what about the PDE itself ? The program internally
checks for numerical errors at the end of each iteration, and the final
report in the status window is MAX Err=1.0e-4. This suggests that the
solution for U should be good to about 1 part in 104 (of the
maximum), but this guarantee may not be strictly fulfilled at all points
of the domain.

The plot below shows that the horizontal current density Jx is no
longer zero, as it was in the rectangular geometry.
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From the plot of Jm you will notice that the largest magnitudes
occur at the upper corners. We may understand this by considering
the contour plot of U above. Since the contours close to the upper
surface must be horizontal and all the contours must be perpendicular
to the sloping sides where they meet, the curves come closer to each
other at the top corners, which enhances the gradient.

Apart from verifying the boundary conditions, we should look for
symmetries in the problem and convince ourselves that the solution
obtained conforms to it.

Checking the Solution

If we still feel skeptical, we may plot the left side of the PDE as
follows. First we define eqn to be div( J) and then make a contour plot
of the deviation from zero, usually called the residual. To achieve this
we need only modify a few lines in exa082, as indicated below.

In addition we might check whether the current (per unit thickness
of the plate) leaving the bottom surface equals that entering through
the top face. We do that by two elevation plots, which report the
integrated values (current).
TITLE                 { exa082a.pde }
   'Conduction in a Trapezoidal Plate, PDE Test'
…
   eqn=div( J) { Left side of PDE }
EQUATIONS
...
   contour( eqn) as 'Residual'
   elevation( Jy) from (-L1,0) to (L1,0) {  Current }
   elevation( Jy) from (-L2,Ly) to (L2,Ly)
END

You will find that the plot of the residual exhibits the irregular zero
contours that we have learnt to associate with a vanishing function.
The errors are evidently largest in the upper corners.

The elevation curves indicate that the integrated current densities
(the currents) for the top and bottom surfaces agree within about
0.5%.
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Radial Conduction in a Foil

We shall now study the conduction through a thin foil, soldered
perpendicularly to a tube and a coaxial rod, both of copper. In the
preceding chapter we assumed that the extension of the field in the z
direction was virtually infinite, and we studied the field far from the
ends. In the case of a conducting plate or foil, we may abandon this
restriction, because the boundaries will force the current to be parallel
to the ( , )x y  plane.

A reasonable mathematical model would be a circular foil having
constant potential levels on two concentric circles, one for the inner
edge of the tube and one for the edge of the central rod. Using exa082
as a template we modify it as follows.
TITLE                   { exa083.pde }
   'Radial Conduction in a Foil'
...
DEFINITIONS      { Replace first line of definitions }
   r1=0.2     r2=1     cond=5.99e7     U1=1.0    { Voltage } 
...
region 'domain' start(r2,0)
   value( U)=0  arc( center=0,0) angle=360 close { Outer }
   start(r1,0)  value( U)=U1  arc( center=0,0) angle=360 { Exclude }
PLOTS
   contour( U)     surface( U)     vector( E)  norm
   contour( Jx)     contour( Jy)     contour( Jm)
END

The vector plot shows the expected radial field, but the plot of Jx
below may be more of a surprise.

The high symmetry of the present problem makes it possible to
treat only part of the solution domain, e.g. only one quadrant. Since
the field is radial, the radial cuts must have natural(U)=0 for symmetry
reasons. The density of nodes will be four times larger, which should
improve the quality of the solution.



69

Constricted Rectangular Plate

In the next problem we study a rectangular plate with a constriction.
Using exa082 as a template we again modify to obtain the following
descriptor file.
TITLE                   { exa084.pde }
   'Constricted Rectangular Plate'
SELECT
   errlim=3e-4     ngrid=1     spectral_colors
VARIABLES
   U
DEFINITIONS
   L=1.0     d=0.3     cond=5.99e7                     { Copper }
   Ex= -dx(U)     Ey=-dy(U)     E=-grad(U)     Em=magnitude(E)
   Jx=cond*Ex     Jy=cond*Ey     J=cond*E      Jm=magnitude(J)
EQUATIONS
   div( J)=0
BOUNDARIES
region 'plate'
   start 'boundary' (-L,-2*L)  value( U)=0 line to (L,-2*L)
   natural( U)=0                { Insulated }
   line to (L,-d) to (d,-d)  to (d,d)  to (L,d)  to (L,2*L)
   value( U)=1.0 line to (-L,2*L)
   natural( U)=0                   { Insulated }
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   line to (-L,d) to (-d,d) to (-d,-d) to (-L,-d) close
PLOTS
   contour( U)     surface( U)     vector( E) norm     surface( Em)
   contour( Jx) painted     contour( Jy) painted     contour( Jm) painted
   elevation( U) on 'boundary'     elevation( Jm) on 'boundary'
END

The plots resulting from the above descriptor demonstrate how the
field deforms on going into a narrower or a wider cross section. The
following figure shows the effect on the magnitude of the current
density.

Judging from the colors, Jm is rather constant in the central part.
The inner corners are points of very high field.

The plots of U and E demonstrate that the fields in the wider
regions are strongly deformed, compared to the behavior close to the
ends. These indications about the depth of perturbation are of great
practical importance.

Plate Made of Two Different Metals

So far we have only been concerned with fields in homogeneous
objects. A powerful feature of finite element analysis, however, is that
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the materials properties are allowed to vary over a domain, gradually
as well as stepwise.

The file exa082 may serve as a starting point for the following
descriptor. Here, we arrange for the current to flow from the upper-
left corner to the lower-right one by imposing a potential difference.

The first region ('domain') always adjoins the surrounding world,
and thus we must specify the conditions that apply to its boundary.

We assign a value for the conductivity parameter in the definitions
segment, valid over all of 'domain'. Further down we define a sub-
region, named 'iron', where the conductivity is assigned a different
value. By overwriting the first assignment we may thus handle
objects consisting of more than one material.
TITLE                    {exa085.pde }
   'Conduction in a Rectangular Plate (Cu/Fe)'
SELECT
   errlim=3e-4     ngrid=1     spectral_colors
VARIABLES
   U
DEFINITIONS
   Lx=1     Ly=1     cond=5.99e7 { Conductivity }
   Ex=-dx(U)     Ey=-dy(U)     E=-grad(U)     Em=magnitude(E)
   Jx=cond*Ex     Jy=cond*Ey     J=cond*E     Jm=magnitude(J)
   J_angle=sign( Jy)*arccos( Jx/Jm)/pi*180
EQUATIONS
   div( J)=0
BOUNDARIES
region 'domain'                       { Copper }
   start 'boundary' (0,-Ly)   value( U)=0 line to (Lx,-Ly)  to (Lx,0)
   natural(U)=0   line to (Lx,Ly)   to  (0,Ly) { Insulated }
   value(U)=1.0  line to (-Lx,Ly)   to (-Lx,0)
   natural (U)=0  line to (-Lx,-Ly)  close      { Insulated }
region 'iron'   cond=1.03e7    
   start(-Lx,-Ly)  line to (Lx,-Ly) to (Lx,0) to (-Lx,0) close
PLOTS
   contour( U)
   elevation( U) on 'boundary'
   elevation( normal( J)) on 'boundary'
   vector( J) norm    contour( J_angle) painted
   contour( Ex) painted zoom(-Lx/2,-Ly/2,  Lx, Ly)
   contour( Ey) painted zoom(-Lx/2,-Ly/2,  Lx, Ly)
   contour( Jx) painted zoom(-Lx/2,-Ly/2,  Lx, Ly)



72

   contour( Jy) painted zoom(-Lx/2,-Ly/2,  Lx, Ly)
END

In the last four graphs we employ zoom(xlow,ylow, delx,dely),
which restricts the plot to a rectangular portion of the total domain.
The two first arguments are the coordinates of the lower-left corner
and the last arguments the width and height of the plot window.

Running this descriptor we first find a contour plot of U. The
potential is continuous across the interface between copper and iron,
but the contours change direction.

Since the current flow vectors are perpendicular to the contours of
U, the following plot of J is as expected. We also notice that the
current direction is refracted on going through the interface.

The following painted contour plot of Ex shows that this function
varies continuously across the line where the conductivity changes.
This is in accord with the theoretical boundary conditions3p116.
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We also note that Jy varies continuously across the interface,
whereas Ey and Jx exhibit discontinuities.

Plate with an Elliptic Insert

As an additional example of the behavior of the fields in the presence
of two materials we introduce a region of elliptic cross-section
consisting of iron.

The modification of the descriptor exa85 really only concerns the
second region. We shall see, however, that it is desirable to include a
special plot over the insert by the modifier on 'iron'.
TITLE                   { exa85a.pde }
   'Conduction in a Plate with an Elliptical Insert'
...
region 'iron' cond=1.03e7    
   start(Lx/5,0)
   arc( center=0,0) to (0, Ly/2) to (-Lx/5,0) to (0,-Ly/2)  close
PLOTS
   vector( J) norm    contour( J_angle)    contour( J_angle) on 'iron'
END

To create an elliptic curve, we proceeded much as we did when
tracing a circle by quarters (p.17). The difference is that the axes are
of different lengths.
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The next figure is a vector plot of J over the entire domain. From
that it appears that the flow becomes essentially parallel within the
elliptic region.

The plot of the angle over the elliptic insert (below) exhibits a set
of contours corresponding to about -28 degrees over most of the
region.
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Exercises

  In exa082, add elevation plots of U and Jm on the boundary.
Explore what the results mean.

  Modify exa082 by adding a square to the shorter side. Compare
the solution with the original one.

  Use the symmetry of the circular foil (exa083) to solve for one
quadrant only. Why is the number of nodes not reduced to one
fourth? What is the advantage?

  Change exa083 by moving the cutout by one hole-diameter. Is
there still some symmetry to be exploited?

  Integrate E l⋅d  along a vertical line through the constricted plate
(exa084). Compare with the applied voltage.
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9   Dielectrics in (x,y) Space

For dielectric materials, which become polarized when subjected to
an external field, we should use relations3p110 involving the electric
displacement D E E= =ε ε εr o , where ε r  is the relative permittivity.
The Maxwell equation3p153 provides the corresponding PDE
∇⋅ =D ρv       

where ρv is the volume charge density not arising from polarization
(free charge). In this chapter, the charge density term will always be
zero, and hence we may type the FlexPDE equation as div(D)=0.

In terms of the potential U we may also write the Maxwell
equation
∇⋅ = ∇ ⋅ = ∇ ⋅ − ∇ =D E( ) ( )ε ε ρU v             

which we recognize as the Poisson type of PDE.

Coaxial Cable

A simple configuration involving an electric field is one where
objects are enclosed in a metal shield, which may then be taken as the
outer boundary. We assume that the objects are long and parallel,
which permits us to calculate the field in a cross-section at mid-
distance between ends. The coaxial cable has this simple geometry. It
consists of a metallic shield and a central wire, separated by a
polymer tube.

From now on we shorten the descriptors by putting the symbols on
the same line as the keywords TITLE, SELECT, and VARIABLES.

The descriptor file involves the dielectric displacement D. Un-
fortunately, the x-component of D may not be denoted Dx, since the
program does not distinguish between upper and lower case and
would read this as dx, which is the reserved word for a derivative.
This is the reason for the unexpected notation Dex.
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TITLE   'Coaxial Cable'                                                       { exa091.pde }
SELECT     errlim=3e-4 ngrid=1     spectral_colors { Student Version }
VARIABLES   U
DEFINITIONS { SI units }
   r1=2e-3     r2=1e-2     eps0=8.854e-12     U1=1.0
   eps=2.3*eps0      { Permittivity }
   Ex=-dx(U)     Ey=-dy(U)     E=-grad(U)     Em=magnitude(E)
   Dex=eps*Ex     Dey=eps*Ey     D=eps*E     Dm=magnitude(D)
EQUATIONS
   div( D)=0         { No volume charge }
BOUNDARIES
region 'domain'
   start 'outer' (r2,0)  value(U)=0  arc(center=0,0) angle=360
   start 'inner' (r1,0)  value(U)=U1 arc(center=0,0) angle=360  {Cut-out }
PLOTS
   contour( U)     contour( Dex)     contour( Dey)
   vector( D) norm     contour( Dm)     surface(Dm)
   elevation( Dm) on 'inner'     elevation( Dm) on 'outer'
END

The run produces the plot below, which shows that the field is of
radial direction everywhere.

We may write similar descriptors to treat problems where the
dielectric permittivity varies with the radius, either specified by a
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continuous function ε ( )R  or by several regions, each with a different
but constant value of ε .

Capacitance

According to elementary electrostatics, the charge Q on either
electrode of a capacitor is proportional to the voltage applied, or
Q CU= , where C is the capacitance.

We may easily obtain C for the case of the above coaxial
configuration. It is clear from the plots that the field is radial and that
its magnitude depends only on the radius. The field D leaves or enters
the metal in the direction of the normal, and Gauss’ law3p87 implies
Dn s= =D σ , the latter quantity being the surface charge density.

In the present case, the expression for the capacitance is
C Q U r Dn= = ⋅/ 1 12π , based on the inner circle, and there is an
equivalent formula for the outer circle. As we see from the elevation
plots, the scatter of Dm (=Dn) over the boundary circles is very large.
These plots, however, directly give us accurate charge values by
automatic integration, i.e. 7.96e-11 and 7.92e-11 respectively.

The elementary expression for a cylindrical capacitor is
C r r= 2 2 1πε / ln( / )
per unit axial length. This formula yields C=7.95e-11, and the FEA
results agree quite well with that value.

Parallel Plate Capacitor

We shall now consider problems where the domain boundary is not at
constant potential. This situation is similar to that of the fields around
opposite point charges that we plotted (p.36), in the sense that the
field strength decreases to a small value at large distance without
actually becoming zero.

In the next example, we shall assume that the total charge on the
object is zero. In view of Gauss’ law this means that no field leaves
the solution domain, on the average. We shall see that confining the
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entire field in the domain is a realistic model, provided its size is
chosen large enough.

The following descriptor is for a cross-section of a parallel-plate
capacitor, assumed to extend both ways along the z-axis. We reserve
space for a domain of size 2L×2L and exclude two narrow rectangles
corresponding to the metal plates. We also assign potential values to
these inner boundaries. Finally we define a sub-region for the
dielectric material between the plates. The internal plate-to-plate
distance is 2*d0.
TITLE   'Parallel Plate Capacitor'                                        { exa092.pde }
SELECT     errlim=3e-4     ngrid=1     spectral_colors
VARIABLES   U
DEFINITIONS
   L=1     xx=0.25     d0=0.1     dd0=0.4*d0      U0=1.0e4 { Voltage }
   eps0=8.854e-12     eps=eps0 { Permittivity }
   Ex=-dx(U)     Ey=-dy(U)     E=-grad(U)     Em=magnitude(E)
   Dex=eps*Ex     Dey=eps*Ey     D=eps*E     Dm=magnitude(D)
EQUATIONS
   div( D)=0         
BOUNDARIES
region 'domain'
   start 'outer' (-L,-L)   natural(U)=0     { Outer boundary }
   line to (L,-L) to (L,L)  to (-L,L) close
   start 'upper' (-xx,d0) value(U)=U0 { Upper plate }
   line to (xx,d0) to (xx,d0+dd0) to (-xx,d0+dd0) close
   start 'lower' (-xx,-d0-dd0) value(U)=0.0 { Lower plate, ground }
   line to (xx,-d0-dd0) to (xx,-d0) to (-xx,-d0) close
region 'glass'   eps=7.0*eps0          { Dielectric }
   start(-xx,-d0)  line to (xx,-d0)  to (xx,d0) to (-xx,d0) close
PLOTS
   contour( U)     contour( Dm) log     contour( Dm) painted on 'glass'
   vector( D) norm elevation( Dey) from (-L,0) to (L,0) {  Charge }
END

Before running this descriptor we click on Controls, Domain
Review on the top ribbon. As a result we quickly obtain the following
sketch of the geometry.



80

On running the descriptor we quickly obtain the following contour
plot of U. The contour lines appear to be highly parallel in the
dielectric between the plates, and our boundary conditions force the
contours to meet the outer boundary at right angles.

The following vector plot of the field D demonstrates that the
boundary conditions constrain the field lines to remain within the
domain defined, which means that all lines from positive charges
return to the corresponding negative charges on the other plate. A few
arrows may appear to penetrate the outer boundary, but in fact they
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indicate the direction of the field at the base of the arrow, not at the
tip. We conclude that the charge is positive everywhere on the upper
plate, and negative all over the lower one.

The above figure also illustrates how the far-field lines become
flattened by the arbitrary rectangular limits we have imposed to
simplify the problem. We could expect this to influence the central
part of the field to some extent, to be explored later.

As seen in the logarithmic contour plot of Dm there are no lines in
the interior of the capacitor, which suggests that the field there is
nearly constant. That plot also shows that the field strength at the
outer boundary is only about 1% of that in between the plates.

We further illustrate the constancy of the field between the plates
by the following painted contour plot over the region of the dielectric
material only.
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The field D leaves or enters the metal plates in the direction of the
normal, and according to Gauss’ law we have Dn s= =D σ . Let us
apply this relation to a box including the lower plate and consisting of
the lower half of the boundary and the horizontal plane of symmetry.
Only the latter gives non-zero contribution to the integral of Dn . The
integral given on the elevation plot below thus yields the charge on
the lower plate.
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Evidently, the charge on each of the plates has the magnitude
1.676e-6, per unit extension in the z direction. If we divide the total
charge on one plate by the voltage applied (1.0e4), we have the
capacitance C=1.676e-10. The elementary estimate for the
capacitance yields 7.0*eps0*(2*xx)/(2*d0)=1.55e-10, which is smaller
because it does not take the fringing field into account.

The constraints at the outer boundary may be expected to influence
the central field. Using the Professional Version we may easily find
out how much the capacitance (given by the integral) changes if we
increase the size of the domain by putting L=2, then L=4, and L=8. We
find the values 1.685e-6, 1.687e-6 and 1.687e-6, respectively. This
indicates that the last value is close to what we would find for infinite
space.

Exploiting Symmetry

The Student Version did not permit us to double the value of L in the
preceding example, but we may improve conditions by exploiting the
left-right symmetry. The following file, based on exa092, defines half
the domain with L=2. Since the metal plates now extend to the
boundary, we draw the plate boundaries as parts of a single outline.
The line of symmetry must of course obey the condition natural(U)=0.
TITLE   'Parallel Plate Capacitor, Half-Domain'                { exa092a.pde }
…
   L=2     xx=0.25     d0=0.1     dd0=0.4*d0      U0=1.0e4 { Voltage }
…
region 'domain'
   start 'outer' (0,-d0-dd0)   natural(U)=0     { Outer boundary }
   line to (0,-L) to (2*L,-L)  to (2*L,L) to (0,L) to (0,d0+dd0)
   value(U)=U0  line to (xx,d0+dd0) to (xx,d0) to (0,d0) { Upper plate }
   natural(U)=0  line to (0,-d0)
   value(U)=0  line to (xx,-d0) to (xx,-d0-dd0) close { Lower plate }
region 'glass'   eps=7.0*eps0          { Dielectric }
   start(0,-d0)  line to (xx,-d0)  to (xx,d0) to (0,d0) close
PLOTS
   contour( U)     contour( Dm) log     contour( Dm) painted on 'glass'
   vector( D) norm elevation( Dey) from (0,0) to (2*L,0) {  Charge }
END
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The result for the logarithmic plot of Dm is shown below.

The elevation plot reproduces the charge and capacitance values
(divided by 2) that we quoted from the Professional Version.

Glass Rod across a Parallel Field

We now turn our attention to a glass rod of circular cross-section,
exposed to an external field. We assume the field to have been
homogeneous before the rod was placed perpendicularly to it. The file
exa092 is a suitable template for the following descriptor.
TITLE   'Glass Rod across a Parallel Field'                        { exa093.pde }
SELECT     errlim=3e-5     ngrid=1     spectral_colors
VARIABLES   U
DEFINITIONS
   L=1     r0=0.2     eps0=8.854e-12     epsr2=7.0 { Glass }
   eps { Declared only }
   Ex0=1e4 { Far Field }        
   Ex=-dx(U)     Ey=-dy(U)     E=-grad(U)     Em=magnitude(E)
   Dex=eps*Ex     Dey=eps*Ey     D=eps*E     Dm=magnitude(D)
EQUATIONS
   div( D)=0          { div( eps*(-grad( U))=0 }
BOUNDARIES
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region 'domain'    eps=eps0    { Vacuum outside }
   start 'outer' (-L,-L) natural(U)=0  line to (0,-L) point value(U)=0
   line to (L,-L) natural(U)=eps*Ex0   line to (L,L)  { See p.51 }
   natural(U)=0   line to (-L,L)    natural(U)=-eps*Ex0   line to close
region 'glass'   eps=epsr2*eps0
   start 'circle' (r0,0) arc(center=0,0)   angle=360
PLOTS
   contour( U)     elevation( U) on 'outer'
   elevation( normal( D)) on 'outer' report( eps0*Ex0)
   vector( D) norm     vector( D) on 'glass'
   elevation( tangential( E)) on 'circle' on 'domain'
   elevation( tangential( E)) on 'circle' on 'glass'
   elevation( normal( D)) on 'circle' on 'domain'
   elevation( normal( D)) on 'circle' on 'glass'
END

In a previous chapter (p.51) we used the statement natural(U)=0 to
specify that the normal component of grad(U) be zero. In the above
problem we want to specify non-zero values for the field on the left
and right ends. In the PDE, U is effectively multiplied by eps and
hence we also have to multiply (p.51) by eps in the natural boundary
condition.

On the left boundary the sign of Dn  must be negative, since the
outward normal to the domain is opposite to the direction of the field.
The vector plot below illustrates this.
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We may verify that the derivative boundary conditions have taken
effect by the elevation plot of normal(D). It is clear that Dn  alternates
between zero and the specified value for Dx0. In order to make this
comparison more convenient, we use the report facility. This displays
the requested numeric value Dx0 at the bottom of the plot.

It is remarkable that the field inside the glass rod becomes parallel.
We see this more clearly in the following vector plot 'on glass', which
also demonstrates the constancy of Dm.

For several elevation plots we have used a new, twofold
specification. A plot on 'outer' is unique, because no data are available
outside the boundary. For a plot on an interface between glass and
vacuum, however, we must specify if we mean to use data on one
side or the other of the circle. This we achieve by adding the name of
the region.

Here, we should pay attention to the way a region is named. Under
boundaries we first define 'domain' by drawing the outer boundary.
Then we define 'glass' as part of that domain. By this means we have
indirectly defined 'domain' as being the vacuum region. This change
of definition may be confusing, but it has the advantage that we need
not define three regions: one for the total domain, one for the vacuum
and one for the glass.
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When plotting normal or tangential components we need to
understand how to interpret signs. The following figure shows a few
cells at an interface between two materials. The black arrows indicate
the counter-clockwise sense in which the cell boundaries are traced.
Evidently, the common side is traced in opposite directions, and this
is the reason why we obtain opposite signs for the tangential
components. The normal vector always points out of a cell, and this
means that normal components also have opposite signs.

If we reverse the signs in the plots 'on domain', and then make
hardcopies, we may compare the corresponding plots accurately by
superimposing the figures with a back-light. These plots then confirm
the theoretical findings that the tangential component of E and the
normal component of D are continuous on going through the
interface.

Surface Charge of Polarization

An external electric field causes polarization of atoms and
molecules, which may produce excess local charge, at least on the
interfaces between different materials. The dipole moment per unit
volume, P, may be written
P D E D D D= − = − = −ε ε ε ε ε0 0 01/ ( / )           
The volume charge density ρ p  due to polarization is given by3p107
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ρ ε εp = −∇⋅ = −∇ ⋅ −P D( / )1 0   

Thus, in any region of constant ε  this volume charge will vanish,
because ∇⋅D  is zero in the absence of free charge ( )ρv . If the electric
permittivity ε  should vary continuously in space, however, ρ p  may
become non-zero.

In this text, we shall not be concerned with continuously varying
electric permittivity, but we have already treated sudden changes
from one material to another. In such situations, polarization charge
appears at the interface between materials of different ε . The
resulting surface charge density is given by the normal component of
P, i.e.
σ ε εps n nP D= ⋅ ≡ = −P n ( / )1 0   

We may define P and calculate the polarization charge density on the
rod in exa093 by an elevation plot, as follows.
TITLE   'Glass Rod across a Parallel Field, Polarization'  { exa093a.pde }
…
   P= (1- eps0/eps)*D
EQUATIONS
...
   elevation( normal(P)) on 'circle' on 'glass'
      as 'polarization surface charge'
END
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From the curve above we see that the polarization charge at the
right edge of the rod is positive, in accord with elementary notions.
The polarization charges reside in the glass region, not in the vacuum,
and according to the rules of the software we thus specify on 'circle' on
'glass'.

It is instructive to include a corresponding plot yielding the
polarization charge on the vacuum side of the rod.

Exercises       

  How will the fields change if you replace the glass in exa092 by a
vacuum? By a dielectric with very high permittivity, say ε ε= 1000 0?

  Make an elevation plot that will permit you to calculate the charge
on an interior face of the capacitor in exa092. Compare it to the
remainder of the charge on that plate.

  Modify exa093 to show that a rod with very large permittivity
simulates a metallic cylinder. Use epsr2=1e6, say. Add elevation plots
of tangential(D) on the faces on 'circle' on 'domain' and on 'circle' on
'glass'. Compare to the corresponding plots of normal(D) to find
information about the field direction. Also compare with the last
vector plot of D.

  Replace the object in exa093 by a bar of square cross-section with
the sides equal to 2*r0.

  Change the permittivity in exa091 to ε ε= 2 0 1R r/ , illustrating
continuously varying materials properties.
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10   Steady Fields in (ρ,z) Space

Although recent versions of the software do permit us to handle
problems in three spatial dimensions, it is more difficult in 3D than in
2D to obtain and assimilate graphical presentations of the solutions. If
the geometry, the materials and the boundary conditions are axially
symmetric, however, all cross-sections through the axis of symmetry
are equivalent. This permits us to solve a 3D problem in cylindrical
coordinates ( , )ρ z  and present the results in a plane. We may then
make an image of the geometry and the plots by mentally rotating the
figures around the axis.

Electrical Conduction in a Cone

Our first example of an axially symmetric object is a truncated,
circular cone of silicon with metallic electrodes of high conductivity
connected to the flat ends, so that we may consider the ends to have
constant potential. A potential difference is applied, and we wish to
calculate the current distribution and the resistance between the ends.
The following descriptor specifies that problem.

In the coordinates segment we express our intention to operate in
( , )ρ z  space (p.44). This permits us to type the PDE in the appropriate
variables, and in addition we obtain suitable labels for the figures.

In ( , )ρ z  coordinates, the gradient expression becomes similar3p705

to that in ( , )x y , but the divergence takes a different form, i.e.

∇⋅ = +f 1
ρ
∂ ρ
∂ρ

∂
∂

ρ( )f f
z
z                     

In the case of electrical conduction we have f J= , as is apparent
from the equations segment.
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TITLE   'Electrical Conduction in Cone'                              { exa101.pde }
SELECT     errlim=3e-5     ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r', 'z') { Student Version }
VARIABLES   U
DEFINITIONS
   r0=2e-3     r1=10e-3     h=10e-3     cond=1.0e-3   { Silicon }
   Er=-dr(U)     Ez=-dz(U)     E=vector( Er, Ez)     Em=magnitude(E)
   Jr=cond*Er     Jz=cond*Ez     J=vector( Jr, Jz)     Jm=magnitude(J)
EQUATIONS
   (1/r)*dr( r*Jr)+ dz( Jz)=0   { div(J)=0 }
BOUNDARIES
region 'silicon'  start 'outer' (0,0)
   value(U)=0.0 line to (r0,0)
   natural(U)=0.0   line to (r1,h)
   value(U)=1.0 line to (0,h) natural(U)=0   line to close
feature
   start 'line' (r1/2, h) line to (0,0)
PLOTS
   contour( U)     surface( U)     contour( Em) log     vector( J) norm
   elevation( Jz) surf_integrate from (0,0) to (r0,0) {  Current }
   elevation( Jz) surf_integrate from (0,h) to (r1,h) {  Current }
   contour( Jm*Em) painted vol_integrate {  Dissipation }
   elevation( tangential( E)) line_integrate on 'line' {  Voltage }
END

The following contour plot of U suggests that the axially
symmetric surfaces of constant potential are nearly spherical, except
close to the plane ends.
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In order to calculate the current crossing a horizontal surface one
needs to integrate Jz over a circular area consisting of annular
elements of size 2πρ ρd . The elevation plot shown below yields the
current as surf_integral. In order to estimate the accuracy of the
solution, we compare the current values obtained by integrating over
the end surfaces.

The contour plot of the power dissipated ( )E J⋅  evidently
integrates to be about equal to the product of the voltage drop (1.0)
and the current, as we would expect. The modifier vol_integrate
makes FlexPDE include the volume element 2πρ ρd dz  in the
calculation.

The last plot presents the tangential component of the field along
the sloping 'line'. The integral, which involves the length element dl,
confirms the voltage value we imposed. The modifier line_integrate
assures that we obtain a line integral, rather than a surface integral
over a cone.
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Plate Capacitor

In the previous chapter we studied a plate capacitor in ( , )x y ,
consisting of long metal slats extending far in the z directions. We
may now apply similar calculations to a capacitor having two circular
plates, using the following descriptor.
TITLE    'Plate Capacitor in (r,z) Space'          { exa102.pde }
SELECT     errlim=3e-4     ngrid=1     spectral_colors
COORDINATES    ycylinder( 'r', 'z')
VARIABLES   U
DEFINITIONS { Thickness of glass plate= 2*d0 }
   Lz=1.0     Lr=2*Lz     r0=0.2     d0=0.1     dd=0.4*d0     U0= 1e4
   eps0=8.854e-12     eps
   Er=-dr(U)     Ez=-dz(U)     E=vector( Er, Ez)     Em=magnitude(E)
   Der=eps*Er     Dez=eps*Ez     D=eps*E     Dm=magnitude(D)
EQUATIONS
   (1/r)*dr( r*Der)+ dz( Dez)=0   { div(D)=0 }
BOUNDARIES
region 'domain'  eps=eps0    
   start 'outer' (0,-d0-dd)  natural(U)=0    
   line to (0,-Lz) to (Lr,-Lz) to (Lr,Lz)  to (0,Lz)  to (0,d0+dd)
   value(U)=U0   line to (r0,d0+dd) to (r0,d0) to (0,d0)
   natural(U)=0   line to (0,-d0)
   value(U)=0  line to (r0,-d0) to (r0,-d0-dd) close
region 'glass'  eps=7.0*eps0         
   start(0,-d0)  line to (r0,-d0) to (r0,d0) to (0,d0) close
feature
   start 'upper'  (0,d0+dd)  line to (r0,d0+dd) to (r0,d0) to  (0,d0)
PLOTS
   contour( U)     contour( Dm) log     vector( D) norm
   surface( Dm) log     contour( Dm) on 'glass' painted
   elevation( -normal(D)) on 'upper' {  Charge }
      report( pi*r0^2* [7.0*eps0*U0/(2*d0)]) as 'Q_elementary'
   elevation( -Dez) from (0,0) to (Lr,0) {  Charge }
END

After typing this descriptor, you may click on Controls, Domain
Review above the editor window to obtain a sketch of the geometry.
The capacitor plates and the glass slab are circular, and we may
imagine generating the 3D geometry by rotating the figure about the
axis of symmetry.
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In the descriptor we draw a single outer boundary for the vacuum
and for the plates, changing from derivative to value boundary
conditions where necessary.

We start on the axis of symmetry at the bottom surface of the
lower plate and trace the boundary in the counter-clockwise sense
until we reach the top surface of the upper plate.

On the outer horizontal lines, and the vertical line on the right side,
we need a vanishing normal derivative to confine the field completely
in the domain. On this part of the boundary, ∂ ∂U n/  is thus specified
to be zero. On the axis there can be no radial field (by symmetry),
which means that the same derivative boundary condition applies.

In this problem we are considering the field in a cross-section
passing through the z-axis, which is vertical in the plots. The surfaces
of constant potential cut the plane of the figure along the curves in the
plot below. In other words, you may think of the potential surfaces
below as being generated by rotating these contours around the
vertical axis.

The logarithmic plot of Dm indicates that the field strength at the
upper, lower and right boundaries is about 0.1 % of that between the
plates, and hence the constraints on the field at the boundaries should
not seriously perturb the charge stored.
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The following elevation plot on the feature named 'upper' displays
the flux of Dn  leaving the upper capacitor plate. The program always
gives us the normal component pointing out of the domain. Hence we
need a negative sign in the plot argument in order to obtain the charge
on the plate.

For the integration of Dn , we must use annular area elements
( )2πρ ρd  for the surface of the plate. This mode is actually the
default when cylindrical coordinates have been declared. From the
charge so calculated and the applied voltage (1e4) you directly obtain
the capacitance.

In order to compare the charge values obtained by integration to
that of the elementary capacitor formula, we have added a line for
estimating (pi*r0^2)*Dez inside the glass. The report command makes
the numerical value appear at the bottom of the plot. We note that this
simplistic treatment underestimates the capacitance by about 20%.

The last elevation plot of Dez along the horizontal plane of
symmetry also yields the charge, since all of the field lines must pass
by this plane. This integral is expected to be more accurate, but it
does not distinguish between the contributions from various parts of
the metal plate.
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Glass Ball in a Parallel Field

This application concerns a dielectric ball in an (initially) parallel
field of strength E0. As an alternative strategy to that on p.84, we
create the applied field by imposing potentials -U0 and U0 on the
horizontal boundaries as shown below.

With this descriptor we also introduce short notations for grad and
div in ( , )ρ z . As already mentioned, FlexPDE contains a symbolic,
auxiliary program that automatically expands the differential
operators in the coordinates declared.
TITLE   'Glass Ball in a Parallel Field'          { exa103.pde }
SELECT     errlim=3e-6     ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r', 'z')
VARIABLES   U
DEFINITIONS
   Lz=1.0     Lr=2*Lz     r0=0.05     rad=sqrt(r^2+z^2)
   eps0=8.854e-12     epsr1=1.0     epsr2=7.0
   epsr     eps=epsr*eps0     U0=1.0     U_ex { Declared only }
   E0=-2*U0/(2*Lz)     De0=eps0*E0   { Far field }
   E=-grad(U)     Em=magnitude(E)     D=eps*E     Dm=magnitude(D)
Dm_ex0=abs[ eps0*epsr2*3/(2+epsr2)*E0] { Dm inside ball }
EQUATIONS
   div( D)=0 { Expanded automatically for (r,z) }
BOUNDARIES
region 'domain' epsr=epsr1     { Vacuum }
   U_ex=-[1+(1-epsr2)/(2+epsr2)*( r0/rad)^3]*E0*z { Analytic 1 }
   start 'outer' (0,-Lz)   value(U)= -U0 line to (Lr,-Lz)
   natural(U)=0   line to (Lr,Lz)
   value(U)=U0   line to (0,Lz)
   natural(U)=0   line to close
region 'glass'  epsr=epsr2   { Glass }
   U_ex=-3/(2+epsr2)*E0*z { Analytic solution, yields Dm_ex0 }
   start (0,r0) line to (0,-r0)  arc to (r0,0) close
feature  start  'circle'  (0,-r0) arc to (r0,0) to (0,r0)
PLOTS
   contour( U)     contour( U-U_ex) painted     elevation( U) on 'outer'
   elevation( normal( D)) on 'outer' report( De0)
   vector( D) norm     vector( D) on 'glass' report(Dm_ex0)
   elevation( normal(D), tangential(D)) on 'circle' on 'glass'
   elevation( -normal(D), -tangential(D)) on 'circle' on 'domain'
END
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There is an exact solution to a similar problem3p191, i.e. that of a
dielectric sphere in a field which becomes parallel and of constant
strength as z → ±∞ . The boundary conditions on the sphere, where
two analytic solutions meet, lead to the following expressions for the
potentials (with R z≡ +ρ2 2 ).
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We type the two solutions for U_ex into their respective region
segments. At large distances from the sphere, the outside field rapidly
approaches a linear expression in z, corresponding to a homogeneous
field.

The following figure is a painted contour plot of the deviation of
the numeric potential U from the analytic one.

The maximum relative deviation evidently is about 0.01 % of the
total span. The difference between the numeric and the analytic
solutions cannot be reduced significantly by a smaller errlim, since it
is caused by dissimilar boundary conditions. If we were to use the
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Professional Version with larger values Lz, however, we would obtain
better agreement.

The following zoomed vector plot of D shows that the field is
parallel inside the sphere, in agreement with the analytic solution.

Here we can also compare with the reported analytic value.
Evidently, the agreement is satisfactory on the average.

Charged, Conducting Ellipsoid

In previous examples, the total charge within the PDE domain was
zero. We can also handle the case of an enclosed charge Q, however,
by imposing a normal component Dn  on the outer boundary. To do
this, we simply assume that any charged object will generate a field
similar to that of the same amount of charge concentrated at the
center. The two fields may be expected to become similar at large
distances from the center.
TITLE   'Charged, Conducting Ellipsoid' { exa104.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r', 'z')
VARIABLES   U
DEFINITIONS
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   r1=0.05     r2=0.15     r3=1.0
   eps=8.854e-12     Q=1e-9 { Specified charge }
   E= -grad(U)     Em=magnitude(E)     D=eps*E     Dm=magnitude(D)
   Up=Q/(4*pi*eps*sqrt(r^2+z^2)) { Potential of a point charge }
   Ep=-grad(Up)     Dp=eps*Ep     Dpm=magnitude(Dp)
EQUATIONS
   div( D)=0
BOUNDARIES
region 'domain'
   start (r1,0)  natural(U)=0  line to (r3,0) 
   natural(U)=Dpm    arc(center=0,0) to (0,r3)
   natural(U)=0  line to (0,r2) value(U)=0
   arc(center=0,0) close { Quarter ellipse }
feature
   start 'ellipsoid' (0,r2) arc(center=0,0) to (r1,0)
   start 'outer' (r3,0) arc(center=0,0) to (0,r3)
PLOTS
   contour(U) zoom(0,0, 2*r2,2*r2) report( globalmin(U))
   elevation(U) from (r1,0) to (r3,0)
   surface( Dm) zoom(0,0, 2*r2,2*r2)   vector( D) norm
   elevation( Dpm, normal(D)) on 'outer' { Test of Dn }
   elevation( 2*normal(D)) on 'outer' {  Charge }
   elevation( -2*normal(D)) on 'ellipsoid' {  Charge }
END

Here, we have included the expression Up for the potential of a
point charge Q at the origin. Since we have chosen a spherical outer
boundary, the resulting field D will be perpendicular to the boundary
and have a magnitude equal to Dpm. When applying the natural
boundary condition, however, we must remember that U, hidden in
the PDE, is effectively multiplied by eps. In view of p.51 we must
thus specify the normal component of D, rather than that of E.

The descriptor is valid for one-half of the total space, which is the
reason why we must multiply the integrand by 2 when calculating the
charge.

The figure below shows the resulting contours of U, all with
negative values. The potential on the conductor itself is of course
zero, as specified. Since this plot is zoomed we cannot read off the
minimum value U, but we have reported globalmin(U) at the bottom of
the figure.
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The following zoomed surface plot of Dm presents the field
strength. We note that the field is much stronger where the radius of
curvature is smaller, which illustrates the fact that sparks in the air
start from tips.

In addition, this plot depicts the distribution of charge density on
the ellipsoid, since Dm on the surface of the conducting object is
equal to the normal component Dn.
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By the first elevation plot we compare the field due to the point
charge with that due to the charged ellipsoid.

By the final elevation plots we compute the charge on the ellipsoid
using the Gauss law on the spherical boundary and then on the
ellipsoid itself.

The elevation plot of U suggests that the potential could vary
roughly as 1 /ρ , and we would be interested in the asymptotic limit
for large radii. If we repeat the run using an outer radius of r3=10.0
we find that the first plot reports Umin .= −1110 . The capacitance of
the ellipsoid with respect to infinity may thus be estimated as
Q U e/ / .= − = −1 9 111 9 0 12e .

After testing ellipsoids of different elongation we discover that the
capacitance is rather well approximated by that of a ball with a radius
equal to the geometric mean of the half-axes.

Spherical Capacitor

Taking r1=r2 in exa104 we obtain a spherical object, for which there
is a well-known elementary expression for the capacitance. To make
this comparison we need to add two report statements.
TITLE   'Charged, Conducting Sphere'        { exa104a.pde }
…
DEFINITIONS
   r1=0.1     r2=r1     r3=1
...
   Qe=surf_integral( -2*normal(D), 'ellipsoid')
EQUATIONS
…
   report( Qe/(abs(globalmin(U))) )  as 'Capacitance' { For last plot }
   report( 4*pi*eps*r3*r1/(r3-r1)) as 'C_analytical'
END

In the first of the report commands we divide the charge, calculated
by surf_integral, by the potential drop obtained from globalmin.
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Charged Metal Balls in a Dielectric

The cylindrical coordinate system permits us to treat problems with
several axially symmetric objects on a common axis. The following
descriptor is for two metal spheres, embedded in a dielectric and kept
at potentials of zero and U2 respectively.

In the boundaries segment we use the point charge approximation
to specify the component normal(Dp) caused by an enclosed charge Q.
Having done that, we are assured that the sum of the charges will be
Q, but we cannot specify the charge on each one of the metal balls.
We shall discover, however, that the voltage (U2) applied between the
balls determines the sharing of the total charge.
TITLE   'Charged Metal Balls in a Dielectric'          { exa105.pde }
SELECT     errlim=3e-4     ngrid=1     spectral_colors
COORDINATES    ycylinder( 'r', 'z')
VARIABLES   U
DEFINITIONS
   r1=0.05    d0=0.2     r2=0.1     r3=1.0
   eps0=8.854e-12     eps=7.0*eps0 { Glass }
   Q=1e-9     U2=40   { Voltage controlling charge }
   Er=-dr(U)     Ez=-dz(U)     E=-grad(U)     Em=magnitude(E)
   Der=eps*Er     Dez=eps*Ez     D=eps*E    Dm=magnitude(D)
   Up=Q/(4*pi*eps*sqrt(r^2+z^2))   { Potential of a point charge }
   Ep=-grad(Up)     Dp=eps*Ep { For outer boundary }
   Q1=surf_integral( -normal(D), 'ball1') { Charge on 1 }
   Q2=surf_integral( -normal(D), 'ball2')  { Charge on 2 }
EQUATIONS
   div(D)=0
BOUNDARIES
region 'dielectric' start (0,-d0/2-r1)  natural(U)=0  line to (0,-r3)
   natural(U)=normal(Dp) arc( center=0,0) angle=180 to (0,r3)
   natural(U)=0 line to (0,d0/2+r2)  value(U)=U2
   arc(center=0,d0/2) angle=-180 { Ball2 }
   natural(U)=0  line to (0,-d0/2+r1) value(U)=0
   arc(center=0,-d0/2) angle=-180 close { Ball1 }
feature
   start 'outer' (0,-r3) arc( center=0,0) angle=180
   start 'ball1'  (0,-d0/2+r1) arc( center=0,-d0/2) angle=-180
   start 'ball2' (0,d0/2+r2) arc( center=0,d0/2) angle=-180
PLOTS
   contour( U)     vector( D) norm zoom(0,-1.5*d0, 3*d0,3*d0)
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   contour( Dm) painted zoom(0,-1.5*d0, 3*d0,3*d0)
   elevation( -normal(D)) on 'ball1'        elevation( -normal(D)) on 'ball2'
   elevation( normal(D)) on 'outer' {  Total charge }
summary
   report(U2) report(Q1) report(Q2) report(Q1+Q2)
END

In the definitions section of the descriptor we include a
surf_integral yielding the numerical value of the charge on each ball.
The negative sign arises since normal gives us the vector component
pointing outward from the domain, while we need one pointing
outward from the ball. The integral over the outer boundary, obtained
from the elevation plot, should reproduce the sum of those values.

In two of the graphs we employ zoom, where the two first
arguments are the coordinates of the low-left corner and the last
arguments the width and height of the plot window.

The following vector plot shows that there is negative charge on
the lower ball and positive charge on the upper one. It also
demonstrates that the field is strongest between the two objects and
close to the smaller one. At the voltage chosen, the charges are of
opposite signs, which means that they will move closer to each other
than the distance between the ball centers.
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The “plot” named summary just contains a list of values and labels.
Here, it reports the charge values and the sum of the charges, to be
compared with the value imposed by the boundary condition.

If we change the applied voltage to a negative value, U2=-10, we
obtain the following contour plot of Dm. From the contours around
the upper ball, which are shifted upwards, we deduce that the charge
distributions now repel each other.

The vector plot shows that the lower ball is positively charged and
that the upper ball has both positive and negative charges. These
features are confirmed by the elevation plots. The summary reports
that the total charge on each object is positive and that the charge on
the smaller ball is larger.
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Charged Dielectric

It is difficult to deposit free charges in the interior of a dielectric. One
way of doing this is to irradiate the dielectric by a beam of high-
energy electrons, penetrating well into the material. Let us assume
that the resulting charge density follows a Gauss distribution in a
direction transverse to the beam and that it decreases exponentially in
the direction of the beam. The specimen is axially symmetric and is
completely enclosed in metal as appears from the boundary
conditions on the outside. The beam enters from below along the z-
axis through a thin metal foil.
TITLE   'Dielectric Cylinder Charged by Beam'          { exa106.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r', 'z')
VARIABLES   U
DEFINITIONS
   Lr=2     Lz=1     r0=0.2
   eps0=8.854e-12     epsr     eps=epsr*eps0
   Er=-dr(U)     Ez=-dz(U)     E=-grad(U)     Em=magnitude(E)
   D=eps*E     Dm=magnitude(D)
   rho_v   rho_vg=1e-6*exp(-5*r^2-5*z) { Charge density in glass }
EQUATIONS
   div( D)=rho_v
BOUNDARIES
region 'domain'  epsr=1.0   rho_v=0 { Air }
   start (0,Lz) natural(U)=0 line to (0,-Lz)
   value(U)=0 line to (Lr,-Lz) to (Lr,Lz) close
region 'glass'  epsr=7.0  rho_v=rho_vg
   start(0,0) line to (Lr,0)  to (Lr,Lz) to (0,Lz) close
PLOTS
   contour( rho_v)     elevation( rho_v) from (0,-Lz) to (0,Lz)
   contour(U)     vector(E) norm     elevation( Ez) from (0,-Lz) to (0,Lz)
   vector( D) norm     surface( Dm)
END

Here, we assign different charge densities ρv to the two regions of
space.

The first plot below shows the vector plot of E, exhibiting the
highest magnitudes in the air, close to the center of impact of the
beam at the origin.
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The following surface plot illustrates the variation of Dm over the
domain.

Exercises

  Introduce cond=1e-3*exp(-300*(r+z)) into exa101. Make a contour
plot of the conductivity as well.
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  Solve exa102 assuming a vacuum over the entire domain.
  Replace the sphere in exa103 by an ellipsoid with the z-directed

axis equal to 1.5*r0. Also change to Lr=1. Will the internal field still
be parallel?

  Exploit the symmetry of the problem of the dielectric sphere
(exa103) to solve for only the upper half of the domain (z > 0). Notice
that U must vanish on the symmetry plane. Show that the dielectric
tends to behave like a metallic ball as epsr becomes very large.

  Use exa105 as a template for the problem of two metal spheres of
equal charge magnitude and with a potential difference of 30.0. Find
the capacitance between these spheres.

  Modify exa106 to determine the total charge in the dielectric.
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11   Electrostatic Force and Energy

It is well known that a Coulomb force exists between point charges,
and hence it is only natural that extended objects also attract or repel
each other. We expect the surface force per unit area to be given by
σ s nDE E= , but considering that E is zero inside the metal and non-
zero outside, one must use the correct vector field.

The analytic expression6p223 for the force per unit area of a metallic
surface is
f E= ½Dn   

In fact, if one replaces the charged sheet by a layer of finite thickness
one can prove that the halfway field yields the appropriate value for
the force.

Forces on a Parallel-Plate Capacitor

In the case of the parallel-plate capacitor (p.79), the vector plot of D
suggests that the forces on the left and right edges of a plate are
horizontal, equal and opposite. In other words, they might deform the
plate horizontally, but the total force is zero.

The total vertical force may be obtained by a line integral of
f D Ey n y= ½  over the boundary of the upper plate, say. To achieve

this, it is sufficient to add the following lines to exa092 (p.79).
TITLE   'Forces on a Parallel-Plate Capacitor' { exa111.pde }
... { Student Version} { SI units }
   elevation( 0.5*normal( D)*Ey) on 'upper' { Integral  force }
   report( -1*2*xx* 0.5*[7*eps0*U0/(2*d0)]* U0/(2*d0)) as 'F_elementary'
END

The elevation plot gives us the electrostatic force between the
plates by the integral under the curve. The answer is -0.0391, which
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definitely is a measurable force. We compare that with an elementary
estimate of (area)*0.5*Dey*Ey and find the smaller value -0.0387.

Oppositely Charged Metal Rods

Let us now calculate the force in another simple situation, that
between two metal rods of circular cross-section, embedded in glass,
at different values of U. Here, we again calculate charges and forces
by elevation plots.
TITLE   'Oppositely Charged Metal Rods' { exa112.pde }
SELECT     errlim=3e-4     ngrid=1     spectral_colors
VARIABLES   U
DEFINITIONS
   L=1     r0=0.1     y0=0.15     U2=1e3
   eps0=8.854e-12     epsr=7.0     eps=epsr*eps0
   Ex=-dx(U)     Ey=-dy(U)     E=-grad(U)     Em=magnitude(E)
   Dex=eps*Ex     Dey=eps*Ey     D=eps*E     Dm=magnitude(D)
   Q=line_integral( normal( D), 'rod1') { Line integral over rod1 }
   Fy=Q^2/(2*pi*2*y0)/ eps { Elementary force estimate }
EQUATIONS
   div( D)=0       
BOUNDARIES
region 'glass' start(-L,-L) natural(U)=0
   line to (0,-L) to (L,-L)  to (L,L) to (-L,L)  close
   start 'rod1' (r0,-y0) value(U)=0 { Exclude }
   arc( center=0,-y0) angle=360
   start 'rod2' (r0,y0) value(U)=U2
   arc( center=0,y0) angle=360
PLOTS
   grid(x,y) zoom(-3*y0,-3*y0, 6*y0,6*y0)
   contour( U)     contour( Dm) painted zoom(-3*y0,-3*y0, 6*y0,6*y0)
   vector( D) norm zoom(-3*y0,-3*y0, 6*y0,6*y0)
   elevation( normal(D)) on 'rod1' {  Charge on rod 1 }
   elevation( normal(D)) on 'rod2' {  Charge on rod 2 }
   elevation( 0.5*normal(D)*Ey) on 'rod1' {  Force on rod 1 }
   elevation( 0.5*normal(D)*Ey) on 'rod2' {  Force on rod 2}

   report(Fy) as 'Fy_elementary'    { Estimate of force }
END
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Here, we calculate the charge Q by a line_integral over the rim of
a rod. This is similar to the integration automatically obtained with an
elevation plot, but line_integral results in a value stored in a variable
that may be used later in an expression.

The painted contour plot of Dm illustrates that the field has its
highest magnitude close to the rods and close to the vertical centerline
between the rods. The vector plot below confirms this.

The last elevation plot is strongly peaked in the direction pointing
toward the opposite rod. This peak is at point 4, indicated on the
orientation diagram beside. We may also be guided by the definition
of 'rod2' under boundaries. The integral of this curve yields the force,
and we find that the magnitude of the reaction force on 'rod1' is the
same to about 0.2%.

The elementary estimate of the force is based on Gauss’ law,
applied to an infinitely long line charge centered on the first rod, the
other rod also being represented by a line charge. The resulting
absolute value is only about 70% of that given by the integral, but this
is not surprising, considering that most of the charge on a rod resides
on the half-surface facing the other rod. The vector plot and the
elevation plots of Dn  illustrate this fact.
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Using the Professional Version, we may reduce the radii of the
rods to one half and remove the node limit. We then find that the
mutual force is smaller and that the elementary estimate agrees with
the integrated value to about 12 %.

Charged Metal Balls

The cylindrical coordinate system permits us to treat problems with
several axially symmetric objects on a common axis. The following
descriptor is for two metal spheres, embedded in a dielectric and kept
at potentials of zero and U2 respectively. In this problem, we shall
need the accuracy of the Professional Version.

In the boundaries segment we use the point charge approximation
to specify the component normal(Dp) caused by an enclosed charge Q,
as we did in exa104 (p.98). Having done that, we are assured that the
sum of the charges is Q, but we cannot specify the charge on each one
of the metal balls. We shall see, however, that the voltage (U2)
applied between the balls determines the sharing of the total charge.
TITLE   'Two Charged Metal Balls' { exa113.pde }
SELECT   { Professional Version }
   errlim=3e-5     ngrid=1     spectral_colors
COORDINATES    ycylinder( 'r', 'z')
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VARIABLES   U
DEFINITIONS
   r1=0.02     d0=0.1     r2=0.05     r3=1.0
   eps0=8.854e-12     eps=7*eps0 { Glass }
   Q=1e-9     U2=40   { Voltage controlling charge }
   Er=-dr(U)     Ez=-dz(U)     E=-grad(U)     Em=magnitude(E)
   Der=eps*Er     Dez=eps*Ez     D=eps*E     Dm=magnitude(D)
   Up=Q/(4*pi*eps*sqrt(r^2+z^2))   { Potential of a point charge }
   Ep=-grad(Up)     Dp=eps*Ep { For outer boundary }
   Q1=surf_integral( -normal(D), 'ball1') { Charge 1 }
   Q2=surf_integral( -normal(D), 'ball2')  { Charge 2 }
   F1=surf_integral( -0.5*normal(D)*Ez, 'ball1') {  Force 1 }
   F2=surf_integral( -0.5*normal(D)*Ez, 'ball2') {  Force 2 }
EQUATIONS
   div(D)=0 { div( eps*( -grad( U))=0 }
BOUNDARIES
region 'dielectric' start (0,-d0/2-r1)  natural(U)=0  line to (0,-r3)
   natural(U)=normal(Dp) arc( center=0,0) angle=180 to (0,r3)
   natural(U)=0 line to (0,d0/2+r2)  value(U)=U2
   arc(center=0,d0/2) angle=-180 { Ball2 }
   natural(U)=0  line to (0,-d0/2+r1) value(U)=0
   arc(center=0,-d0/2) angle=-180 { Ball1 }
feature
   start 'outer' (0,-r3) arc( center=0,0) angle=180
   start 'ball1'  (0,-d0/2+r1) arc( center=0,-d0/2) angle=-180
   start 'ball2' (0,d0/2+r2) arc( center=0,d0/2) angle=-180
PLOTS
   contour( U)     vector( D) norm zoom(0,-1.5*d0, 3*d0,3*d0)
   contour( Dm) painted zoom(0,-1.5*d0, 3*d0,3*d0)
   elevation( normal(D)) on 'outer' {  Total charge }
summary { Numerical and textual plot page }
      report(Q1) report(Q2) report(Q1+Q2) report(F1)   report(F2)
      report(Q1*Q2/ [4*pi*eps*d0^2]) as 'Elementary estimate of F2'
END

The following contour of Dm indicates the charge distribution on
the balls and demonstrates that the charge on each sphere is highest
on the side facing the other one. At the voltage chosen the charges are
of opposite sign, which means that the distributions will be drawn
closer to each other than the distance between the centers.
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In the definitions section of the descriptor we include a
surf_integral yielding the numerical value of the charge on each ball.
The Gauss integral over the outer boundary, obtained from the
elevation plot, should reproduce the sum of those values.

The summary reports the forces obtained by integration and
compares those to an elementary estimate by Coulomb’s law. The
following figure shows the relevant lines.

Since the charge distributions attract each other, it is not surprising
to find that the elementary estimate of the force (between point
charges placed at the centers) is smaller than the integral value.

If we change the applied voltage to a negative value, U2=-10, we
obtain the following summary. The individual charges are now of the
same sign, which means that the charge distributions will repel each
other.
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The contour plot of Dm confirms that the charges now are on the
far side of the balls. Consequently, the point charge estimate becomes
higher than that obtained from the FEA solution.

Forces on a Dielectric

As we have already noted, an applied electric field induces no
polarization volume charges in a dielectric object of constant
permittivity. A polarization surface charge σ p nP=  will occur,
however. The field E will of course exert a force on that surface
charge. It is possible to show6p106 that the force per unit area f s
becomes, in terms of the tangential (t) and normal (n) components,

f E Es t n= − +½( ) /ε ε ε ε2 1 1
2

1
2

1 2d in   

The index 2 refers to the object and 1 to the surrounding material.
Surprisingly, the force is directed along the normal n, just as in the
case of a metal object.

For the descriptor it is convenient to have an expression in terms of
the field inside the object (2). Since Et  and Dn  are continuous across
the interface, we have E Et t1 2=  and ε ε1 1 2 2E En n= . Thus the force
per unit area may be written

f E Es t n= − +½( ) /ε ε ε ε2 1 2
2

2
2

2 1d in   

Metallic and Dielectric Rod across a Parallel Field

We shall now calculate the force on a dielectric rod, using a metal rod
as the second element for comparison. These objects are in a vacuum
and exposed to a transverse, initially parallel field. In view of
Newton’s third law the forces must be equal and opposite.
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Considering that we shall have to integrate the x-component of a
normal force over the surface, we must multiply fs by the direction
cosine of the angle between the normal and the x-axis. For this
purpose we define a vector field unitx of constant magnitude, pointing
along the x-axis. In the descriptor, normal(unitx) is equivalent to the
direction cosine.
TITLE   'Metal and Dielectric Rod in a Parallel Field'          { exa114.pde }
SELECT     { Professional Version }
   errlim=1e-6     ngrid=1     spectral_colors
VARIABLES   U
DEFINITIONS
   r0=0.04     d0=0.045     L=1.0
   eps0=8.854e-12     epsr     eps=epsr*eps0
   Ex0=1e5     Dx0=eps0*Ex0      { Far Field }        
   Ex=-dx(U)     Ey=-dy(U)     E=-grad(U)     Em=magnitude(E)
   D=eps*E     Dm=magnitude(D)
   F1=line_integral( -0.5*normal(D)*Ex, 'rod1') { Force on metal rod } 
   fs=0.5*(eps-eps0)*[ tangential(E)^2+normal(E)^2*epsr] { Force/area }
   unit_x=vector(1,0) { Direction of x }
   f=fs*normal( unit_x) { Force/area, x-component }
   F2=surf_integral( f, 'rod2') { Integrated force, x-component }
EQUATIONS
   div( D)=0          { div( eps*( -grad( U)))=0 }
BOUNDARIES
region 'domain'   epsr=1        { Vacuum }
   start(-L,-L)  natural(U)=0  line to (0,-L)  to (L,-L)
   natural(U)=Dx0  line to (L,L)
   natural(U)=0  line to (-L,L)
   natural(U)=-Dx0  line to close
   start 'rod1' (-d0-r0,0)  value(U)=0 { Exclude for metal rod }
   arc( center=-d0,0) angle=360
region 'glass'  epsr=7.0   start 'rod2' (d0+r0,0)
   arc( center=d0,0) to (d0,r0) to (d0-r0,0) to (d0,-r0) close
PLOTS
   grid( x, y) zoom(-5*d0,- 5*d0,  10*d0,10*d0)
   contour( Dm) zoom(-2.5*d0,-2.5*d0,  5*d0,5*d0)
   vector( D) norm zoom(-2.5*d0,-2.5*d0,  5*d0,5*d0)
      report( F1) as 'F1 on metal' report( F2) report((F1+F2)/F1)
END
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In this descriptor, we have included a plot of the grid to show the
density of nodes on the outlines where we make the integration.

The normalized vector plot below illustrates the geometry.

The bottom line reports on the forces. We notice that the
magnitudes of the forces are equal to about 2%, in agreement with the
law of action and reaction. A smaller errlim would further reduce the
difference.

Metal Ball and Dielectric Ellipsoid

Let us now modify the preceding descriptor to deal with axial
symmetry, using exa105 as a guide. We keep the metal ball and add
an oblate dielectric ellipsoid on the same axis. It is an easy matter to
make the cross section of the dielectric object elliptical. We only need
to double the radius at one point of the arc as indicated below.

The surface integrals include the factor 2πρ  for the annular area
element. Otherwise, the calculation is very similar to that for the rods.
In this case we need to define a field of unit vectors (unit_z) pointing
in the z direction in order to generate the cosine factor.
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TITLE   'Metal and Dielectric Objects in (r,z)'    { exa115.pde }
SELECT     { Professional Version }
   errlim=1e-7     ngrid=1     spectral_colors
COORDINATES   ycylinder('r','z')
VARIABLES   U
DEFINITIONS
   r0=0.04     d0=0.05     Lr=2.0     Lz=1.0
   eps0=8.854e-12     epsr     eps=epsr*eps0
   Ez0=1e5     Dz0=eps0*Ez0      { Far Field }        
   Er= -dr(U)     Ez= -dz(U)     E= -grad(U)     Em=magnitude(E)
   D= eps*E     Dm=magnitude(D)
   F1=surf_integral( -0.5*normal(D)*Ez, 'ball') { Force on metal }
   fs=0.5*(eps-eps0)*[normal(E)^2*epsr+tangential(E)^2] { Dielectric }
   unit_z=vector(0,1) { Direction of z }
   f=fs*normal( unit_z) { Force/area, z-component }
   F2=surf_integral( f, 'ellipsoid') { Force on dielectric }
EQUATIONS
   div( D)=0          
BOUNDARIES
region 'domain'   epsr=1        { Vacuum outside }
   start(0,-Lz)  natural(U)= -Dz0  line to (Lr,-Lz)
   natural(U)=0 line to (Lr,Lz)
   natural(U)=Dz0  line to (0,Lz)
   natural(U)=0  line to (0,d0+r0) value(U)=0
   arc( center=0,d0) angle= -180 to (0,d0-r0) { Metal ball }
   natural(U)=0 line to close
region 'glass'  epsr=7.0
   start 'ellipsoid' (0,-d0-r0)
   arc( center=0,-d0) to (2*r0,-d0) to (0,-d0+r0) line to close
feature
   start 'ball' (0,d0+r0) arc( center=0,d0) angle=-180 to (0,d0-r0)
PLOTS
   vector( D) norm     contour( Dm) painted zoom(0,-2.5*d0,  5*d0,5*d0)
   vector( D) norm zoom(0,-2.5*d0,  5*d0,5*d0)
      report( F1) as 'F1 on metal'   report( F2)   report((F1+F2)/F1)
END

The following plot displays the field direction in the vacuum and
in the dielectric ellipsoid. The maximum field intensity occurs where
the two objects come close. The force F2 on the metal rod, reported
on the bottom line, agrees within about 0.7% with the opposite force
on the metal ball. Notice that we have used quite different expressions
for these two calculations.
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Evidently, we are able to calculate forces for a large variety of
geometrical configurations and materials.

Electrostatic Energy

The expression for the electrostatic field energy3p138 is given by

W dv= ⋅zzz1
2

D E  ,   

where the integral is to be taken over the volume of the field. It is
worth noticing that the expression for the energy density is similar to
the one we just integrated to obtain the force.

The software readily provides routines for evaluating W. Let us
calculate the energy per unit length of the capacitor in ( , )x y  space
(p.79) and then compare it to the energy required to charge the
capacitor, which is known to be W CU QU= =2 2 2/ /  from simple
theory. For this task we add the following lines to exa111. The
Student Version is now sufficient.
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TITLE    'Field Energy for a Plate Capacitor'        { exa111a.pde }
… { Student Version }
summary
   report('Comparison of energy values:')
   report( area_integral( 0.5* Dm*Em)) as 'W' { Per unit length }
   report( line_integral( -normal(D), 'upper')* U0/2) as 'QU/2'
END

On running this extended descriptor we find the volume integral to
yield the energy 8.40e-3. Using a value for the capacitance derived
from the charge on the upper plate, we find QU/2 = 8.24e-3.

Field Energy of Metal Balls in Glass

We shall now look into the detailed energy balance in the case of two
charged metal spheres. Here, they carry charges of equal magnitude
but opposite signs, as required by the natural boundary conditions.
The potential difference U2 is maintained by a voltage source, such as
a battery. The descriptor exa113 could be used as a template.
TITLE   'Field Energy of Metal Balls in Glass' { exa116.pde }
SELECT     { Professional Version }
   errlim=1e-6     ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r', 'z')
VARIABLES   U
DEFINITIONS
   r1=0.03     d0=0.100     r2=0.03     r3=1.0     U2=1.0   { Voltage }
   eps0=8.854e-12     eps=7*eps0 { Glass }
   Er=-dr(U)     Ez=-dz(U)     E=-grad(U)     Em=magnitude(E)
   D=eps*E     Dm=magnitude(D)
   Q1=surf_integral(-normal(D), 'ball1') { Charge 1 }
   Q2=surf_integral(-normal(D), 'ball2')  { Charge 2 }
   Q=0.5*[ abs(Q1)+ abs(Q2)] { Average }
   F1=surf_integral(-0.5*normal(D)*Ez, 'ball1') { Force 1 }
   F2=surf_integral(-0.5*normal(D)*Ez, 'ball2') { Force 2 }
   W=vol_integral(0.5*Dm*Em) { Energy }
EQUATIONS
   div( D)=0
BOUNDARIES
region 'domain'
   start (0,-d0/2-r1)  natural(U)=0 line to (0,-r3)
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   natural(U)=0 arc(center=0,0) angle=180  line to (0,d0/2+r2)
   value(U)=U2  arc(center=0,d0/2) angle=-180
   natural(U)=0  line to (0,-d0/2+r1)
   value(U)=0  arc(center=0,-d0/2)  angle=-180 close
feature
   start 'outer' (0,-r3) arc( center=0,0) angle=180
   start 'ball1' (0,-d0/2+r1) arc( center=0,-d0/2) angle=-180
   start 'ball2' (0,d0/2+r2) arc( center=0,d0/2) angle=-180
PLOTS
   vector(D) norm zoom(0,-d0, 2*d0,2*d0)
summary
   report(U2)   report(d0)   report(Q1)   report(Q2)
   report(Q)   report(W)   report(Q*U2/2)
   report(F1)   report(F2)   report((abs(F1)+ abs(F2))/2) as 'F_mean'
END

Studying the resulting summary page below we find reasonable
agreement between opposite charges and also between the force and
its reaction force. We also notice that the elementary estimate QU2 2/
for a plate capacitor agrees well with the integrated field energy W.

It is interesting to compare the above solution to that obtained with
an increased distance between the balls. Re-running the descriptor
with d0=0.102 we find the following summary.

It is easy to succumb to the false notion that the positive work done
(F*0.002) on the charged balls would increase the field energy. In
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fact, we see that the energy decreases. So does the charge, however,
which means that some charge is transferred via the battery from the
positive to the negative ball, falling through the potential difference
U2. This means that the work done is added to the liberated field
energy to produce heat (or chemical energy) in the battery.

In fact, it can be shown analytically3p141 that the mechanical work
done and the change of field energy W each amount to one-half of the
energy delivered from (or to) the battery. The latter energy is equal to
the difference in Q multiplied by the voltage drop, or 1.584e-13,
which would imply 7.92e-14 for each of the other energy terms.

The mechanical work may be estimated as the average force
multiplied by the displacement 0.002, which becomes 8.11e-14. The
change in electrical field energy is found to be 8.11e-14. These two
terms are hence reasonably equal, but they are somewhat higher than
half of the battery energy.

Energy Minimum

The static field due to a system of charged conductors in a dielectric
medium may be complicated, but according to a classical theorem by
Thomson the solution is simply the function corresponding to the
minimum field energy. From a practical point of view this seems self-
evident, since any excess energy could be imparted to the electrons,
which would move in the conductors until this energy becomes
dissipated. The solution should thus correspond to a smaller field
energy value than any other function obeying the same boundary
conditions.

We shall now illustrate the minimal energy theorem by an
extension of exa072 (p.58). In the following descriptor we construct a
function dU that vanishes on the outer and inner boundaries, and we
use that to perturb the solution. As indicated the Student Version may
be used in this case.

TITLE   'Metal Bar in a Tube, Energy Minimum' { exa117.pde }
SELECT     { Student Version }
   errlim=3e-5     ngrid=1     spectral_colors
VARIABLES   U
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DEFINITIONS
   r0=1.0     b=0.3     Ub=1.0     eps0=8.854e-12
   E=-grad(U)     Em=magnitude(E)
   dU=3*( x^2+y^2- r0^2)*(x-b)*(x+b)*(y-b)*(y+b) { Perturbation }
   W0=area_integral( 0.5* eps0*Em^2) { Energy for solution }
   U1=U-dU     E1=-grad( U1)     E1m=magnitude( E1)
   W1=area_integral( 0.5* eps0*E1m^2)  { Over the entire domain }
   U2=U+dU   E2=-grad( U2)     E2m=magnitude( E2)
   W2=area_integral( 0.5* eps0*E2m^2)
EQUATIONS
   div( grad(U))=0
BOUNDARIES
region 'domain'
   start 'tube' (r0,0) value(U)=0  arc( center=0,0) angle=360  
   start 'bar' (-b,-b) value( U)=Ub  line to (b,-b) to (b,b) to (-b,b)  close
PLOTS
   contour( U)     contour( dU) report( W0) report( W1) report( W2)
END

The function dU is arbitrary, except for the condition that it vanish
on the domain boundaries, as shown below. The functions U-dU and
U+dU then both satisfy the boundary conditions, and W1 and W2 are
the corresponding field energies.

The area_integral gives us the field energy (per unit length in z)
over the ( , )x y  domain. The contour plot above shows dU and the
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numerical results for the field energy. We find that the values W1 and
W2 are clearly higher than that pertaining to the true solution (W0).

Exercises

 Compare two equivalent expressions for the electrostatic energy in
the case of the circular-plate capacitor (exa102).

  Find the field energy associated with the charged, conducting
ellipsoid (exa104). Expand the domain to estimate how much energy
is missing.

 Explore how the total charge is shared between the metal balls in
exa113 as the applied voltage U2 is varied.

 Calculate the force between a charged metal ball and a thick slab
of dielectric material (half-space dielectric).

 Modify the cross-section of the dielectric rod in exa114 to make it
an ellipse with the major axis vertical and twice as large as the minor
axis.

 Solve the problem of a charged metal ball and a dielectric toroid
on a common axis. Explore the resulting forces.

 Modify exa117 by taking the absolute value of the expression for
dU. Change the perturbing function again by taking the square root of
the absolute value.
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12   Magnetostatics in (x,y) Space

From Maxwell’s equations3p323  we know that ∇× = +H J D∂ ∂/ t ,
which in the static case simply becomes
∇× =H J                                        

or expressed in Cartesian components 
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If one of the first components of J is non-zero, then Hz  may also
become non-zero. Since we shall consider magnetic fields with x- and
y-components only, we assume vanishing Jx  and Jy . The above
vector equation thus reduces to
∂
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Electromagnetic theory3p232 shows that the magnetic flux density B,
may be expressed in terms of a vector potential A( , , )x y z , i.e.

B A

i j k

= ∇ × = =

−

−

−

R

S
|||

T
|||

U

V
|||

W
|||

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

x y z
A A A

A
y

A
z

A
z

A
x

A
x

A
y

x y z

z y

x z

y x

      



125

We wish to study vector fields H and B that are parallel to the
( , )x y  plane. As seen from the third component of the above vector
equation, non-zero functions Ax  and Ay  might produce a perpen-
dicular component, Hz , and hence we keep only the last component
of the vector potential, Az . With B H= µ , the above equation then
simplifies to
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Putting these components of H into the equation involving Jz , we
obtain the Poisson-like (p.53) equation
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Although we could well exploit this second-order PDE, we prefer
the simpler first-order equation containing the components of H.
FlexPDE automatically expands the partial derivatives in terms of Az
as we run the descriptor.

After solving for Az  we may easily compute the magnetic flux
density from B A= ∇ × .

Magnetic Field around a Wire

Our first application will be to the magnetic field in a plane
perpendicular to a long wire of circular cross-section, carrying a
uniform current density Jz0 10= . . We assume the permeability to be
that of free space (µo), which is valid for the vacuum and also for a
metal such as copper (to sufficient accuracy).

In the descriptor below, the components of B are denoted Bex and
Bey, for the simple reason that By would be equivalent to by, which is
a reserved word in the software.
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TITLE   'Field around a Wire' { exa121.pde }
SELECT     { Student Version }
   errlim=3e-4     ngrid=1     spectral_colors
VARIABLES   Az                   { Magnetic vector potential }
DEFINITIONS                      { SI units }
   r0=0.2     r1=1.0     rad=sqrt( x^2+y^2) { Radius }
   mu0=4*pi*1e-7    mu=mu0     Jz0=1.0 { Jz in wire }
   Bex=dy(Az)     Bey=-dx(Az)
   B=vector( Bex, Bey)     Bm=magnitude( B)
   Hx=Bex/mu     Hy=Bey/mu     H=B/mu     Hm=Bm/mu
   Jz     Bm_ex { Declared only }
EQUATIONS
   dx( Hy)- dy( Hx)=Jz
BOUNDARIES
region 'domain'  Jz=0          
   Bm_ex=mu*Jz0*r0^2/(2*rad) { Exact solution, see text below }
   start 'outer' (-r1,0) value(Az)=0  arc(center=0,0) angle=360
region 'wire' Jz=Jz0
   Bm_ex=mu*Jz0*rad/2
   start (-r0,0) arc( center=0,0) angle=360
PLOTS
   elevation( normal(B)/Bm) on 'outer'
   surface( Az)     contour( Bm)     contour( Bm_ex)
   vector( B) norm zoom(-2*r0,-2*r0,  4*r0,4*r0)
   contour( Bm-Bm_ex) report( globalmax( Bm))
   elevation( Bm, Bm_ex) from (-r1,0) to (r1,0)
END

The condition imposed at the outer boundary, value(Az)=0, should
be explained. At any point of the boundary we may consider
B A= ∇ ×  in a rectangular coordinate system having its axes
tangential (t) and normal (n) to the curve. Guided by the expression
for the components of B on p.124 we find that the normal component
could be written B A tn z= −∂ ∂( )/ , where t is the coordinate along the
tangent. This means that the constant value we have chosen for Az
implies that the normal component Bn  vanishes at the boundary.

The first elevation plot, showing the ratio of normal(B)/Bm, con-
firms that Bn on the boundary is very small indeed compared to Bm.

The figure below shows a surface plot of the vector potential Az.
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The next figure shows the direction of B, and the colors also give a
rough idea about the field strength. The field is perpendicular to the
radius everywhere and takes its largest value at the edge of the wire.

We notice that the field circulates counter-clockwise. This is
because the z-axis points out of the figure on the screen, which means
that the current also flows toward us.
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The simple problem of a current through a straight wire has an
exact solution which we obtain from the integral form of the Maxwell
equation3p228

B l⋅ =z d Iµ0   

where I is the current inside the path of integration. Making use of the
axial symmetry we integrate B along concentric circles.

The expression for the current enclosed takes the constant value
I J rz= 0 0

2π  for field points outside r0, and the above integral relation
thus becomes 2 0 0 0

2π µ πrB J rm z= .
For points inside the wire we have I J rz= 0

2π , and hence we may
obtain Bm from the equation 2 0 0

2π µ πrB J rm z= . The exact ex-
pression for Bm  will thus be different for the two regions of space.

The contour plot of Bm-Bm_ex indicates that the difference reaches
to about 10% of the maximum Bm (globalmax). Over most of the
domain, however, the error is much smaller. We must not forget that
errlim refers to the potential Az, which we need to differentiate to
obtain B. It is not astonishing that this operation adds some numeric
scatter.

Alternatively, we may compare the FEA solution to the analytic
one in other ways. The elevation plot of Bm and Bm_ex confims the
agreement by curves that are very close. We also notice that the
integrals of Bm and Bm_ex agree to about 0.07%.

Field around Two Wires

We next consider the case of two long wires, conducting current in
opposite directions, as in the following descriptor. In this case there
are two circular sub-regions where the current density Jz  is non-zero.
Here we use specific names for these regions, lower and upper, which
will be convenient for the integration in the next section.
TITLE   'Field around Two Wires' { exa122.pde }
SELECT    errlim=3e-4     ngrid=1     spectral_colors
VARIABLES   Az
DEFINITIONS                      
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   r0=0.05     d0=0.2     r1=1.0
   mu0=4*pi*1e-7     mu=mu0     Jz     { Current density }
   Bex=dy(Az)     Bey=-dx(Az)
   B=vector( Bex, Bey)     Bm=magnitude( B)
   Hx=Bex/mu     Hy=Bey/mu     H=B/mu     Hm=Bm/mu
EQUATIONS
   dx( Hy)- dy( Hx)=Jz
BOUNDARIES
region 'domain'  Jz=0       
   start(-r1,0)   value(Az) =0   arc(center=0,0) angle=360
region 'lower' Jz=  -1.0
   start (r0,-d0/2)  arc(center=0,-d0/2)  angle=360
region 'upper' Jz= +1.0
   start (r0,d0/2) arc(center=0,d0/2)  angle=360
PLOTS
   contour( Bm) log     vector( B) norm
   contour( Bm) painted zoom(-d0,-d0,  2*d0,2*d0)
   elevation( Bm) from (0,-r1) to (0,r1)
   vector( B) norm zoom(-d0,-d0,  2*d0,2*d0)
END

As is evident from the following logarithmic contour plot of Bm,
the minimum magnitude of B occurs to the extreme left and right of
the domain.
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The zoomed, painted plot below exhibits two additional minima,
on the far side of the center of each wire. There are also two maxima
on the rims facing the other wire. The elevation plot illustrates these
fact even more clearly.

The first vector plot is very similar to what we obtained for the
dipole of charged wires in exa053a (p.41).

Even if this problem appears to be simple, the analytic solution is
quite complicated to evaluate. It may be written as a double integral
over the solution for a thin, single wire.

Force between Two Wires

Wherever we know the current density and have been able to
calculate the field, we may easily obtain values for the forces between
various objects. The force on a volume element carrying a current
density J is given by the Lorentz expression

F J B
i j k

= × = J J J
B B B

x y z

x y z
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or in terms of components: F J Bx z y= −0   and  F J By z x= − 0. The
two wires in the preceding problem are exposed to forces in the y
direction.

In order to calculate these forces, let us add the following lines at
the end of the descriptor. Here we compare the force obtained by
integration over the region of the upper wire with an estimate using
the force between two long, infinitely thin wires carrying the same
current. The magnetic flux density at a distance d from a wire is3p230

B = µ πI d/( )2 , and since that field is perpendicular to the other wire
we just need to multiply by the current I to obtain the Lorentz force.
TITLE   'Field around Two Wires, Force'        { exa122a.pde }
…
   contour( Bey) painted zoom(-d0,-d0,  2*d0,2*d0)
      report( area_integral( Jz*Bex, 'lower')) as 'Force on lower'
      report( area_integral( Jz*Bex, 'upper')) as 'Force on upper'
      report( mu*(1.0*pi*r0^2)/(2*pi*d0)*(1.0*pi*r0^2)) as 'Estimate'
END

On running this extended descriptor we gather from the last plot
(below) that the term F J Bx z y= −  produces no net force because of
the odd symmetry of By .
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For Fy  we find that the elementary estimate agrees with the
integrals to about 4 %. The force on the lower wire is negative and on
the upper one positive, which means repulsion between the wires.

Two Wires inside a Magnetic Shield

Again using exa122 as a template, we now install a tube of linear
magnetic material around the two wires, as suggested below.

TITLE   'Two Wires inside a Magnetic Shield'        { exa122b.pde }
SELECT     errlim=1e-4    ngrid=1     spectral_colors
… { Professional Version }
   r0=0.05     d0=3*r0     r1=1.0     ra=0.4     rb=0.45     { Shield }
...
region 'shield' Jz=0  mu=2500*mu0 { Magnetic material }
   start (0,-rb)  arc( center=0,0) angle=+360
   start (0,-ra)  arc( center=0,0) angle=-360
PLOTS
…
   elevation( Bm) log from (0,-r1) to (0,r1)
END

For the region named 'shield' we define a new value for the
permeability µ , which overrides the previous definition. The two
circles together enclose this annular region. We draw the two limiting
circles (with radii ra and rb) in such directions as to keep the magnetic
region on our left.

The following two plots indicates the magnitude of the field both
inside and outside the magnetic shield. In the contour plot, which
shows the new geometry, we find minima and maxima much as
before. The presence of the shield apparently divides the domain in
fields of quite different strengths.

In order to take a closer look at Bm in the various regions we
created the elevation plot. Clearly the field is very weak outside the
shield.

We notice that magnetic fields in different materials may be treated
after the model of electric fields, since the formalisms are similar.
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Boundary Conditions for Magnetic Vectors

FlexPDE makes is convenient to illustrate how the field vectors H
and B change at a magnetic interface. Let us assume an arbitrary
vector potential function Az on  the outer boundary as follows.
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TITLE 'Boundary Conditions for H and B'          { exa123.pde }
SELECT     errlim=1e-5     ngrid=1     spectral_colors
VARIABLES   Az { Student Version }
DEFINITIONS
   r1=1.0     mu0=4*pi*1e-7     mu   Jz=0 { Current density }
   Bex=dy(Az)    Bey=-dx(Az)    B=vector( Bex, Bey)    Bm=magnitude(B)
   Hx=Bex/mu     Hy=Bey/mu     H=B/mu     Hm=Bm/mu
EQUATIONS
   dx( Hy)- dy( Hx)=Jz
BOUNDARIES
region 'domain'  mu=mu0
    start (-r1, 0) value(Az)=x+y  arc(center=0,0) angle=360
region 'magnet'  mu=1000*mu0
   start (-r1,0) arc(center=0,0) angle=180 line to close
feature
   start 'interface' (-0.9*r1,0) line to (0.9*r1,0)
PLOTS
   contour( Hx) painted     contour( Hy) painted
   contour( Bex) painted     contour( Bey) painted
   elevation( Bex) on 'interface' on 'magnet'
   elevation( Bex) on 'interface' on 'domain'
   elevation( Bey) on 'interface' on 'magnet'
   elevation( Bey) on 'interface' on 'domain'
END

Evidently, the arbitrary potential function imposed on the
boundary does correspond to a solution, as judged by the small error.
The contour plot below illustrates that Bey is continuous across the
interface, and the same seems to be true for Hx.
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The elevation plots taken on either side of the interface show
continuity and discontinuity more clearly. The plots of Bey yield
accurately the same integral value, which already is an indication of
continuity. If this does not convince you, hardcopy the two plots and
superimpose them.

Force on a Magnetic Object

Dielectric materials usually obey a linear relation D E= ε , which
means that ε  is independent of E. In magnetic materials, on the other
hand, a linear relation B H= µ  is mostly encountered in paramagnetic
and diamagnetic materials. In practice, µ  for such materials  is very
close to µ0, which means that the forces usually are negligible.
Ferromagnetic materials have substantially higher permeability, but
on the other hand they are generally non-linear. In the following
example, we shall use linear theory, which means that we should not
expect high accuracy in the ferromagnetic case.

By analogy with the electrostatic case, the local surface force on a
linear magnetic object may be written6p270

f ns t nH H= − +
F
HG

I
KJ

1
2 2 1 1

2 1

2
1

2( )µ µ µ
µ

  

where the index 2 refers to the object and the index 1 to the
surrounding space. The field quantities involved are the tangential
and normal components of H just outside the object, as indicated by
the index 1. As with the electric field, the force acts in the direction of
the normal.

For calculations by means of FlexPDE it is useful to have an
alternative expression in terms of the field inside the object. Since Ht
and Bn are continuous across the interface3p262, we have H Ht t1 2=
and µ µ1 1 2 2H Hn n= . The above formula then becomes

f ns t nH H= − +
F
HG

I
KJ

1
2 2 1 2

2 2

1
2

2( )µ µ µ
µ

  

It just remains to integrate over the surface of the object.
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Force on a Magnetic Cylinder

The force on a cylinder of linear magnetic material provides a simple
application of the above expression. Let us consider the case of a
current-carrying wire and a magnetic cylinder, parallel to the wire.
Assuming these objects to be very long, we may treat the problem of
the field in (x,y) coordinates.
TITLE   'Force on Wire and Magnetic Cylinder' { exa124.pde }
SELECT     { Professional Version }
   errlim=1e-4     ngrid=1     spectral_colors
VARIABLES   Az                   
DEFINITIONS                      
   mu0=4*pi*1e-7    mu     Jz0=1.0     Jz { Jz in wire }
   r0=1e-3     rc=2.5e-3    y0=2e-3    r1=1.0
   Bex=dy(Az)     Bey=-dx(Az)
   B=vector( Bex, Bey)     Bm=magnitude( B)
   Hx=Bex/mu     Hy=Bey/mu     H=B/mu     Hm=Bm/mu
   F_wire=area_integral( Jz*Bex, 'wire') { Lorentz force }
   fs=0.5*(mu-mu0)*[ tangential(H)^2+ mu/mu0*normal(H)^2]
   unit_y=vector(0,1)                  { Unit vector along y }
   f=fs*normal( unit_y)                            { y-component }
   F_magnet=line_integral( f, 'circle', 'magnet')
EQUATIONS
   dx( Hy)- dy( Hx)=Jz
BOUNDARIES
region 'domain'  Jz=0  mu=mu0  start 'outer' (-r1,0) value(Az)=0
   arc(center=0,0) angle=360
region 'wire'  Jz=Jz0  mu=mu0  start (r0,-y0)  { Densify mesh }
   mesh_spacing=0.2*r0 arc( center=0,-y0) angle=360
region 'magnet' Jz=0  mu=1e3*mu0  start 'circle' (rc,y0)
   mesh_spacing=0.2*r0  arc( center=0,y0) angle=360
PLOTS
   contour( Bm) painted zoom(-4*y0,-4*y0,  8*y0,8*y0)
      report(F_wire)   report(F_magnet) 
   contour( Bm) painted zoom(-4*y0,-4*y0,  8*y0,8*y0)
      fixed range(0, 3e-10)
END

In order to calculate the surface force on the magnetic cylinder, we
first type the expression for fs in terms of the tangential and normal
components of H. The force per unit area points along the normal,
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and we are interested in the y component. This we obtain by
multiplying by normal( unit_y), which is the direction cosine. Then we
integrate that over the circle, specifying the magnet side of the
outline.

As seen below, the force on the wire and its reaction force on the
magnetic cylinder evidently have closely the same magnitude, in spite
of our using completely different expressions for the force.

The second figure (below) illustrates that the field generated by the
wire is “shadowed” by the magnetic cylinder.
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Here, we used fixed range to exclude values outside the interval
from zero to 3e-10 from the plot (white area). Thereby the minimum
just above the magnetic cylinder becomes clearly visible.

Model of a Permanent Magnet

We may represent a permanent magnet in 2D by a rectangular cross-
section in the ( , )x y  plane. In real space, this would correspond to a
bar extending both ways in the z-directions, the bar being magnetized
transversely in the direction of the y-axis. We specify a constant
normal component, By , on the two y-directed faces of this bar and
Bx = 0 for the other faces. The PDE domain is in a cross-section
remote from both ends.

By the use of  B A= ∇ ×  the boundary conditions for this magnet
may be based on the relation (p.124 4)

B
A
xy

z= −
∂
∂

on the sides parallel to the x-axis, and Bx = 0 on the other two sides.
To simplify, we merge these two conditions into one by putting
A B xz = − 0  over the rectangular boundary of the magnet.

TITLE   'Field around a Permanent Magnet'          { exa125.pde }
SELECT     { Student Version }
   errlim=3e-4     ngrid=1     spectral_colors
VARIABLES   Az
DEFINITIONS                      
   L=1.0   L0=0.05
   mu0=4*pi*1e-7   mu=mu0   Jz=0   B0=0.1 { Magnetic induction }
   Bex=dy(Az)   Bey=-dx(Az)
   B=vector( Bex, Bey)   Bm=magnitude( B)
   Hx=Bex/mu   Hy=Bey/mu   H=B/mu   Hm=Bm/mu
EQUATIONS
   dx( Hy)- dy( Hx)=Jz
BOUNDARIES
region 'domain'      
   start 'outer' (-L,-L) value(Az)=0 line to (L,-L) to (L,L) to (-L,L) close
   start 'magnet' (-L0,-2*L0) value(Az)=-B0*x   { Exclude }
   line to (L0,-2*L0) to (L0,2*L0) to (-L0,2*L0) close
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PLOTS
   elevation( Az) on 'magnet' { Verify Az on inner boundary }
   elevation( -normal( B)) on 'magnet'
   contour( Bm) log   vector( B) norm
   contour( Bm) painted zoom(-5*L0,-5*L0,  10*L0,10*L0)
   vector( B) norm zoom(-5*L0,-5*L0,  10*L0,10*L0)
END

The first plot verifies the conditions we have imposed on the
boundary corresponding to the magnet. The curve from 1 to 2 thus
shows the linear variation of Az on the lower face of the magnet, and
so on.

The second elevation plot shows the resulting variation of the
normal component of  B.

The full-scale vector plot of B looks a little like the dipole field
from charged wires we studied on p.41. The following zoomed vector
plot of B illustrates the field at closer range.

In this model of a permanent magnet we assumed By  to be constant
on the horizontal end surfaces. This is not the most realistic model
one can imagine, and we shall illustrate another representation in the
next chapter.
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Exercises

  Change the circular outer boundary in exa121 to a square of size
2*r1×2*r1. Make a full-scale vector plot of B to study the field near the
boundary.

  Change the circular cross-section of the wire in exa121 to a square
of size 2*r0×2*r0.

  Recast exa122 to study the field around two parallel wires
conducting current in the same direction. To what extent are the
results different?

  Integrate B l⋅d  over a half-circle enclosing one of the wires in
exa122. Compare by means of the pertinent relation on p.128.

  After the model of exa124, calculate the force between a current-
carrying wire and a magnetic plate (virtually infinitely thick).
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13   Magnetostatics in (ρ, z) Space

Already in the preceding chapter (exa121) we had an example with
axial symmetry. In fact, there are two different types of such
symmetry, both of which will be treated in the present chapter.

In cylindrical coordinates ( , , )ρ ϕ z  the relation between H and J
becomes3p705

∇× = = =
R
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This equation we shall now apply in two different ways.

Magnetic Field around a Wire

As the first application, we shall solve exa121 as a one-dimensional
problem, putting the z-axis along the wire. Only the third component
( )Jz  of the current density is then non-zero. The above vector
equation thus reduces to
1 1
ρ
∂ ρ

∂ρ ρ
∂
∂ϕ

ϕ ρ( )H H Jz− =

where the second term vanishes under axial symmetry. The remainder
is simply
1
ρ
∂ ρ

∂ρ
ϕ( )H Jz=   

For the flux density B we still have the expression B A= ∇ ×
(p.124), which we expand in cylindrical coordinates as follows.
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Since H is perpendicular to the ( , )ρ z  plane, this is also true for
B H= µ . Hence only the middle component will be non-zero, leaving
us with the expression

B
A
z

A Az z
ϕ

ρ∂
∂

∂
∂ρ

∂
∂ρ

= − = −   

The first term vanishes because there is no variation with z.
Substituting Hϕ  into the above equation for Jz  we obtain the

following 2nd-order PDE.

1
ρ
∂
∂ρ

ρ
µ
∂
∂ρ
A Jz

z
F
HG
I
KJ = −                      

Although this equation only involves one independent variable,
and hence is an ordinary differential equation (ODE), we may still
solve it by means of FlexPDE. We declare the ODE by cartesian1,
which assumes the notation x for the radial coordinate ρ . We
arbitrarily specify a constant value of Az (0) on the right boundary.
TITLE   'Field Around a Wire in (r,z)' { exa131.pde }
SELECT    { Student Version }
   errlim=1e-12     ngrid=1     spectral_colors
COORDINATES   cartesian1
VARIABLES   Az                   { Magnetic vector potential }
DEFINITIONS                      { SI units }
   mu0=4*pi*1e-7     mu=mu0     Jz0=1.0 { Current density }
   r0=0.2     Lr=1.0     Lz=0.01
   B_phi=-dx( Az)     H_phi=1/mu*B_phi  
   Jz     B_ex { Declared only }
EQUATIONS
   1/r*dx( r/mu*dx( Az))=-Jz { x=radius }
BOUNDARIES
region 'domain'  Jz=0    B_ex=mu*Jz0*r0^2/(2*r)  { Exact solution }
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   start 'outer' (0)  line to (Lr) point value(Az)=0
region 'wire' Jz=Jz0  B_ex=mu*Jz0*r/2
   start (0) line to (r0)
PLOTS
   elevation( Az) from (0,0) to (Lr,0)
   elevation( B_phi, B_ex) from (0,0) to (Lr,0)
   elevation( B_phi- B_ex) from (0,0) to (Lr,0) report(globalmax( B_phi))
END

In this example, we can employ the same exact expression for
B_phi as in exa121, remembering that rad corresponds to r in
cylindrical coordinates.

The plot of Az below is evidently similar to the right half of the one
we obtained in ( , )x y .

The second plot (not shown here) compares the numerical value of
B_phi with the analytical one. The integrals evidently agree within
0.004%.

The deviation from the exact expression is shown directly in the
next figure. We notice that the maximum error is about 5e-11, or in
relative terms about 0.1% of the largest value of B_phi.
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The maximum deviation thus seems to be orders of magnitude
larger than requested in errlim. The latter refers to the dependent
variable (Az), however, and it is clear from the deviation plot that the
differentiation adds violent oscillation in the region where the
solution has high curvature.

It would be more fair to compare Az directly to the exact
expression. In fact, we may integrate the expressions for B_ex by
means of the relation H Azϕ µ ∂ ∂ρ= −( / ) /1  to obtain Az in each
region. Doing this, we need to determine the arbitrary constant such
that Az becomes zero at the far boundary. Then we must add the
appropriate constant expression to the solution inside the wire in
order to make the two functions join continuously. Comparing the
resulting expressions for Az to the solution is left as an exercise at the
end of the chapter.

Field along the (ρ,z) Plane

We shall now deal with the situation where the current density J is
perpendicular to the ( , )ρ z  plane. The middle equation in p.141 1
then reduces to
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Under axial symmetry, the derivatives with respect to ϕ  vanish,
and the relation B A= ∇ ×  (p.142 1) expands into
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Substituting the components of H B= /µ  into the above equation for
Jϕ  we obtain a 2nd-order PDE of the Poisson type.
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Since the preceding 1st-order PDE is simpler and directly emerges
from the Maxwell relation, we shall use that in this chapter. FlexPDE
automatically replaces the components Hρ  and Hz  by derivatives of
Aϕ  when we run the descriptor.

Simple Magnet Coil

Is there a practical device where an electrical current can run in the
direction of increasing or decreasing ϕ ? A good approximation to a
single, current-carrying turn is a number of layers of wire, wound on
a circular cylinder. In the ( , )ρ z  plane we would only see the cross
section of this coil.

Just as in the previous chapter the normal field component Bn
across the distant boundary will vanish, and this we achieve by
imposing value(A_phi)=0. The same condition applies on the axis, in
view of the axial symmetry of the radial field component Br .

TITLE   'Simple Magnet Coil' { exa132.pde }
SELECT     errlim=3e-4     ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r', 'z') { Student Version }
VARIABLES   A_phi
DEFINITIONS
   r1=0.1     r2=0.2     z0=0.2     L=1.0



146

   mu0=4*pi*1e-7     mu=mu0     J_phi
   Br=-dz(A_phi)     Bz=1/r*dr(r*A_phi)
   B=vector( Br, Bz)     Bm=magnitude( B)
   Hr=Br/mu     Hz=Bz/mu     H=B/mu     Hm=Bm/mu
EQUATIONS
   dz( Hr)- dr( Hz)=J_phi
BOUNDARIES
region 'domain' J_phi=0
   start(0,-L) value(A_phi)=0 line to (2*L,-L) to (2*L,L)  to (0,L) close
region 'coil'  J_phi=1.0            { Current density }
   start(r1,-z0)  line to (r2,-z0) to (r2,z0) to (r1,z0) close
PLOTS
   contour( Bm) log     vector( B) norm
   contour( Bm) painted zoom(0,-2*z0,  4*z0,4*z0)
   vector( B) norm zoom(0,-2*z0,  4*z0,4*z0)
END

The full-scale vector plot of B shows the consequences of our
boundary conditions. A few arrows seem to cross the boundary, but
we must remember that the direction refers to the point at the base of
the arrow, not at the tip.

The painted contour plot of Bm illustrates that the highest value
occurs at half-height and just inside the coil. There is also a minimum
in the outer layers.

The zoomed vector plot below shows the details of the near field.
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Even if the magnitude of B is not constant inside the coil, the
direction of the field seems to be essentially parallel to the axis.

Here, there is a point to be noticed about signs. When we use an
( , , )x y z  system, the z-axis points out of the figure on the screen.
Applying the same rule to the present ( , , )ρ ϕ z  system, we find that
the ϕ -axis points into the figure. This accounts for the sense of
circulation of B.

Helmholtz Coil

We next explore the field inside an ingenious device known as the
Helmholtz coil. It consists of two identical, simple coils on the same
axis, with a mean spacing equal to the mean radius. Such a system of
coils is known to create a highly constant field in the region of the
center of symmetry.

Much of the descriptor exa132 may be kept, as the following file
demonstrates.

TITLE   'Helmholtz Coil' { Professional Version }    { exa133.pde }
SELECT     errlim=1e-3   ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r', 'z')
VARIABLES   A_phi
DEFINITIONS
   r1=0.15     r2=0.25     z0=0.05     d0=0.1     L=1.0
   mu0=4*pi*1e-7     mu=mu0     J_phi
   Br=-dz(A_phi)     Bz=1/r*dr(r*A_phi)
   B=vector( Br, Bz)     Bm=magnitude( B)
   Hr=Br/mu     Hz=Bz/mu     H=B/mu     Hm=Bm/mu
   mesh_spacing=0.1*d0*(1+(r/d0)^2+(z/d0)^2) { Maximum size }
EQUATIONS
   dz( Hr)- dr( Hz)=J_phi
BOUNDARIES
region 'domain'  J_phi=0
   start(0,-L) value(A_phi)=0 line to (2*L,-L) to (2*L,L)  to (0,L) close
region 'coil1' J_phi=1.0
   start(r1,-d0-z0) line to (r2,-d0-z0) to (r2,-d0+z0) to (r1,-d0+z0) close
region 'coil2' J_phi=1.0
   start(r1,d0-z0) line to (r2,d0-z0) to (r2,d0+z0) to (r1,d0+z0) close
PLOTS
   contour( Bm) log     contour( Bm) painted     vector( B) norm
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   contour( Bm) painted zoom(0,-0.2*r1,  0.4*r1,0.4*r1)
   vector( B) zoom(0,-0.2*r1,  0.4*r1,0.4*r1)
END

In the present example, it is of interest to densify the grid inside the
coils and near the axis, to illustrate the constancy of Bm. We would
also like to favor a symmetric distribution of cells. Although FlexPDE
automatically splits cells where needed, the program cannot know
what regions we are primarily interested in.

The command mesh_spacing lets us specify a maximum size of the
cells as a function of the coordinates, and the program subdivides
these cells where it is necessary to meet the error limit requirement.
We specify the size by a function that takes a small value near the
center of the double coil and rapidly increases outside the coil.

The first plots of Bm roughly confirm the constancy of the field
close to the central maximum. It also shows that the values of Bm fall
off rapidly toward the outer boundary.

The following zoomed, painted contour plot presents the variation
of Bm in the interior of the coil system. Larger values occur as we
approach a coil. There is a central region, however, where Bm is
highly constant even at rather large radii.

The zoomed vector plot shows that the field over the same region
is parallel, as far as can be discerned.
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Helmholtz found the optimum ratio of distance-to-radius assuming
vanishingly small coil cross-sections. In our realistic case of finite
cross-sections, the ratio yielding the most uniform field may well be
slightly different, and one of the exercises asks you to find a better
ratio.

Forces on Coils

We may calculate the force on a coil by additional lines in the
descriptor. The Lorentz formula F J B= ×  gives us the components
F J Bzρ ϕ=  and F J Bz = − ϕ ρ  in the present coordinates and with only
Jϕ  being non-zero. For reasons of symmetry, the net radial force
becomes zero, but the radial component does produce hoop stress that
deforms the coil.

The z component, on the other hand, yields net forces of opposite
signs on the two coils. In order to calculate the force on the upper
coil, we modify exa133 as follows. The summary groups the report
commands, which will present the numerical results as a separate list.
TITLE   'Helmholtz Coil, Force'        { exa133a.pde }
... { Professional Version }
   area=(r2-r1)*2*z0   J0=1.0 { Cross-sectional area and current }
EQUATIONS
...
PLOTS
summary
   report( vol_integral( J_phi*Bz,  'coil2'))  as 'Radial force, integrated'
   report( vol_integral( -J_phi*Br, 'coil2')) as 'Axial force on coil 2'
   report( -2*pi*(r1+r2)/2* mu*(J0*area)/(2*pi*2*d0)* (J0*area))
      as 'Estimate' { Length*current*mu/2/pi*current/distance }
END

We obtain the elementary estimate of the attractive force by
replacing each curved coil wire by a straight wire, which of course is
a very rough approximation. The magnetic flux density at a distance d
from a straight wire is3p230 B = µ πI d/( )2 , and since that field is
perpendicular to the other wire we just need to multiply by the current
I to obtain the Lorentz force.



150

The radial force turns out to be positive (repulsive), tending to
expand the coil. The axial force on coil2 has a negative value, which
means that the two coils attract each other.

Coil with a Magnetic Core

So far we have assumed that coils are surrounded by air. It is easy to
explore the effects of inserting a core of a magnetic material where B
is proportional to H. Let us use the descriptor for the simple magnet
coil (exa132) as a template and add a region containing the magnetic
core. For comparison we let the core extend over only half of the coil.
TITLE   'Coil with a  Magnetic Core'        { exa132a.pde }
… { Student Version }
   { Keep 'domain' and 'coil' }
region 'core'  J_phi=0  mu=1000*mu0 { Overwrite default value of mu }
    start(0,0) line to (r1,0) to (r1,z0) to (0,z0) close
PLOTS
   contour( Hm) painted
   contour( Hm) painted zoom(0,-2*z0,  4*z0,4*z0)
   elevation( Hm) from (0,-0.2) to (0,0.2)
   elevation( Bm) from (0,-0.2) to (0,0.2)
…

Inspecting the plots of Hm and Bm we find that Hm becomes very
small inside the core, while Bm takes a maximum in the magnetic
material.

The following vector plot of B illustrates new features in the field
pattern. In the winding, the directions shown by the arrows are now
highly asymmetric. The colors indicate that Bm is much larger in the
core than in the other half of the space inside coil.



151

Force between a Coil and a Magnetic Ellipsoid

We have already used the expression for the force on the surface of a
magnetic cylinder (p.135), i.e.

f ns t nH H= − +
F
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I
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1
2 2 1 2

2 2
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2

2( )µ µ µ
µ

  

where the field components refer to the interior of the material.
Now we shall apply this result in an axially symmetric situation. In

the following example, a current through a coil supplies the magnetic
field, acting on an ellipsoidal linear-magnetic object.
TITLE   'Coil and Magnetic Ellipsoid' { exa134.pde }
SELECT     { Professional Version }
   errlim=1e-5     ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r', 'z')
VARIABLES     A_phi
DEFINITIONS
   r0=0.02     r00=0.01    z0=0.01     r1=0.02    z1=0.01    r2=0.04   L=1.0
   mu0=4*pi*1e-7     mu     J_phi
   Br=-dz(A_phi)     Bz=1/r*dr(r*A_phi)
   B=vector( Br, Bz)     Bm=magnitude( B)
   Hr=Br/mu     Hz=Bz/mu     H=B/mu     Hm=Bm/mu
   F_coil=vol_integral( -J_phi*Br,'coil')
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   fs=0.5*(mu-mu0)*[ tangential(H)^2+ mu/mu0*normal(H)^2]
   unit_z=vector(0,1) { Unit vector field along z }
   f=fs*normal( unit_z) { z-component }
   F_ellipsoid=surf_integral(  f,'ellipse')
EQUATIONS
   dz( Hr)- dr( Hz)=J_phi
BOUNDARIES
region 'domain'   mu=mu0   J_phi=0
   start(0,-L) value(A_phi)=0 line to (2*L,-L) to (2*L,L)  to (0,L) close
region 'coil'  mu=mu0   J_phi=1e4 { Current density }
   start(r1,-z1) line to (r2,-z1) to (r2,z1) to (r1,z1) close
region 'ellipsoid'   mu=1000*mu0   J_phi=0   start 'ellipse' (0,z0)
   arc( center=0,z0+r0) to (r00,z0+r0) to (0,z0+2*r0) line to close
PLOTS
   contour( Bm) painted zoom(0,-2*r2,  4*r2,4*r2)
   vector( B) norm zoom(0,-2*r2,  4*r2,4*r2)
      report(F_coil)   report(F_ellipsoid)
END

The next figure shows the field B in the vicinity of the coil and the
ellipsoid. The maximum magnitude occurs at the lower end of the
prolate ellipsoid, as could be expected.

We conclude that the magnitude of the forces on the coil and on
the ellipsoid are equal to better than 0.04 %. It is worth noting that the
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two expressions used for comparison are quite different, but yield
virtually the same result.

Magnetostatic Field Energy

The expression for the magnetic field energy3p280 is given by

W dv= ⋅zzz1
2

B H  ,   

which is closely analogous to what we used in electrostatics. We shall
illustrate this concept by a current-carrying coil. Energy is required to
establish a current through this coil, even if the wire is super-
conducting. We shall compare the energy of the field with the electric
energy required to set it up.

It is easy to calculate the magnetic field energy W, and we already
performed a similar operation in the case of the plate capacitor
(p.118). The electric work necessary to produce this field is related to
the integral form of  one of Maxwell’s equations3p323, i.e.
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This equation means that the changing flux φ  through the coil creates
a voltage V around the wire loop, and this we need to overcome in
order to produce the field.

In setting up the field we have to increase the current I t( )  up to
the final value I0 , and during this process we may assume that the
flux remains proportional to the current, i.e. φ = c I t( ) . The total
electric work may now be written

W V I dt d
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which we use for comparison with W . In the descriptor we obtain the
final flux φ0  by an integral of Bz  over a flat surface through the
symmetry plane of the coil.
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TITLE   'Magnetostatic Field Energy' { exa135.pde }
SELECT     { Student Version }
   errlim=1e-3     ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r', 'z')
VARIABLES   A_phi
DEFINITIONS
   r1=0.1     r2=0.12     z0=0.01     L=1.0
   mu0=4*pi*1e-7     Jd=1e4     mu=mu0     J_phi        
   Br=-dz(A_phi)     Bz=1/r*dr(r*A_phi)
   B=vector( Br, Bz)     Bm=magnitude( B)
   Hr=Br/mu   Hz=Bz/mu     H=B/mu     Hm=Bm/mu
   W=vol_integral( 0.5*Bm*Hm) { Field energy }
   flux1=surf_integral( Bz, 'radius1') { Flux through coil }
   flux2=surf_integral( Bz, 'radius2') { Flux through coil }
   J0=Jd*(r2-r1)*(2*z0)      { Current }
   W1=flux1*J0/2   W2=flux2*J0/2 { Electric work }
EQUATIONS
   dz( Hr)- dr( Hz)=J_phi
BOUNDARIES
region 'domain' J_phi=0
   start  'outer'  (0,-L)  value(A_phi)=0
   line to (2*L,-L)  to (2*L, L)  to (0, L) close
region 'coil' J_phi=Jd         { Current density }
   start(r1,-z0) line to (r2,-z0) to (r2,z0) to (r1,z0) close
feature
   start 'radius1' (0,0) line to (r1, 0)
   start 'radius2' (0,0) line to (r2, 0)
PLOTS
   contour( 2*pi*r* 0.5* Bm^2/mu) log  report( W) report( W1) report( W2)
END

In the plot below we have multiplied the energy density by 2*pi*r in
order to compare the contribution of various regions to the total
energy. Judging from the maximum and minimum values on the
logarithmic contour plot the region for integration seems to be
sufficiently large to let us approximate the total energy value by an
integration over the domain.
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We encounter a trivial difficulty when we wish to estimate the
electric work W0 required to set up the magnetic field. It is easy
enough to integrate to obtain the flux enclosed by an infinitely thin
wire, but FlexPDE can only handle coils of finite cross-sections.
What we can do is to integrate from 0 to r1 to obtain the value W1 and
then from 0 to r2 to obtain W2. We expect the results W1 and W2 to
bracket the magnetic field energy W.

From the results reported we gather that the limiting estimates for
the magnetization energy indeed bracket the energy obtained by
integrating the magnetic energy density over space. The last value on
the bottom line is for an integral that automatically includes the 2*pi*r
factor; hence this factor enters twice, which makes the result for that
integral irrelevant.

Simple Model of a Permanent Magnet

We already modeled a permanent magnet on p.138, and we may
extend the same idea to cylindrical coordinates. In order to obtain
constant Bz  at the circular end of the magnet we use the expression
(p.142 1)
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Expanding the derivative we are faced with a 1st-order differential
equation, which only involves ρ as the independent variable. It is
easy to verify that
A Bzϕ ρ= ½ 0

is a solution, and we may use that expression for the end face.
It is easy to type a descriptor analogous to exa125, valid for ( , )ρ z .

We shall not make this an example, however, since there is a more
realistic model, which we shall apply in the following section.

Permanent Magnetization

Although the simple model is useful in many cases, a real permanent
magnet does not have uniform B, but uniform magnetization M. This
means that the internal magnetic flux density may change under the
influence of external magnetic fields.

In order to treat the case of a magnet bar having constant M
throughout its volume, we need to modify our theoretical approach
slightly. The equation ∇× =H J  remains valid and yields the PDE as
before. From B A= ∇ ×  we still obtain the flux density components
Br  and Bz . The field H, however, must be defined by means of the
relation
B H M= +µ0( )   

where we have specified the magnetization M over the region of  the
magnet.
TITLE   'Permanent Magnetization'          { exa136.pde }
SELECT     { Professional Version }
   errlim=1e-4     ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r', 'z')
VARIABLES   A_phi
DEFINITIONS                      { Uniform magnetization }
   L=1.0     r0=0.1    Lz=0.1     J_phi=0     Mz0     Mz00=1e5
   mu0=4*pi*1e-7     mu=mu0 
   Br=-dz(A_phi)     Bz=1/r*dr(r*A_phi)
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   B=vector( Br, Bz)     Bm=magnitude( B)
   Hr=Br/mu0-0     Hz=Bz/mu0-Mz0 { Mr0=0 }
   H=vector( Hr, Hz)   Hm=magnitude( H)   Mz=Bz/mu0-Hz
   z1=z+Lz     Bz_ex= { Continued on next line }
   mu0*Mz00/2*[ z1/sqrt(z1^2+r0^2)- (z1-2*Lz)/sqrt((z1-2*Lz)^2+r0^2)]
EQUATIONS
   dz( Hr)- dr( Hz)=J_phi
BOUNDARIES
region 'domain' Mz0=0  start 'outer' (0,-L) value(A_phi)=0
   line to (2*L,-L) to (2*L,L) to (0,L) line to close
region 'magnet' Mz0=Mz00
   start (0,-Lz) line to (r0,-Lz) to (r0,Lz) to (0,Lz)
   mesh_spacing=0.1*Lz line to close
PLOTS
   contour( Hz) painted     contour( Mz) painted
   contour( Bz) painted
   elevation( Bz, Bz_ex) from (0,-2*Lz) to (0,2*Lz)
   vector( H) norm zoom(0,-3*Lz,  6*Lz,6*Lz)
   vector( B) norm zoom(0,-3*Lz,  6*Lz,6*Lz)
   contour( Hz+Mz) painted zoom(0,-3*Lz,  6*Lz,6*Lz)
   elevation( Hz+Mz) from (0,0) to (2*r0,0)
END

There is a simple analytic expression for Bz on the axis3p247,
specifically
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Here we must convert to our notation by the substitutions
z →z+Lz, L →2*Lz, and b →r0. In order to obtain a finer mesh close
to the axis we use node_spacing on the left boundary of the magnet.

The plot below compares the solution to the analytic expression for
Bz. The agreement is very good along the z-axis, as judged by the
integrals, and we may thus have confidence in the FEA solution.

It is evident from the plots that Bz is far from constant inside the
magnet.
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The next figure shows the vector plot of H. Here we notice that the
field inside the magnet acts in a direction opposite to that of the
magnetization. Hence the internal H is known as the demagnetizing
field.

The last two plots of Hz+Mz will be used for comparison in the
next section, where we model the permanent magnet as a thin magnet
coil.
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Permanent Magnet as a Current Sheet

An accepted emulation of a permanent magnet bar is a thin coil of the
same radius and length as the magnet. Atomic dipole moments may
be seen as minute current loops, stacked inside the volume of the
material. The currents in these loops cancel in the interior, and the
global result is a current sheet on the cylindrical surface. According to
this model, the current per unit length of the coil is equal to Mz0. To
convert to current per unit area we must divide by the thickness d of
the winding.

We shall now explore this model of a magnet by the following
descriptor, which is based on exa132. The thickness d is 1% of the
mean radius rm. Since the results are expected to approach those of
exa136, we include the analytic expression for Bz on the axis.
TITLE   'Permanent Magnet, Thin Coil'          { exa137.pde }
SELECT     { Professional Version }
   errlim=1e-4     ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r', 'z')
VARIABLES   A_phi
DEFINITIONS
   L=1.0     d=1e-3    r1=0.1-d/2     r2=0.1+d/2    rm=(r1+r2)/2     Lz=0.1
   mu0=4*pi*1e-7     mu=mu0     J_phi
   Br=-dz(A_phi)     Bz=1/r*dr(r*A_phi)
   B=vector( Br, Bz)     Bm=magnitude( B)
   Hr=Br/mu     Hz=Bz/mu     H=B/mu     Hm=Bm/mu
   Mz00=1e5     z1=z+Lz   Bz_ex= { Exact solution on the axis }
   mu0*Mz00/2*[ z1/sqrt(z1^2+rm^2)- (z1-2*Lz)/sqrt((z1-2*Lz)^2+rm^2)]
   Mz=Bz/mu0-Hz
   mesh_spacing=0.1*Lz*(1+(r/Lz/0.001)^2+(z/Lz/3)^2)
EQUATIONS
   dz( Hr)- dr( Hz)=J_phi
BOUNDARIES
region 'domain'  J_phi=0  start(0,-L) value(A_phi)=0
   line to (2*L,-L) to (2*L,L)  to (0,L) close
region 'coil'  J_phi=Mz00/d           { Current density }
   start(r1,-Lz)  line to (r2,-Lz) to (r2,Lz) to (r1,Lz) close
PLOTS
   contour( Hz)  painted zoom(0,-3*Lz,  6*Lz,6*Lz)
   contour( Mz) painted zoom(0,-3*Lz,  6*Lz,6*Lz)
   contour( Bz) painted zoom(0,-3*Lz,  6*Lz,6*Lz)
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   elevation( Bz, Bz_ex) from (0,-2*Lz) to (0,2*Lz)
   vector( H) norm zoom(0,-3*Lz,  6*Lz,6*Lz)
   vector( B) norm zoom(0,-3*Lz,  6*Lz,6*Lz)
   elevation( Hz) from (0,0) to (2*r2,0)
END

We may compare these plots with those of exa136, using the task
strip at the top of the Editor to swap from any given plot to the
corresponding one from the other file.

Comparing the contour plots we notice that the one for Bz is very
similar in the two cases, whereas the plots of Hz are clearly different.
A consequence of the present model is that the demagnetizing field
Hz inside the magnet vanishes, as shown by the next plot.

The cause of this discrepancy is that the present model does not
make use the magnetization M. In fact, H+M in exa136 corresponds
to H in the present file. If we compare the contour plot Hz here to that
of Hz+Mz in the preceding example, we find that they are similar.

The magnetic flux density Bz on the axis again agrees very well
with the analytic expression copied from the preceding file.

The final elevation plot of Hz exhibits a sudden drop in going
through the coil, in agreement with the tangential boundary condition
for H. The same phenomenon was apparent in the elevation plot of
Hz+Mz in the preceding example.
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If we wish to calculate the force on a permanent magnet, we may
exploit this model. The problem is then reduced to computing the
force on a coil carrying the appropriate current.

Exercises

  Integrate the expression for Bϕ  (p.142 2) to obtain an analytic
solution for Az, using B_ex in exa131. First chose the constant of
integration such that the potential becomes zero at the right end. Then
add a term to the expression for Az inside the wire, so that the
solution become continuous at the interface. Compare to the
numerical result and calculate the RMS error by integration over the
rectangular space.

  Modify exa132 to obtain the field for a coil of circular cross-
section. Use a small radius with the Professional Version. Compare
with an elementary estimate.

 Change the spacing between the Helmholtz coils in exa133 to
slightly smaller and larger values to find out how the constancy of the
central field is influenced.

  Using exa103 as a model, type a descriptor to study a magnetic
cylinder across an initially parallel magnetic field.

  Use exa125 and exa136 as templates to compute the field around a
2D magnet with specified magnetization.

  In exa132a, compute the change in magnetic energy caused by
introducing the magnetic core (just change the value of  mu).

  Calculate the force between a coil and a thick magnetic slab.
  Using exa103 and exa134 as templates, calculate the mutual force

between two magnetic balls in an initially parallel field.
  Modify exa136 to include two equal magnets on the same axis,

spaced by Lz/2. Compare to the original fields.
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14   Heat Conduction in (x, y) Space

If an object has a steady distribution of temperature, this means that
the heat leaving any volume element equals the quantity produced.
The corresponding mathematical statement is4p10

∇⋅ =f h x y( , )            
where f = − ∇λ T  is the heat flux density (power transferred per unit
area), λ  the thermal conductivity, T the thermodynamic (absolute)
temperature, and h the heating power per unit volume. Internal
heating may for instance be caused by an electric current flowing
through the material, by electromagnetic or nuclear radiation, or by a
chemical reaction. The PDE is effectively of second order, i.e.
∇⋅ − ∇ =( )λ T h                                                                        

The above PDE is similar to that for the potential in a dielectric
material (p.76), the heat production term replacing the volume charge.
Electric conduction is also a closely analogous process, as
summarized by the following table.

Electricity Heat
Potential, U Temperature, T

Electric field, E = −∇U Temperature gradient, ∇T
Conductivity, σ Conductivity, λ

Current density, J E= σ Heat flux density, f = − ∇λ T

Obviously, many of the previous problems may be directly
transcribed into descriptors for heat conduction.
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Two Hot-Water Tubes

The following example concerns the flow of heat in a cylinder of
insulating material containing two tubes carrying water of different
temperatures, the outer enclosure being in contact with a soil
environment.

Here, we can again make do with the Student Version. We cannot
use the notation T for temperature, since the program would confuse
this with t, which is the FlexPDE variable for time. The components
of heat flux density are denoted fluxd_x and fluxd_y.
TITLE    'Two Insulated Tubes'          { exa141.pde }
SELECT     { Student Version }
   errlim=3e-4     ngrid=1     spectral_colors
VARIABLES   temp { SI units: m, K, W }
DEFINITIONS
   r0=0.1     d=0.15     r1=0.5     Lx=0.3     Ly=0.2
   k=0.03     heat=0             { Thermal conductivity and power density }
   fluxd_x=-k*dx(temp)     fluxd_y=-k*dy(temp)
   fluxd=vector( fluxd_x, fluxd_y)     fluxdm=magnitude( fluxd)
   f_angle=sign(fluxd_y)*arccos(fluxd_x/fluxdm)/pi*180
EQUATIONS
   div( fluxd)=heat
BOUNDARIES
region 'domain'
   start 'outer' (0,-r1) value(temp)=273 { Frozen soil }
   arc( center=0,0)  angle=360
   start 'left' (-d-r0,0) value(temp)=323        { Exclude left hot water tube }
   arc( center=-d,0) angle=360
   start 'right' (d-r0,0) value(temp)=353        { Right hot water tube }
   arc( center=d,0) angle=360
PLOTS
   contour( temp)     surface( temp)
   vector( fluxd) norm      contour( f_angle)
   contour( fluxd_x)     contour( fluxd_y)     contour( fluxdm)
   elevation( normal( fluxd)) on 'outer'
   elevation( -normal( fluxd)) on 'left' { Outwards from tube }
   elevation( -normal( fluxd)) on 'right'
END

The figure below shows the temperature distribution obtained.
According to the vector plot, the tube to the left both receives and
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delivers heat, as is also evident from the plot of fluxd_x. The angle
plot confirms this and yields more details.

An important derived quantity is the power transfer (per unit
length) from the heat-carrying tubes to the surrounding soil. We may
calculate this power by elevation plots of the outward normal
component of the flux density fn , which the program automatically
integrates over a cylindrical boundary.

We calculate the heat flux leaving the outer tube by means of an
elevation plot (below) of fn  on the curve named 'outer'.
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In a similar manner, we may integrate the flux leaving each of the
hot tubes (thus entering the domain). From these elevation plots we
gather that the heat flux (per unit length) from the left tube is 2.78 and
from the right one 9.38. The sum of these terms is 12.16, which
agrees with the flux from the outer tube within 0.3%. If we use the
Professional Version with a smaller errlim the error may be further
reduced.

Uniformly Heated, Semi-Circular Rod

In the next problem, an electric current uniformly heats a long, semi-
circular rod of stainless steel. A granite block, cooled on the outside
by a mixture of ice and water, surrounds the steel rod. Here we need
to include the power per unit volume (heat) in the PDE, its value
being zero in the granite and 1e6 in the steel.
TITLE   'Heated Semi-Circular Rod'    { exa142.pde }
SELECT     errlim=3e-4     ngrid=1     spectral_colors
VARIABLES   temp
DEFINITIONS
   Lx=0.1     Ly=0.1     r0=0.05
   k     heat { Conductivity and power per unit volume, declared }
   fluxd_x=-k*dx(temp)     fluxd_y=-k*dy(temp)
   fluxd=vector( fluxd_x, fluxd_y)     fluxd_m=magnitude( fluxd)
EQUATIONS
   div( fluxd)=heat
BOUNDARIES
region 'domain'   k=3.5   heat=0 { Granite }
   start  'outer' (-Lx,-Ly) value(temp)=273
   line to (Lx,-Ly)  to (Lx,Ly)  to (-Lx,Ly)  close
region 'steel'  k=45  heat=1.0e6
   start 'rod' (-r0,0) line to (r0,0) arc to (0,r0)  close
PLOTS
   contour( temp)     surface( temp)     contour( temp) painted on 'steel'
   vector( fluxd) norm      contour( fluxd_m) painted
   elevation( normal(fluxd)) on 'rod'
   elevation( normal(fluxd)) on 'outer'
      report( pi*r0^2/2* 1e6) as 'Heating power'
END
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The surface plot below suggests that there is a temperature
maximum within the region of the steel rod. The painted contour plot
demonstrates this more clearly.

The following vector plot shows the direction of heat flow. It
brings out the position of the temperature maximum as the point from
which the flow diverges.
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The way the flux arrows diverge from the corners of the rod
suggests that the flux density is highest there. The painted contour
plot of fluxd_m demonstrates this more directly.

The first elevation plot yields the power leaving the rod via the
integral around the periphery. The second elevation plot yields the
power leaving the domain, which should have the same magnitude.
These integrals should also equal the electrical heating power
calculated on the report line included on the last plot.

Cooling by Forced Convection

So far we have always specified a constant value or a function of the
space coordinates as the natural boundary condition. We are also
allowed, however, to use natural conditions containing the dependent
variable T.

This new usage is required in problems involving forced
convection at the boundary. If a fluid is driven at constant speed by
means of a pump or a fan past a hot object, the latter is cooled at a
heat flux density proportional to the difference between the
temperature of the object and the temperature of the fluid. This
proportionality, which is more of a rule of thumb than a law of nature,
is known as Newton’s law of cooling. Loss by infrared radiation leads
to a similar expression for the natural boundary condition.

To apply Newtonian cooling we modify exa142 as follows. Instead
of imposing a constant temperature of 273 on the outer rectangular
surface, we assume it to be cooled in proportion to the temperature
difference with respect to the coolant. The fluid has a constant
temperature of 273 and we specify a cooling coefficient of 50.
TITLE   'Heated Semi-Circular Rod, Convection'        { exa142a.pde }
…
region 'domain'  k=3.5   heat=0 { Granite }
   start  'outer' (-Lx,-Ly) natural(temp)=50*(temp- 273)
   line to (Lx,-Ly) to (Lx,Ly) to (-Lx,Ly)  close
{ Keep region 'steel' }
…
   elevation( temp) on 'outer'
END
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Notice that we only specify natural boundary conditions, and still
we do not need any point value (p.52). The cooling term contains the
difference between temp and 273, the fluid temperature and this
supplies a temperature reference.

The following plot demonstrates that the temperature on the
boundary now varies strongly, being considerably higher than in the
cooling fluid.

The painted contour plot on 'steel' shows that the maximum
temperature also is higher than before by about a hundred K. The
input and output power values still balance reasonably well.

Conduction in Anisotropic Wood

In the areas of gravitation, electro- and magnetostatics, and heat
conduction we applied PDEs of the type
∇⋅ ∇ =β γfa f
which is valid if the materials property β  is a scalar function of the
space variables. We shall now consider a situation where this
parameter depends on the direction of the flux density. In that case we
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need to write the PDE such as to reference the x and y directions
explicitly, i.e.

∂
∂

λ ∂
∂

∂
∂

λ ∂
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x y T
x y
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The descriptor below provides a realistic example of conduction in
an anisotropic material. The thermal conductivity of pine is con-
siderably higher for flow in the direction of the fibers than across. We
consider a bar of such wood, cut so that the fibers are in the y
direction (vertical). On the top surface we mount an electric heater in
the form of a strip of width 2w, parallel to the z-axis. The bottom
surface of the wooden block is held at ice-water temperature, all other
surfaces being well insulated, including the side of the heater that is
not in contact with the wood.

Since the power dissipated in the heater can only flow into the
specimen, we represent the heater by a downward flux density of
1000 over a segment of width 2w  at the upper boundary.
TITLE   'Anisotropic Conduction in Wood' { exa143.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors  
VARIABLES   temp
DEFINITIONS
   L=0.1     w=0.001     kx=0.14     ky=0.35     heat=0 { Pine }
   fluxd_x=-kx*dx(temp)     fluxd_y=-ky*dy(temp)
   fluxd=vector( fluxd_x, fluxd_y)     fluxd_m=magnitude( fluxd)
EQUATIONS
   dx[-kx*dx(temp)]+ dy[-ky*dy(temp)]=heat
BOUNDARIES
region 'domain'  start 'outer' (-L,-L) value(temp)=273   line to (L,-L)
   natural(temp)=0  line to (L,L)  to (w,L)
   natural(temp)=-1000  line to (-w,L) { Heater flux }
   natural(temp)=0 line to (-L,L) close
PLOTS
   contour( temp)     surface( temp)
   contour( temp) painted zoom(-0.1*L,0.8*L,  0.2*L,0.2*L)
   vector( fluxd) norm
END

The temperature plot below exhibits contours which are vertically
elongated in the neighborhood of the heater strip. In spite of the
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concentrated heating on part of the upper surface, the temperature
curve closest to the bottom of the specimen is almost flat.

Remembering that we have already seen an exact solution for the
electric field (p.39), which has a similar PDE, we may imagine a
generalized form valid in the present situation. Let us try the function

T A B x a y b= + +ln / /2 2 2 2d i   

On substituting we find that this function satisfies the PDE, provided
that a x

2 = λ  and b y
2 = λ . The solution T x y( , )  is thus constant on

ellipses with half-axes proportional to λ x  and λ y . This may be
confirmed by measurements on the contour plot.

We have chosen a very narrow heater strip in order to hide the
effect of its finite width. If we increase w by a factor of 10, however,
we will detect an elongation of the near contours in the x direction.

Exercises

  Modify exa141, assuming that the left tube is empty.
  One of the inner tubes in exa141 both receives and delivers heat.

Determine the two opposite contributions to the flux separately by
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plots of the outward normal component of heat flux density. Integrate
the flux density over the entire boundary of the tube, then integrate
the absolute value of the flux density, then add/subtract.

 Combine the half-cylinder of steel (exa142) with a magnesium
oxide bar of triangular cross-section, having a thermal conductivity of
55. Let the flat surface be common to the two rods and place the
remaining corner of the triangle at (r0,-r0).

  Using exa142a as a model, modify exa141 by introducing forced
convection at the outer boundary.

  Solve the problem of the heated wood rod (exa143) under other
conditions. First assume that the fibers are in the z direction, i.e. that
k kx y= = 014. . Next, assume that the fibers are horizontal.
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15   Heat Conduction in (ρ, z) Space

In the case of complete axial symmetry, the PDE for heat conduction
may still be written
∇⋅ =f h  

but the divergence must be transformed for use with cylindrical
coordinates3p705. Knowing that

∇⋅ = +f 1
ρ
∂ ρ
∂ρ

∂
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ρ( )f f
z

z

we immediately obtain the appropriate form
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where λ is the thermal conductivity. The radial and axial components
of heat flux density simply become

f T f T
zzρ λ ∂

∂ρ
λ ∂
∂

= − = − and   .   

Radial Conduction in a Hollow Cylinder

As an elementary test of the program under axial symmetry, let us
study a case of heat conduction where T is independent of z. The
following descriptor applies to a hollow cylinder of magnesium
oxide, uniformly heated from the inside by electrical power. The
outer cylindrical surface is kept at 300 K by water cooling, and the
flat ends are well insulated to ensure radial flow.

The heating power is taken to be 104 per unit of axial length, and
from this we calculate the flux density entering in the radial direction
from the central bore. The normal vector on the inner boundary points
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out of the solution domain (or toward the origin), which means that
the input flux density must be negative.

We may still express the PDE using the div operator, which the
program automatically transforms into cylindrical coordinates.

This problem has an exact solution, which we may construct using
a function (p.39) of the form A B+ ( )ln ρ . The boundary conditions
determine the constants A and B.
TITLE   'Conduction in a Hollow Cylinder' { exa151.pde }
SELECT     { Student Version }
   errlim=1e-5     ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r', 'z')
VARIABLES   temp
DEFINITIONS
   r1=10e-3     r2=50e-3     L=40e-3
   temp2=300     heat=0     k=55                       { Magnesium oxide }
   power_m=1e4     fluxd_in=power_m/(2*pi*r1)
   fluxd_r=-k*dr(temp)     fluxd_z=-k*dz(temp)
   fluxd=vector( fluxd_r, fluxd_z)     fluxdm=magnitude( fluxd)
   temp_ex=r1*fluxd_in/k*ln(r2/r)+ temp2
EQUATIONS
   div( fluxd)=heat
BOUNDARIES
region 'domain'
   start(r1,0)  natural(temp)=0   line to (r2,0)
   value(temp)=temp2  line to (r2,L)
   natural(temp)=0   line to (r1,L)
   natural(temp)=-fluxd_in   line to close
PLOTS
   contour( temp)     contour( temp- temp_ex) as ' Error in temp '
   contour( fluxdm)     vector( fluxd) norm
   contour( fluxd_r)     contour( fluxd_z)
END

There is an important point to notice when using natural boundary
conditions: if we effectively multiply the dependent variable (temp)
by a factor (k) in the PDE, we must also multiply the derivative in the
boundary condition by the same factor (p.51). If only value boundary
conditions occur, however, multiplying all terms of the equation by
the same factor does not change the solution.

The plot below shows the temperature contours, which crowd close
to the central bore.
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The plot of the deviation with respect to the exact solution yields
irregular contours as expected. The maximum deviation is about
0.01% of the total temperature drop. The root-mean-square deviation
reported by the program, however, is about 1e-5.

The vector plot and the contour plots of fluxd_r and fluxd_z
demonstrate that the heat flow is highly radial.

Cooling by Forced Convection

To apply Newtonian cooling (as on p.167) we modify exa151 as
follows. We heat from the inside over the lower half of the bore, and
assume the outer cylindrical surface to be cooled in proportion to the
temperature difference with respect to the coolant. The temperature of
the fluid is 300 and we specify a cooling coefficient of 1e3.
TITLE   'Cooling by Forced Convection'                    { exa152.pde }
… { Delete temp_ex }
region 'domain' start(r1,0)  natural( temp)=0  line to (r2,0)
   natural(temp)=1e3*(temp- temp2)  line to (r2,L)
   natural(temp)=0  line to (r1,L)  to  (r1,L/2) mesh_spacing=0.2*r1
   natural(temp)=-fluxd_in   line to close
PLOTS
   contour( temp)     vector( fluxd) norm     contour( fluxdm) painted
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   contour( fluxd_r) painted     contour( fluxd_z) painted
END

You should obtain a temperature plot similar to the one shown
below.

The vector plot clearly illustrates the pattern of heat flow. It is of
some interest to compare that to the plots of the radial and axial flux
densities.

Continuously Varying Thermal Conductivity

In the above examples the thermal conductivity was constant
throughout the object. We may introduce a space-varying conduc-
tivity, however, depending on the axial as well as the radial
coordinate.

Shaking a mixed powder, for instance, would make the heavy
grains segregate from the lighter ones, thus creating a thermal
conductivity gradient. Centrifuging about the vertical axis would
produce a corresponding gradient in the radial direction. After
consolidating the powder under high pressure we would be left with a
solid with varying conductivity, but still with axial symmetry.
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The next descriptor is based on exa151. It refers to an axially
symmetric object, having a thermal conductivity (k) that varies both
radially and axially. The boundary conditions apply to heating along
the entire inner boundary and forced cooling on the outside.

TITLE   'Cylinder with Space-Varying Conductivity'          { exa153.pde }
…
   temp2=300     heat=0     k=55*exp[20*(r-z)] { Shaken, not stirred }
… { Delete temp_ex }
region 'domain'
   start(r1,0)  natural( temp)=0  line to (r2,0)
   natural(temp)=1e3*(temp- temp2)  line to (r2,L)
   natural(temp)=0  line to (r1,L)
   natural(temp)=-fluxd_in   line to finish
PLOTS
   contour( k) painted
   contour( temp)     vector( fluxd) norm     contour( fluxdm) painted
   contour( fluxd_r) painted     contour( fluxd_z) painted
   elevation( fluxd_r/L) from (r1,0) to (r1,L) { Compare power_m }
   elevation( fluxd_r/L) from (r2,0) to (r2,L)
END

We notice that the program solves this problem without difficulty,
although an analytic solution is unlikely to exist. The figure below is
a plot of the radial component of the flux density.
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At first, it may be surprising to find that fluxd_r decreases toward
larger radii, considering that energy must be conserved. The two
elevation plots (the first one shown below) illustrate, however, that
the heat transported past the inner radius is nearly equal to that
leaving at the outer radius. Dividing by L we obtain the energy
delivered per unit length of the heater, which evidently agrees with
power_m.

Using an extended descriptor, you could easily test if the boundary
conditions are satisfied, by plotting the function fluxd_r/(temp-300) on
the outer cylindrical boundary.

Steel Tube with Cooling Flanges

We shall now proceed to a device of practical importance: a series of
circular cooling flanges on a steel tube. The flanges are located at
equal distances along the tube, and all of them are at about the same
temperature, so that there is no axial heat flow at mid-distance
between two adjacent flanges. Thus we may limit our study to one
flange and a half-length of tube on either side of it (i.e. one periodic
unit). The contour plots illustrate the geometry.
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The following descriptor may be based on exa151. Let us assume
cooling by airflow at a speed corresponding to a cooling coefficient
of 20.
TITLE   'Tube with Cooling Flanges' { exa154.pde }
SELECT     errlim=3e-5     ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r','z')
VARIABLES   temp
DEFINITIONS
   r1=100e-3     r2=120e-3    r3=200e-3     L=5e-2     dL=0.5e-2         
   temp2=300     heat=0     k=45         { Steel }
   fluxd_r=-k*dr(temp)     fluxd_z=-k*dz(temp)
   fluxd=vector( fluxd_r, fluxd_z)     fluxdm=magnitude( fluxd)
EQUATIONS
   div( fluxd)=heat
BOUNDARIES
region 'domain'
   start (r1,0)  natural(temp)=0   line to (r2,0)  { Insulated }
   natural( temp)=20*(temp-temp2)
   line to (r2,L)  to (r3,L)  to (r3,L+dL)  to (r2,L+dL)  to (r2,2*L+dL)
   natural( temp)= 0 line to (r1,2*L+dL)
   value( temp)=373 line to close { Inside tube }
feature { Cooling surface }
   start 'outer' (r2,0)
   line to (r2,L) to (r3,L) to (r3,L+dL) to (r2,L+dL) to (r2,2*L+dL)
PLOTS
   contour( temp) painted     surface( temp)
   vector( fluxd) norm     contour( fluxdm) painted
   contour( fluxd_r) painted     contour( fluxd_z) painted  
   elevation( normal( fluxd)) on 'outer'
   elevation( fluxd_r) from (r1,2*L+dL) to (r1,0)
END

The surface plot below is a striking presentation of the temperature
distribution.

Elevation plots permit us to compute the power leaving this section
of the tube and also suggest how the design may be improved by
changing the flange thickness.
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Both elevation plots report the power extracted from the liquid that
flows through the tube. Since we have declared (r,z) coordinates, the
area element factor 2*pi*r is automatically included. The two integral
values are in tolerably good agreement but could be improved with
the Professional Version of FlexPDE.

Exercises

  Modify exa151 by specifying 400 K on the inner surface and 300
K on the outer one. Calculate the power transferred per unit length
using elevation plots.

  In exa152, plot the power per unit length leaving the tube and
compare to the convection term. Integrate to find the total power and
compare that to the power delivered on the axis.

  Verify numerically that the solution to exa153 satisfies the PDE as
well as the boundary conditions.

  In exa154 the cooling efficiency depends on the radius of the
flange. How would you plan a calculation of the maximum ratio of
cooling power to flange weight? Assume the thickness of the tube to
be unchanged, chosen thick enough to stand the inside pressure.
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16   Non-Linear Heat Transfer

The PDEs we have considered so far have been linear in the
dependent variable, even if some coefficients have been non-constant,
such as in the PDE ∇ − ∇ − =λ( , ) ( , )x y T h x ya f 0. If a linear, homo-
geneous equation ∇ − ∇ =λ( , )x y Ta f 0 has two solutions, T T1 2and ,
then T T T= 1 2+  will also be a solution.

If the conductivity λ should depend on T, however, the PDE is no
longer linear in T, which means that we cannot generate new
solutions by summing, and hence very few analytic solutions have
been found. Fortunately, FlexPDE usually permits us to solve non-
linear equations as well.

Temperature-Dependent Conductivity

The descriptor below is for a plate of MgO, thick enough to let us
neglect the infrared radiation power from the surfaces in comparison
with that conducted through the material. There is a hole in the center
of the plate. The edges are at very different temperatures, 300 and
2300 K, and since the thermal conductivity λ is known to be
proportional to 1/T for this material, the PDE will evidently be non-
linear.

In the new descriptor segment initial values we give a constant
value as a guide in searching for a solution. Depending on the case,
this hint may or may not be necessary. If the equation is nearly linear,
FlexPDE may well solve it without help, but the run will perhaps take
more time. Here, we take the initial temperature to be halfway
between the extremes, but even the extreme values would do.
TITLE   'MgO Plate with a Hole, k(T)' { exa161.pde }
SELECT     { Student Version }
   errlim=1e-4     ngrid=1     spectral_colors
VARIABLES   temp
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DEFINITIONS
   Lx=0.6     Ly=0.4     r0=0.1
   heat=0     k=15000/temp            { Thermal conductivity k(T) }
   fluxd_x=-k*dx(temp)     fluxd_y=-k*dy(temp)
   fluxd=vector( fluxd_x, fluxd_y)     fluxdm=magnitude( fluxd)
INITIAL VALUES
   temp=1300
EQUATIONS
   div( fluxd)=heat
BOUNDARIES
region 'domain'
   start (0,0)  natural(temp)=0  line to (Lx,0) { Insulated }
   value(temp)=300  line to (Lx,Ly)
   natural(temp)=0  line to (0,Ly)
   value(temp)=2300   line to close
   start (Lx/2-r0,Ly/2)  natural(temp)=0 { Exclude hole }
   arc (center=Lx/2,Ly/2)  angle=360
MONITORS
   elevation(temp) from (0,0) to (Lx,0)
PLOTS
   contour( temp)     contour( k) painted     vector( fluxd) norm
   contour( fluxd_x)     contour( fluxd_y)     contour( fluxdm)
   elevation( temp) from (0,0) to (Lx,0)
END

In non-linear problems it is of some importance to study the
convergence of the consecutive trial functions toward the final
solution. For this purpose we include a monitors segment, which
permits us to inspect progress at a glance by various plots. Monitor
plots are in fact evoked by the usual commands, with the difference
that they are displayed on the screen each time a new trial function
has been obtained. There may be several of these survey plots.

In this case we introduce an elevation plot as a monitor. During the
solution process we see three such plots, but they are very similar.

The figure below shows how the temperature contours crowd in
the hot region to the left, where the thermal resistivity (1/k) is high,
and also where the hole creates constrictions.

The temperature plot suggests asymmetry of the horizontal
gradient ∂ ∂T x/ , which may also be demonstrated by a separate
contour plot of dx(temp).
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The following figure is a contour plot of the x-component of the
flux density f.

The symmetry of the above plot may be a surprise, in view of the
asymmetry of the temperature. We may understand this behavior if
we remember that both the PDE and the boundary conditions are
independent of λ. An asymmetric function fluxd_x would also violate
the conservation of energy.
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Steel Foil Emitting Infrared Radiation

In the previous case, conduction through the material dominated any
radiative loss from the surfaces. We shall now consider a thin steel
sheet, where the loss by infrared radiation becomes considerable in
comparison with the heat conducted through the foil. To simplify, we
assume the thermal conductivity of steel to be independent of
temperature, which is approximately true. The program would solve
the problem even if λ varied with T, but we had better study one
effect at a time.

The following file is rather similar to the preceding one, but we
have eliminated the circular exclusion. The PDE now has a source
term (here h < 0) representing the radiative loss per unit volume.
Strictly speaking, the loss occurs at the front and rear surfaces, but in
the 2D version of the program we do not have access to the normal
derivatives in the z direction. Hence we assume the sheet to be thin
enough so that the temperature variation across the foil may be
neglected. In other words, we assume the volume to be radiating,
instead of the surfaces.

The heat power radiated per unit area is given by the formula
f T= εσ 4 , where ε  is the emissivity (for which we take the value
0.3) and σ  the Stefan-Boltzmann constant. The foil loses heat at this
rate, but it also gains by radiation from the surroundings, which we
assume to be at 300 K. We multiply f by 2 in order to take both faces
into account. Since we consider the net surface power to be produced
in a volume of thickness d, we must divide by d to express it as power
per unit volume.

Although this PDE is strongly non-linear, the initial value is not of
critical importance. We could even omit this segment, which makes
the program assume an initial value of zero.

In this problem, there is no variation in the y direction. Hence we
may use an ordinary differential equation in x only (ODE), declared
by cartesian1. This simplifies the script considerably.
TITLE   'Foil Emitting IR Radiation'          { exa162.pde }
SELECT     
   errlim=1e-4     spectral_colors
COORDINATES
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   cartesian1
VARIABLES   temp
DEFINITIONS
   Lx=0.6     Ly=0.4     d=1e-3     k=45                  { Steel }
   heat=-2* 0.3*  5.67e-8*(temp^4-300^4)/d { Per unit volume }

   { 2 faces, emissivity, Stefan-Boltzmann formula  }
   fluxd_x=-k*dx(temp)
   equ1=dx( fluxd_x)     equ2=heat
INITIAL VALUES
   temp=600 { May be omitted }
EQUATIONS
   dx( fluxd_x)=heat
BOUNDARIES
region 'domain'
   start (0) point value(temp)=1000  line to (Lx) point value(temp)=300
MONITORS
   elevation( temp) from (0,0) to (Lx,0)
PLOTS
   elevation( temp) from (0) to (Lx)
   elevation( equ1, equ2) from (0) to (Lx)
END

The surface plot below shows the final temperature distribution
along the metal strip, obtained after a few iterations.
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Since the PDE now has two terms, which must be equal (equ1 and
equ2 under definitions), we may compare these two expressions in a
single elevation plot. The expression equ2 is equal to the power lost
by radiation. Evidently, the two terms of the PDE are in reasonable
agreement. The curve for equ1 is based on 2nd derivatives and is in
fact piecewise constant.

Exercises

  Remove the circular cutout in exa161. Run the resulting, simpler
problem in cartesian1 and verify that the x-component of flux density
is constant for all values of x, as expected.

  Run exa162 with d=1e-4 and explain why the results are radically
different.

  Add suitable plots to exa162 to compare the total power radiated
to the power delivered by conduction at the high-temperature end.

  Modify exa162 to include a circular cutout as in exa161. Solve it
also for an upper temperature of 600.
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17   Simultaneous Electric and Thermal
Conduction

An electric current always heats the material through which it passes
(unless the material is a superconductor). If the heating is non-
uniform, which is often the case, temperature differences will also
occur, and we will have conduction of heat as well as conduction of
charge. The electrostatic potential distribution is still governed by the
equation
∇⋅ = ∇ ⋅ = ∇ ⋅ − ∇ =J Eσ σa f a fU 0

if the material is isotropic and there is no source of charge inside the
material.

The resulting current density causes dissipation of heat at the rate
J E J E⋅ = ≡ J E  per unit volume. This electric power will appear as
a source term (h) in the PDE for heat conduction (p.162), i.e.
∇⋅ =f J E          

where f = − ∇λ T .
In order to calculate both the electric potential and the temperature

we thus have to face the following system of simultaneous PDEs
∇⋅ =
∇ ⋅ =
RST

J
f

0
J E

                 

It is obvious that this problem is non-linear, because the
expressions for both J and E contain U. If the electrical conductivity
σ  had been independent of the temperature T, we could have solved
the first equation with respect to U, then used that solution in the
second equation. That approximation is rarely valid, however.

For a pure metal, such as copper, the electric conductivity is
roughly proportional to 1/T over a large range of temperatures.
Hence, both equations are non-linear in a dependent variable, and the
equations have to be solved simultaneously.
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The program solves a system almost as easily as if it were a single
equation. It is wise, however, to supply initial values for the
dependent variables, if at all possible. If you have a rough idea about
the solution, give an expression for it. At least you could indicate a
typical value for the solution. If no initial value is supplied, the
program assumes that value to be zero, which may or may not be a
good starting point.

There are as many dependent variables (solutions) as there are
equations. For each of these dependent variables you must supply
boundary values or normal derivatives. If not, the program will
assume vanishing normal derivatives, which may be quite different
from what you intended.

Copper Block heated by an Electric Current

In our first example, a block of copper has a potential difference
(voltage) between opposite faces. We ignore the practical problems of
keeping constant potential values over each of the two faces.
Similarly, we assume a constant temperature of 300K on these faces.
For this first application we choose the simplest possible conditions,
including electric and thermal insulation on the other boundaries,
which makes the problem one-dimensional.

In the descriptor below we have specified a linear function for U as
the initial value for the potential. For the temperature temp we simply
choose the value imposed at the boundaries.

Multiple PDEs must be labeled with their dominant dependent
variable. The first one does not even depend on temp, so obviously
we should tag it with the variable U.

The second PDE depends on both U and T, but the derivation
shows that it expresses heat balance. For that reason we should
choose the remaining variable temp as the tag.
TITLE   'Simultaneous Electric and Thermal Conduction'  { exa171.pde }
SELECT     { Student Version }
   errlim=1e-5     spectral_colors
COORDINATES
   cartesian1 { 1D calculation }
VARIABLES   U    temp { Two dependent variables }
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DEFINITIONS
   Lx=1.0     temp0=300     U1=-0.2
   cond0=1/1.67e-8     cond=cond0*temp0/temp     k=400    { Copper }
   Ex=-dx(U)     Jx=cond*Ex
   fluxd_x=-k*dx( temp)
INITIAL VALUES
   U=U1*x/Lx   temp=300
EQUATIONS
   U: dx( Jx)= 0     { U is the only dependent variable }
   temp: dx( fluxd_x)=Jx*Ex   { Variable temp is dominant }   
BOUNDARIES
region 'domain'
   start (0) point value(U)=0  point value(temp)=300
   line to (Lx)  point value(U)=U1  point value(temp)=300
PLOTS
   elevation( temp) from (0) to (Lx)     elevation( fluxd_x) from (0) to (Lx)
   elevation( U) from (0) to (Lx)     elevation( Ex) from (0) to (Lx)
   elevation( Jx) from (0) to (Lx)
END

The elevation plot below shows the temperature distribution within
the object.

It turns out that the final solution for the temperature becomes
symmetrical with respect to the middle of the specimen, which is
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what we could expect. If the program had not worked properly, this
surface could have been of any shape.

The elevation plot of Ex shows a maximum at mid-distance, which
is reasonable considering that the electrical resistivity is largest there.

We also note that the main component of current density, Jx, is
constant (with small oscillations) along the object, still according to
expectations.

We have thus obtained a plausible solution to a non-linear system
of PDEs, involving electrical as well as thermal variables. If we wish
to verify the solutions in more detail, we may compare the left and
right members of the second equation.

Electrically Heated, Radiating Copper Foil

Let us now replace the copper block by a thin foil of the same
material, emitting infrared radiation in the positive and negative z
directions. In the same manner as in the chapter before (p.183) we
lump the radiative loss from the front and rear sides into a (negative)
volume heating term.

This is a case of strong non-linearity, and the program may work
unstably at high radiative loss. For this reason we use a device which
permits us to introduce the non-linearity gradually. We first announce
that we intend to employ 5 stages. After having made this declaration
we may use stage as an integer variable, which automatically steps
from 1 to 5. The program solves the equations for the first value of
U1, then steps stage to the next higher integer value. The program
exploits a solution as the first approximation for the next stage of the
calculations.

In the expression for the electrical conductivity cond we have taken
the absolute value of temp. While searching for the solution the
program might occasionally divert to a negative value, which of
course would not be physically acceptable, and in fact fatal.

TITLE   'Radiating and Conducting Foil' { exa172.pde }
SELECT     errlim=1e-4     spectral_colors     stages=10
COORDINATES
   cartesian1 { 1D calculation }
VARIABLES   U   temp
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DEFINITIONS
   Lx=0.5     d=1e-4     temp0=300       
   U1=stage*0.1     k=400 { Copper }
   cond0=1/1.67e-8     cond=cond0*temp0/abs(temp)    
   Ex=-dx(U)     E=-grad(U)
   Jx=cond*Ex
   fluxd_x=-k*dx( temp)
   heat=Jx*Ex- 2* 0.3*  5.67e-8* (temp^4-300^4)/d

          { 2 faces, emissivity, Stefan-Boltzmann formula  }
INITIAL VALUES
   U=0   temp=400
EQUATIONS
   U: dx( Jx)=0
   temp: dx( fluxd_x)=heat
BOUNDARIES
region 'domain'
   start (0)  point value( U)=0  point value(temp)=300  line to (Lx)
   point value( U)=U1  point value(temp)=300
PLOTS
   elevation( temp) from (0) to (Lx)  report( U1)
   elevation( fluxd_x) from (0) to (Lx)
END

The figure below shows the final elevation plot for temp, the one
for the highest voltage.
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The temperature distribution is virtually flat over the middle part,
where the electrical dissipation balances the loss by radiation. Hence,
there is practically no conduction of heat out of this central region of
the foil (fluxd_x).

Apart from helping the program to cope with non-linearity, the use
of stages evidently gives us a whole series of results for different
applied voltages.

The program shows results for all consecutive stages without
stopping, which of course saves time. You can view each figure at
your ease, however, by clicking on File at the upper left corner and
then on View. This opens a list of the graphics files accumulated, and
after choosing the current file you may click your way through the
figures.

After many runs with different descriptors, the plot files may take
too much space and need to be purged. You can conveniently select
and delete the graphics files, and perhaps also the log files.

Semicircular Foil, Heated by an Electric Current

Finally we investigate the temperature distribution in a thin, semi-
circular strip heated by a current, taking both radiation and
conduction into account as before. The object and the boundary
conditions now have less symmetry, however, which means that the
solutions will vary significantly in both directions. Hence, we need a
contour plot to monitor how the calculations are proceeding.

The following descriptor is analogous to exa172.
TITLE   'Radiating and Conducting Semicircular Foil'         { exa173.pde }
SELECT     
   errlim=1e-4     spectral_colors     stages=16
VARIABLES   U   temp
DEFINITIONS
   r1=0.2     r2=0.4     d=1e-4            { New geometry }
   U1=stage*0.1     k=400     temp0=300
   cond0=1/1.67e-8     cond=cond0*temp0/abs(temp)    
   Ex=-dx(U)     Ey=-dy(U)     E=-grad(U)     Em=magnitude(E)
   Jx=cond*Ex     Jy=cond*Ey     J=cond*E     Jm=cond*Em
   fluxd_x=-k*dx(temp)     fluxd_y=-k*dy(temp)
   fluxd=vector( fluxd_x, fluxd_y)     fluxdm=magnitude( fluxd)
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   heat=Jm*Em- 2* 0.3*  5.67e-8* (temp^4-300^4)/d
          { 2 faces, emissivity, Stefan-Boltzmann formula  }

INITIAL VALUES
   U=0   temp=400
EQUATIONS
   U: div( J)=0
   temp: div( fluxd)=heat
BOUNDARIES
region 'domain'
   start (-r2,0)  value(U)=U1/2  value(temp)=300  line to (-r1,0)
   natural(U)=0  natural(temp)=0  arc to (0,r1) to (r1,0)
   value(U)= -U1/2  value(temp)=300  line to (r2,0)
   natural(U)=0  natural(temp)=0  arc to (0,r2) close
MONITORS
   contour( cond)
PLOTS
   contour( temp) painted     surface( temp)
   contour( U) painted     contour( Em) painted
   contour( Jm) painted     vector( J) norm
END

The following figure is a surface plot of the temperature for the
final stage of this example. Evidently, the temperature is considerably
higher on the inner edge of the strip than on the outer one. Here, the
processes of charge and heat conduction obviously are strongly
dependent on each other.
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The contour plot of U may give the impression that the potential is
constant on radial lines, but this is only approximately true, as
indicated by the plot of Em.

The following plot of Jm, on the other hand, appears to be axially
symmetric around (0,0). This reflects the fact that the first of the two
PDEs is independent of the electrical conductivity σ ( )T . An axially
symmetric field J automatically satisfies the condition that charge is
neither destroyed nor created.

We may of course test the solution set by various plots of the PDE
and the boundary conditions, as suggested in earlier chapters.

Exercises

  Use an elevation plot to compare the first and second terms in the
second equation of exa171.

  In exa172 there are in fact three terms in the PDE for heat. Plot
curves for each of the two terms in the right member. Also compare
the sum of them to the left member of the PDE.

  Change exa172 for the copper foil from rectangular to trapezoidal
shape. Let the width at the left be 0.05 as before, and that at the right
0.1.
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  Calculate the current flowing through the semicircular strip in
exa173 and also the resistance between the ends.

  Find the temperature distribution in exa173 for the fictitious case
of vanishing radiation and U1= 0.1 (only the first stage).
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18   Transients in One Dimension

In the preceding chapters we treated cases of steady conduction,
where the each solution depended only on the space variables. We
shall now consider more general problems, explicitly involving the
time variable, which are also called transient problems.

The time-dependent equation for heat conduction4p8 is

∇⋅ + =f ρ ∂
∂

c T
t

hp       

where ρ is the mass density and cp the specific heat capacity. This
PDE just expresses the energy balance for a volume element.

FlexPDE allows us to use the time t as an independent variable,
and dt as the partial derivative operator ∂ ∂/ t . This means that the
time variable is treated very much like the space variables, and
transient problems are hardly more difficult to handle than static ones.
We first confine ourselves to two independent variables, t and x.

Iron Bar with a Temperature Step

The descriptor below specifies a rectangular iron bar, initially at 300
K. The keyword initial values now has a completely different sense
than before. It no longer signifies a guess value, intended to help the
program on its way, but it states that at t = 0 the object has exactly the
temperature given in this segment. The initial value need not be a
constant, as in the present case, but could be any function of space.

The other temperature given is that pertaining to the left boundary
of the object. Here we have entered a constant value, 400, which
means that the left face will keep this temperature for t > 0. In
practice, we could for instance bring the end of the bar into contact
with a large copper block, kept at 400 by a thermostat.
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There is an analytic solution to a similar problem4p63, which we
may use for comparison to conquer our natural skepticism. That
solution applies to a bar with infinite extension along the positive x-
axis. For sufficiently short times, when the temperature at the right
end of our bar has not increased noticeably, it should be an excellent
approximation. You could verify, by direct substitution, that the
following function satisfies the PDE.

T T T x
t c

Ti
p

= −
F
HG

I
KJ +( )

/0 02
erf

λ ρ

where  erf ( ) exp( )y d
y

= −z2 2

0π
η η  is available in FlexPDE.

The new keyword time in the descriptor applies when the problem
contains the time explicitly.

The plot statement involving for...by...to obviously specifies at
what times we wish to see snapshots of the solution.
TITLE   'Bar with a Temperature Step' { exa181.pde }
SELECT     { Student Version }
   errlim=3e-4     spectral_colors
COORDINATES
   cartesian1 { 1D }
VARIABLES   temp
DEFINITIONS
   Lx=1.0     Ly=0.1     heat=0     k=82     rcp=7.87e3*449 { Iron }
   tempi=300     temp0=400 { Initial and boundary temperatures }
   fluxd_x=-k*dx(temp)
   temp_ex=(tempi-temp0)*erf[ x/(2*sqrt(k*t/rcp))]+temp0   
INITIAL VALUES   temp=tempi
EQUATIONS
   dx( fluxd_x)+ rcp*dt( temp)=heat
BOUNDARIES
region 'domain'  start (0) point value(temp)=temp0 line to (Lx)
TIME   from 0 to 3000
PLOTS
   for t=100 by 100 to 3000
   elevation( temp, temp_ex) from (0,Ly/2) to (Lx,Ly/2)
END
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Just as with stages, the program shows all the plots without
stopping. If we later evoke File, View, however, we may inspect the
entire series of plots at our own pace by selecting View, Next etc.

Alternatively, we may evoke View, Movie to display the plot pages
at constant speed.

In spite of the difficulties in handling the temperature discontinuity
at the left boundary, the program generally yields excellent agreement
with the analytic solution. The following snapshot at t=1800, for
instance, shows coincident curves and the integral values confirm this
agreement.

At the largest time, however, the elevation curves are seen to
diverge near the right end. The fault is not with the numerical
solution; the difference is a consequence of the different boundary
conditions at the right face. The analytic solution applies to the case
of infinite extension of the bar, whereas our descriptor specified a
finite length. We only need to move the right face further along the x-
axis to restore the agreement.
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Bar with a Temperature Step Halfway

We shall now modify the preceding descriptor to solve an essentially
different problem. Let us insulate all boundaries of the iron bar and
introduce a temperature step in the middle. In practice, we could have
two equal bars, kept at different temperatures, and join them at t = 0.
We need to introduce this temperature step in the initial values
segment, by means of the discontinuous function ustep as shown
below. The function ustep(a) is zero at negative values of a and jumps
to 1 at a=0.
TITLE   'Temperature Step in Bar' { exa182.pde }
SELECT     
   errlim=3e-4     spectral_colors
COORDINATES
   cartesian1
VARIABLES    temp
DEFINITIONS
   Lx=1.0     heat=0     k=82     rcp=7.87e3*449 { Iron }
   fluxd_x=-k*dx(temp)
INITIAL VALUES
   temp=200+200*ustep( x-Lx/2)           { Unit step function }
EQUATIONS
   dx( fluxd_x)+ rcp*dt( temp)=heat
BOUNDARIES
region 'domain'
   start(0) line to (Lx)
TIME   from 0 to 100000
PLOTS
   for t=10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000
   elevation( temp) from (0) to (Lx)
END

Here we have a case where there are only natural boundary
conditions. Any ambiguity is avoided, however, by the initial values.

In the plot segment we use a variant of the previous snapshot
formula, which is expedient when you prefer a non-uniform distri-
bution of times. The elevation plot below shows the solution at t=100,
where the initial step function has become rounded off.
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The series of elevation plots demonstrate that the integral of the
temperature is independent of time, a result that we readily
understand in terms of energy conservation.

Iron Bar Soldered to a Copper Bar

Even in transient problems the materials properties are allowed to
vary in space. In the following example we let the left half of the
specimen be of copper, the second half of iron. Several lines are as in
exa181, but we impose temp=500 on the left face.

This descriptor contains the new keywords histories and history,
which permit us to draw curves of the time dependence at various
points in space.
TITLE   'Transient Conduction in Cu/Fe' { exa183.pde }
SELECT     
   errlim=3e-4     spectral_colors
COORDINATES
   cartesian1
VARIABLES    temp
DEFINITIONS
   Lx=1.0     Ly=0.1     heat=0     k     rcp
   fluxd_x=-k*dx(temp)
   tempi=300     temp0=500
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INITIAL VALUES
   temp=tempi
EQUATIONS
   dx( fluxd_x)+ rcp*dt( temp)=heat
BOUNDARIES
region 'domain' k=82  rcp=7.87e3*449 { Fe }         
   start (0) point value(temp)=temp0  line to (Lx)
region 'copper'  k=400  rcp=8.96e3* 385       
   start (0)  line to (0.2*Lx) to (0.2*Lx)
TIME   from 0 to 10000
PLOTS
   for t=10, 30, 100, 300, 1000, 3000, 10000
   elevation( temp) from (0,Ly/2) to (Lx,Ly/2)
   elevation( fluxd_x) from (0,Ly/2) to (Lx,Ly/2)
HISTORIES
   history( temp) at (0.1*Lx) at (0.2*Lx) at (0.3*Lx)
      at (0.4*Lx) at (0.5*Lx)
END

The elevation plots illustrate what happens at the Cu/Fe junction.
The plot below shows that the discontinuity in thermal conductivity
causes a sudden change in slope of the temperature curve. The x-
component of the flux density varies continuously with x, as it should.

The next plot shows the temperature history of the composite bar
at five different points of the domain. The insert to the right of the
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plot indicates the positions of the points where these recordings were
taken.

Ramp Function at a Boundary

Boundary values may be functions of time. Let us now pass from a
constant value to the simplest extension, i.e. a ramp function. The
descriptor mostly follows exa183.
TITLE   'Ramp Function at a Boundary'                 { exa183a.pde }
SELECT     
   errlim=3e-4     spectral_colors
COORDINATES
   cartesian1
VARIABLES   temp( threshold=1e-3)
DEFINITIONS
   Lx=1.0     Ly=0.1     heat=0     k     rcp
   fluxd_x=-k*dx(temp)
   tempi=300     temp0=300+0.01*t
INITIAL VALUES
   temp=tempi
EQUATIONS
   dx( fluxd_x)+ rcp*dt( temp)=heat
BOUNDARIES
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region 'domain' k=82  rcp=7.87e3*449 { Fe }         
   start (0) point value(temp)=temp0  line to (Lx)
region 'copper'  k=400  rcp=8.96e3* 385       
   start (0)  line to (0.2*Lx) to (0.2*Lx)
TIME   from 0 to 100000
PLOTS
   for t=10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000
elevation( temp) from (0,Ly/2) to (Lx,Ly/2)
   elevation( fluxd_x) from (0,Ly/2) to (Lx,Ly/2)
HISTORIES
   history( temp) at (0.1*Lx) at (0.2*Lx) at (0.3*Lx)
      at (0.4*Lx) at (0.5*Lx)
END

We have now imposed a time-dependent temperature on the left
face, starting at temp=300, which happens to be equal to the initial
temperature.

There is now a threshold declaration for the temperature variable,
giving the program a hint about tolerable absolute errors. Even if we
omit this statement, the solution of this particular example will be
successful. In other cases, however, the program might have to work
long and hard in the initial phase. It would notice that the temperature
increase is very slight in the beginning and try to produce a solution
with an error less than 3e-4 of that small increment.

The history plot below demonstrates that the temperature curves
eventually become almost parallel.
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Exercises

  Modify exa181 by inputting a suitable flux density through the left
face.

  Modify exa181 again by dissipating power uniformly in the bar at
1e6 W/m3, keeping the other parameters unchanged. Explain the
resulting curves.

  Starting with exa182, introduce a different material (Cu) in the
right half of the bar. Will the integral of temp still be independent of
time? Could you find a function other than the temperature that would
yield an invariant integral?

  Modify exa183 by keeping the right face at 300 K.
  Try another function of time at the left face in exa183a. For

instance, choose the function temp0=300+100*ustep(1000-t) and add a
plot of temp0.
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19   Transients in (x, y) and  (ρ, z) Space

In the preceding chapter all examples were effectively in one space
dimension, but there is nothing more to learn about descriptors in
order to treat problems in two space dimensions and the time. We
only need to supply the appropriate boundary conditions.

Internally Heated Steel Bar with a Loss

In the following example a steel bar with rectangular cross section is
heated by electromagnetic induction, such that the heat dissipation is
uniform and constant. Wads of glass fiber tend to insulate the bar
from the rectangular enclosure, which is kept at 300 K by external
cooling.

In this example the program has no inkling beforehand of how
much the temperature is going to rise. For this reason we supply a
rough estimated value under variables. This shortens the calculation
time considerably.

In order to reduce the number of plots, while still reproducing the
main features of the heating process, we use an approximately
logarithmic scale of times for the plots.
TITLE   'Transient Heating of Steel Bar' { exa191.pde }
SELECT     { Student Version }
   errlim=1e-3     ngrid=1     spectral_colors
VARIABLES   temp( threshold=0.1) { Absolute tolerance }
DEFINITIONS
   L=100e-3     L0=10e-3     heat     k     rcp     tempi=300
   fluxd_x=-k*dx(temp)     fluxd_y=-k*dy(temp)
   fluxd=vector( fluxd_x, fluxd_y)     fluxdm=magnitude( fluxd)
   power_d=1e7 { Power density }
   power=(2*L0)* (2*L0/3)*power_d { Power from bar }
INITIAL VALUES
   temp=tempi
EQUATIONS
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   div( fluxd)+ rcp*dt( temp)=heat
BOUNDARIES
region 'domain'  heat=0  k=0.5  rcp=2e6         { Glass fiber }
   start (-L,-L)  value( temp)=tempi
   line to (L,-L) to (L,L) to (-L,L)  close
region 'steel'  heat=power_d  k=45  rcp=3.5e6     { Stainless steel }
   start (-L0,-L0/3) line to (L0,-L0/3) to (L0,L0/3) to (-L0,L0/3) close
TIME   from 0 to 1e6
PLOTS
   for t=100, 300, 1e3, 3e3, 1e4, 3e4, 1e5, 3e5, 1e6
   contour( temp)     contour( (temp-tempi)*rcp) report( power*t)
   contour( temp) zoom(-5*L0,-5*L0,  10*L0,10*L0)
END

As shown by the first plot the temperature contours become
rounded-off squares on approaching the outer boundary. The zoomed
contour plot below shows the final temperature distribution around
the bar. We notice that the contours become almost circular at a
distance of one bar length from the origin.

The plot of (temp-tempi)*rcp automatically displays the increase in
enthalpy (heat energy) over the entire domain. We may compare
these values to the heat delivered from the bar (power*t) by File,
View. Up to a time of 1000 s the pairs of values agree to high
precision, but at larger times the automatic integral gradually



206

becomes smaller than the input heat energy. The cause of this
deviation is the loss of heat through the boundary, which is at
constant temperature.

If we replace the value boundary condition by complete insulation
(natural(temp)=0), the agreement becomes perfect.

Capsule and Sample in a Scanning Calorimeter

When using a differential scanning calorimeter (DSC) one encloses a
sample in a metal capsule, heated by contact with a base plate of
linearly varying temperature. The instrument measures the power
necessary to make the sample follow this temperature ramp. The
question arises to what extent the sample retains a uniform
temperature during this process.

The following descriptor defines the geometry and the thermal
properties of an aluminum capsule, filled with a polymeric sample.
The capsule is axially symmetric, and we thus use the PDE pertinent
to cylindrical coordinates. We assume that the temperature at the
bottom of the capsule varies linearly at a rate of 2.0 K/s.

In the plot section we use the viewpoint command. The first two
arguments of viewpoint are the ρ  and z coordinates of the eye of the
viewer, and the third argument is its angular elevation above the
( , )ρ z  plane.

TITLE   'Scanning Calorimetry, Polymer in Al'          { exa192.pde }
SELECT     
   errlim=1e-3     ngrid=1     spectral_colors
COORDINATES   ycylinder( 'r', 'z')
VARIABLES   temp( threshold=0.01)
DEFINITIONS
   D=0.1e-3     r0=3.3e-3     Lz=1.6e-3     k     rcp
   heat=0     rate=2.0    tempi=300
   fluxd_r=-k*dr(temp)     fluxd_z=-k*dz(temp)
   fluxd=vector( fluxd_r, fluxd_z)     fluxdm=magnitude( fluxd)
INITIAL VALUES
   temp=tempi
EQUATIONS
   div( fluxd)+ rcp*dt( temp)=heat
BOUNDARIES
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region 'domain'   k=0.3   rcp=3e6                 { Polymer }
start (0,0)  value(temp)=tempi+ rate*t  line to (r0,0)
   natural(temp)=0  line to (r0,Lz) to (0,Lz) close
region  'aluminum'   k=238   rcp=3e6                
   start (0,0)  line to (r0,0) to (r0,Lz) to (0,Lz)
   to (0,Lz-D) to (r0-D,Lz-D) to (r0-D,D) to (0,D) close
TIME   from 0 to 100
PLOTS
   for t=1, 3, 10, 30, 100
   elevation(temp) from (0,0) to (0,Lz)      contour(temp) painted
   surface(temp) viewpoint( -r0, Lz/2, 0)
END

The figure below shows the temperature distribution after 3 s. The
heat spreads from below, and we see that the aluminum capsule
conducts very well. In the middle of the specimen, however, the
temperature has only just started to rise above the initial value.

The next figure shows the temperature field at 100 s. It is clear that
the top of the capsule has not quite reached the temperature of the
bottom plate. The interior of the specimen lags behind even more than
the top of the capsule. It is interesting to observe how these condi-
tions change as the measurements proceed.
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Moving Heat Source

We shall now consider a steel bar of rectangular cross-section, heated
by a welding torch moving to the right along its top surface. We
assume the torch to heat uniformly over a narrow rectangular area
across the bar. The front, rear and end faces of the bar are assumed to
be adequately insulated by air, while the bottom is kept at T= 300.

We model the torch by two step functions (ustep) providing a
constant flux density (fluxd0) over a short interval of x.
TITLE   'Steel Bar Heated by Moving Torch' { exa193.pde }
SELECT     
   errlim=1e-3     ngrid=1     spectral_colors
VARIABLES   temp( threshold=0.1)
DEFINITIONS
   Lx=1.0     Ly=0.2     d0=0.1     vx= 1e-3 { Torch velocity }
   heat=0     tempi=300     k=82     rcp=7.87e3*449 { Steel }
   fluxd_x=-k*dx(temp)     fluxd_y=-k*dy(temp)
   fluxd=vector( fluxd_x, fluxd_y)     fluxdm=magnitude( fluxd)
   fluxd0=-1e6*[ ustep( vx*t+d0- x)- ustep( vx*t- x) ]
INITIAL VALUES
   temp=tempi
EQUATIONS
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   div( fluxd)+ rcp*dt( temp)=heat
BOUNDARIES
region 'domain'
   start (0,0)  value(temp)=tempi  line to (Lx,0)
   natural(temp)=0 line to (Lx,Ly)
   natural(temp)=fluxd0  line to (0,Ly)
   natural(temp)=0 line to close
TIME   from 0 to 800
PLOTS
   for t=50 by 50 to 800
   elevation( temp) from (0,Ly) to (Lx,Ly)
   contour( temp) painted     vector( fluxd) norm
END

The following is the last contour plot of the sequence.

Inspecting the other plots of this kind as they are produced, one
finds that the shape of the contours tends to a stationary pattern. In
other words, the last plot may be obtained by displacing the preceding
one by the proper distance in the positive x direction.



210

Stationary State for a Moving Heat Source

The existence of a stationary state of the temperature field suggests
that it might be possible to obtain the time-independent field by
treating the process in a coordinate system that is moving with the
torch. In terms of the old coordinates ( ' , )x y  the time-dependent PDE
reads (with ∇'  as a reminder of x')

∇ ⋅ + =' f ρ ∂
∂

c T
t

hp

We now change to the new variable x x v tx= −' . The spatial partial
derivatives remain the same after this transformation, but the time
derivative becomes a spatial one. The term x ' does not modify the
differential, since this is the spatial variable in the above PDE. Hence,
we have ∆ ∆x v tx= −  and the time derivative transforms according to
∂
∂

∂
∂

T
t

v T
xx→ −

Our new PDE for the stationary state thus becomes

∇⋅ − =f ρ ∂
∂

c v T
xp x 0                        

The descriptor file required to test this model is of course quite
similar to the preceding one. We make a change of variable so that
the torch becomes effectively stationary, and modify the PDE accord-
ingly.
TITLE   'Bar Heated by Moving Torch, Stationary PDE'     { exa194.pde }
SELECT     
   errlim=1e-3     ngrid=4     spectral_colors
VARIABLES   temp
DEFINITIONS
   Lx=1.0      Ly=0.2     d0=0.1     vx=1e-3 { Velocity }
   k=82     rcp=7.87e3*449 { Steel }
   heat=0     tempi=300     t0=800
   fluxd_x=-k*dx(temp)     fluxd_y=-k*dy(temp)
   fluxd=vector( fluxd_x, fluxd_y)     fluxdm=magnitude( fluxd)
   fluxd0=-1e6*[ ustep( vx*t0+d0- x)- ustep( vx*t0- x) ]
EQUATIONS
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   div( fluxd)- rcp*vx*dx(temp)=heat
BOUNDARIES
region 'domain'
   start (0,0)  value(temp)=tempi  line to (Lx,0)
   natural(temp)=0 line to (Lx,Ly)
   natural(temp)=fluxd0  line to (0,Ly)
   natural(temp)=0 line to close
PLOTS
   elevation( temp) from (0,Ly) to (Lx,Ly)
   contour( temp) painted     surface( temp)     vector( fluxd) norm
END

The plots resulting from the above file are expected to approach
those obtained at the largest times in the transient problem (exa193).
The contour plot on p.209 for the largest time is evidently similar to
the stationary one.

 The following figure is a surface plot of the temperature for the
stationary case.
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Exercises

  Modify exa191 to display the flux leaving the bar. Compare that
value to the power dissipated by induction.

  How does the scanning calorimeter in exa192 perform at lower
rates of heating, say at 0.1 K/s, with respect to temperature uniformity
in the specimen?

  Run exa192 again, this time including a thermal resistance
between the base plate and the bottom of the capsule. Simulate the
thermal resistance by an extra plate of suitable thermal conductivity
and negligible heat capacity.

  Let the MgO plate in exa161 (p.180) initially be at 300 K and
apply sudden heating to 1000 K for t >0 at the left edge. Display the
magnitude of the heat flux density as well.
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20   Time-Sinusoidal Problems

Let us now consider a particular kind of time-dependence, i.e. where
a boundary value or a source term oscillates around an average. For
instance, the heating power per unit volume could vary with time
according to h h i t= 0 Re exp( )ωa f , where h0 is a time-constant
amplitude and Re(z) means the real part of the complex quantity z.

The equations for a periodic problem need not involve the time
explicitly. For the equation of heat conduction4p8  (with f = − ∇λ T )

∇⋅ − ∇ + =λ ρ ∂
∂

T c T
t

hpa f     

we attempt a solution involving the complex amplitude T0, i.e.
T T i t T iT t i tr i= = + +0 0 0( ) exp( ) ( ) ( ) cos( ) sin( )r r rω ω ω    

Separating this solution into its real and imaginary parts we obtain
T T t T t T T t T tr r i i r i= − = +0 0 0 0cos( ) sin( ), sin( ) cos( )ω ω ω ω

and for the time derivatives
∂ ∂ ω ω ω ω
∂ ∂ ω ω ω ω

T t T t T t T
T t T t T t T

r r i i

i r i r

/ [ sin( ) cos( )]
/ [ cos( ) sin( )]

= − + = −
= − =

0 0

0 0

where the real and imaginary amplitudes are functions of  the spatial
variables.

Substituting T T iTr i= +  and ∂ ∂ ω ωT t T i Ti r/ = − +  into the PDE
we obtain two equations, one for the real term and one for the
imaginary term, as follows
∇⋅ − ∇ − =

∇ ⋅ − ∇ + =

R
S|
T|

λ ωρ

λ ωρ

T c T h

T c T
r p i

i p r

a f
a f

0

0
   

Here we assume that the materials properties (λ, ρ and cp ) are
independent of T, although they may vary with the space coordinates,
even in a discontinuous fashion. For small temperature oscillations,
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this would be a good approximation. The system of PDEs is then
linear.

The interpretation of the solution is completely analogous to that
commonly used with vibrating structures and alternating current
circuits1p97. At any given time, the temperature must of course have a
real value. The actual temperature increment is given by the real part
of the complex solution (including the time factor), viz.
T T t T tr i= −0 0cos( ) sin( )ω ω       

This means that once we have solved for Tr  and Ti  we know the
temperature over the whole domain and at all times.

Oscillating Temperature in a Steel Block

As a first example we choose the simplest possible situation: a steel
block, insulated except on the front face, where the temperature
oscillates around 300 K at a constant amplitude and phase. There are
two dependent variables, the real and imaginary parts of T, both of
which must be declared. We must also supply boundary conditions
for both.

The imposed temperature oscillation, applied on the left side, is
chosen to be real. Oscillations at any point of the object hence refer to
this input phase angle (0). Since the attenuation of the temperature
wave is extremely strong we need logarithmic plots to present the
variation.

There is an analytic solution to a related problem that we may use
for comparison. This solution is valid for the same boundary
conditions, except that the right boundary is at infinite distance. In
view of the strong attenuation, this difference may not always be
significant. The exact solution4p65 is

T a s x iex q= − +0 1exp ( )d i  with  s cq p= ω ρ λ/ ( )2      

which yields, for the real part,
T a s x s xr ex q q, exp( ) cos( )= − −0

and similarly for the imaginary part. You may easily verify that these
functions satisfy the PDEs and the boundary conditions.
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Here, we must remember to tag the PDEs with the dominant
dependent variables. On p.213 we separated the complex PDE of heat
conduction into a real and an imaginary part, and we just tag the
equations accordingly.
TITLE   'Oscillating Temperature in a Steel Block' { exa201.pde }
SELECT     { Student Version }
   errlim=3e-5     spectral_colors
COORDINATES
   cartesian1 { 1D }
VARIABLES   tempr   tempi
DEFINITIONS
   Lx=0.2     heat=0     k=45    rcp=3e6        { Steel }
   a0=1                        { tempr at left boundary }
   omega=0.25                  { Angular frequency }
   tempa=sqrt(tempr^2+ tempi^2)     { Amplitude }
   phase=sign(tempi)*arccos(tempr/tempa)/pi*180 { Angle, degrees}
   sq=sqrt( omega*rcp/(2*k)) { Exact solutions ...}
         tempr_ex=a0*cos(-sq*x)*exp(-sq*x)  
   tempi_ex=a0*sin(-sq*x)*exp(-sq*x)  

tempa_ex=a0*exp(-sq*x)
EQUATIONS { Real and imaginary PDE }
   tempr: dx(-k*dx( tempr))- omega*rcp*tempi=heat
   tempi: dx(-k*dx( tempi))+ omega*rcp*tempr=0
BOUNDARIES
region 'domain'  start (0) point value(tempr)=a0  point value(tempi)=0
   line to (Lx)  { Imposed temperature oscillation at x=0 }
PLOTS
   elevation( tempr) from (0) to (Lx)
   transfer( tempr) file='tempr' { Store data in file }
   elevation( tempi) from (0) to (Lx)
   transfer( tempi) file='tempi'
   elevation( phase) from (0) to (Lx)
   elevation( abs(tempr), abs(tempi), abs(tempa)) log(10)
      from (0) to (Lx)
   elevation( abs(tempr), abs(tempr_ex)) log
      from (0) to (Lx)
   elevation( abs(tempa), abs(tempa_ex)) log
      from (0) to (Lx)
END



216

After the first two elevation plot statements we have added lines to
transfer the solution to a file. For the first plot, the name of this file
becomes 'tempr'. We shall use these transferred files later for creating
animated plots.

As the first plot of tempr indicates, the real part oscillates between
positive and negative values. Consequently, we should interpret the
sharp minima in the plot of abs(tempr) as being effectively zeros.

In such plots, the interval from one zero crossing to the next is one-
half wavelength. The comparison with the analytic solution shows
reasonable agreement, down to well below of 10-7 of the input
amplitude.

The figure below is a combined elevation plot of the absolute
values of the solution. Here, we have limited the logarithmic scale to
10 decades.

For particular values of the time, corresponding to ω πt n= 2  (n
being an integer), the cosine in the expression for T (p.214) becomes
equal to 1 and the sine vanishes. For these times, the temperature
increment is thus simply given by
T T t T t Tr i r= − =0 0 0cos( ) sin( )ω ω   

Thus the real part T xr ( )  shown in the above figure is a “snapshot” of
the temperature distribution at particular points in time. Similarly,
T xi ( )  yields the temperature distribution at middle points. The
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agreement with respect to wavelengths, shown by the plots of the real
part, also seems satisfactory. The real or imaginary parts of a
temperature oscillation may be measured by lock-in techniques, using
the heater voltage as the reference signal.

The following figure shows the phase angle of the solution versus
x. Evidently the angle continuously decreases as we move to the right,
until the value reaches -1800, where the angle shifts by 3600 to
display the next period. If we so wish, we could ignore the vertical
jumps and consider the phase angle to be presented by a continuous
curve, forever decreasing. This plot shows, in even greater detail, how
far the calculations reproduce the wave: after 2.5 wavelengths the
distortion becomes noticeable.

Temperature waves are commonly observed natural phenomena. In
summertime the sun heats the surface of the earth much more
intensely than during winters, and the result is a temperature wave,
which of course is largest at ground level. These oscillations may,
however, also be measured deep down in a mineshaft – attenuated
and retarded as suggested by our calculations.
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Animation of an Oscillating Temperature

The following file combines the real and imaginary parts into
temperature, which we may plot for a sequence of times by the stages
device. The command transfer transforms the data files into functions
that may be plotted.
TITLE   'Oscillating Temperature in a Steel Block'        { exa201a.pde }
SELECT   stages=200  
COORDINATES
   cartesian1
DEFINITIONS
   Lx=0.2
   transfer('tempr', tempr)     transfer('tempi', tempi)
   wt=(stage-1)/50* 2*pi { Omega*t }
   temp=tempr*cos(wt)- tempi*sin(wt) { Temperature }
BOUNDARIES
region 'domain'  start (0) line to (Lx) 
PLOTS
   elevation( temp) from (0) to (Lx/3) fixed range(-1,1)
END

After running exa201 and exa201a we obtain an animated plot of
the temperature as a function of both space and time. The modifier
fixed range avoids disturbing changes of scale during the presentation.
The following is a sample of the plot sequence.
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The File, View option using View, Movie makes the graphics
rendering more attractive.

Sinusoidal Volume Heating of a Steel Foil

The next case for study is a steel sheet, clamped between copper jaws,
so that the left and right edges are forced to have a constant
temperature. The jaws are also used to conduct an electric current
producing a sinusoidally varying power. Most of exa201 still applies
and may be used as a template.
TITLE   'Sinusoidal Volume Heating of a Steel Foil' { exa202.pde }
SELECT     
   errlim=3e-5     spectral_colors
COORDINATES
   cartesian1 { 1D }
VARIABLES     tempr     tempi
DEFINITIONS
   Lx=0.2 k=45     rcp=3e6     heat=1e6 { Real value }
   omega=0.25                  { Angular frequency }
   tempa=sqrt(tempr^2+ tempi^2)     { Amplitude }
   phase=sign(tempi)*arccos(tempr/tempa)/pi*180
EQUATIONS
   tempr: dx(-k*dx( tempr))- omega*rcp*tempi=heat
   tempi: dx(-k*dx( tempi))+ omega*rcp*tempr=0
BOUNDARIES
region 'domain'
   start (0) point value( tempr)=0 point value( tempi)=0
   line to (Lx) point value( tempr)=0 point value( tempi)=0
PLOTS
   elevation( tempr, tempi) from (0) to (Lx)
   elevation( phase) from (0) to (Lx)
   elevation( abs(tempr), abs(tempi), abs(tempa)) log
      from (0.001*Lx) to (0.999*Lx)
END

The plot below shows that the real and imaginary parts both are
zero at the left and right edges, as required. In the middle of the sheet
the imaginary part dominates, i.e. the temperature oscillations are
retarded by about 900 with respect to the power applied.
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The logarithmic plot of the real part, shown below, indicates the
wavelength.

The two examples above were effectively one-dimensional, but
thermal waves may equally well be studied in 2D.
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Exercises

 In exa201 the curve of absolute values diverges gradually from the
exact one as we approach the right edge. Test if this is due to the
influence of the right boundary, by moving it further to the right.

 Modify exa201 by inputting an oscillating flux density on the left
surface, instead of an oscillating temperature. What is the major
change you observe in the solution? Modify the exact solution, by
allowing for a complex amplitude (a0), and compare to the FEA
solution.

 Modify exa201 into a two-dimensional problem, where the heater
acts over only a small part at the center of the left face (Ly=0.1). Let
the width of the surface heater be 0.04.

  Animate the solution for exa202 using a surface plot, suitably
zoomed.
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21   Electron and Hole Conduction

In the chapter on electric fields inside conductors (p. 63) we assumed
that charge could move freely inside such an object. We treated an
electric current in a semi-classical way without even mentioning the
role of electrons. Furthermore, we did not introduce the temperature
as a crucial parameter in the conduction process. The new
phenomenon encountered in this chapter is the diffusion of charge
carriers, which is the random transport caused by the thermal motion
of atoms.

The conductivity is limited by electrons interacting with atoms,
being scattered off their course but moving along the field (E) on the
average. Only a minority of the electrons (usually one or two per
atom) are free to move and to participate in the charge transport. We
denote by ne0  the number of free electrons per unit volume of a
homogeneous metal that is uncharged and not exposed to an external
field. In a general situation, the local free-electron density ne  may be
different from ne0 .

Steady-State Electron Current

We shall confine the following discussion to the case of a current
field that does not change with time. Electrons drift in a direction
opposite to E, while they diffuse in the direction opposite to the
electron concentration gradient. We may thus express the flux density
of electrons as
f Ee e e e en D n= − − ∇µ             

where ne  is the local electron concentration and µe  the electron
mobility. The factor De  is the diffusion coefficient given by

D k T qe e B= µ    



223

in terms of the Boltzmann constant kB , the thermodynamic temper-
ature T, and the elementary charge q (absolute value).

Multiplying the above expression by the electron charge (−q ) we
immediately obtain the corresponding electric current density
J Ee e e e eeq n q D n= + ∇µ    

The first term in the expression for Je corresponds to the drift of
electrons along the field, i.e. qne eµ σ≡  (conductivity).

The second term is due to thermal unrest, which causes diffusion
of the electrons to an extent depending on the temperature.

In a conductor that is not exposed to an external field the free
electrons are compensated by a corresponding number of positive
ions, and hence the overall charge density is zero. We now introduce
the local charge density by ρ = − −( )( )q n ne e0 , which yields
qn qne e= −0 ρ

Substituting this expression into the above equation we find
J E Ee e e e e e e e eq n qD n qn D qn= + ∇ = − + ∇ −µ ρ µ ρ( ) ( )0 0  

We could consider E and ρ  to be the dependent variables in this
PDE. One of the Maxwell equations provides the second PDE, i.e.
ρ ε= ∇ ⋅ = ∇ ⋅D Ea f  

If we now substitute this expression for ρ  into the preceding equation
we obtain the non-linear PDE

J E E E Ee e e e e e eqn D q n D= −∇ ⋅ + ∇ − ∇0 0
2µ ε µ εa f a f  

Hence, if Je is known inside the conductor and E on the boundary,
we should be able to solve for the components of E.

One-Dimensional Conduction in a Metal

The above PDE for the steady state simplifies considerably if Ey = 0
and Ex  is a function of x only. Then Je xa f  will also depend only on x,
and charge conservation in fact requires it to be constant. The above
PDE then takes the form
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J q n E E
x

E D q
n
x

D E
xe e x

x
e x e

e
e

x
0 0

0
2

2= − + −µ ∂ ε
∂

µ ∂
∂

∂ ε
∂

( ) ( )

We now assume that the basic electron density ne0  is constant in
space, which means that we may eliminate the third term to obtain the
equation

J q n E E
x

E D E
xe e x

x
e x e

x
0 0

2

2= − −µ ∂ ε
∂

µ ∂ ε
∂

( ) ( )   

The second term is obviously non-linear, but we shall see that
FlexPDE is able to solve this equation.

Field at a Metal-Vacuum Interface

The simplest application of the above PDE is to a metal film in a
vacuum, exposed to a perpendicular electric field.

The current density in this situation is obviously zero. In the
boundaries segment we specify a constant value of 1e3 for Ex  at both
ends of the domain.

The program cannot handle vanishing conductivity in the vacuum,
and hence we must be content to specify values that are very small
compared to those in the metal. The permittivity of the metal should
be approximately equal to that of the vacuum (eps).
TITLE   'Electrons at a Metal-Vacuum Interface'          { exa211.pde }
SELECT     errlim=1e-4 { Student Version }
COORDINATES
   cartesian1
VARIABLES   Ex
DEFINITIONS
   Lx=1e-10     Lc=Lx/2
   J0=0     Ex0=1e3 { External Ex }
   q=1.60e-19     kb=1.38e-23    eps=8.85e-12     temp=300
   cond     ne0        
   mue=cond/q/ne0     De=mue*kb*temp/q     rho=dx( eps*Ex) 
   F_ex=0.5*eps*Ex0^2 { Force }
EQUATIONS
   q*mue*ne0*Ex- dx( eps*Ex)*mue*Ex- De*dxx( eps*Ex)=J0
BOUNDARIES
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region 'domain'  cond=1.0  ne0=1.0      { Avoid zero in mue }
   start (-Lx)  point value( Ex)=Ex0
   line to (Lx) point value( Ex)=Ex0
region 'copper'  cond= 5e7  ne0=1.0e29   start(-Lc)
   mesh_spacing=0.03*Lx  line to (Lc) { Denser at interface }
PLOTS
   elevation( ne0) from (-Lx) to (Lx)     elevation(Ex) from (-Lx) to (Lx)
   elevation( rho*Ex) from (0) to (Lc) report(F_ex)
END

As seen from the second plot (below), the field penetrates into the
metal over a short distance and gradually fades away. The internal
field remains comparable to the external Ex over a layer about 1e-11
m. The thickness of this layer is much smaller than the size of an
atom, and the result reflects the fact that we are using a continuum
model for the metal.

We may test this model by calculating the force per m2 on the
metal surface due to the external field. To achieve this, we must
integrate ρEx with respect to x over the metallic region. The integral
value reported on the last plot may be compared with the expression
f E= ½Dn  that we used on p.108. Evidently, the agreement is
excellent.
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On changing the temperature to 1000 K you will find that the
charged layer has become thicker. This is caused by a larger electron
diffusion coefficient.

Semiconductors

In semiconductors we have to consider two types of charge carriers,
i.e. electrons and holes8p326 (positive). Electrons drift in a direction
opposite to E, and holes in the direction of E. For both carrier types,
diffusion is in the direction opposite to the corresponding density
gradient. In the steady state, we may thus express the flux densities of
electrons and holes as

f E
f E
e e e e e

h h h h h

n D n
n D n

= − − ∇
= − ∇

RST
µ
µ

           

where ne  and nh  are the corresponding carrier densities, µe ,µh  the
mobilities, and De ,Dh the diffusion coefficients given by

D k T qe e B= µ ,   D k T qh h B= µ     

Multiplying the above expressions by the charges (mq ) we
immediately obtain the corresponding electric current densities7p16.

J E
J E

e e e e ee

h h h h h

q n q D n
q n qD n

= + ∇
= − ∇

RST
µ
µ

   

For the total current J we thus obtain
J J J E E= + = + ∇ + − ∇e h e e e ee h h h hq n q D n q n qD nµ µ      

The terms containing E express the drift of carriers in the field, which
means the electrical conductivity may be written
σ µ µ= +q n q ne e h h   

If J is known inside the semiconductor and E on the boundary we
might hope to solve the above PDE for E.
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Semiconductors in One Dimension

For one space variable (x) equation p.226 4 takes the form

q n E q D n
x

q n E qD
n
x

Je e x e
ee

h h x h
hµ ∂

∂
µ

∂
∂

+ + − = 0   

The PDE may seem to contain three dependent variables: Ex , ne,
and nh . In the steady state, however, ne and nh  will be related
according to the statistical law of mass action8p367

n n ne h i= 2   

where ni is an intrinsic property of the material.
Under the influence of a field, the carriers move to new positions,

creating the local charge density ρ .
ρ ρ ρ= + = − − + − = − + + −e h e e h h e e h hn n q n n q n n n n q( )( ) ( ) ( )0 0 0 0

Using the above statistical law we obtain
ρ q n n n n ne e i e h= − + + −0

2
0

Next, we express ne  in terms of ρ , which leads to the quadratic
equation

n n q n n ne e e h i
2

0 0
2+ − + =ρa f

which has the solution

n q n n q n n ne e h e h i= − − + ± − + +
1
2

1
40 0 0 0

2 2ρ ρa f a f              

For nh  we obtain a similar relation, i.e.

ρ q n n n n ni h e h h= − + + −2
0 0

and

n n n q n n q nh e h e h i= − − − ± − − +
1
2

1
40 0 0 0

2 2ρ ρa f a f            

We finally express ρ  in terms of Ex  by means of the Maxwell
equation
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ρ ε= ∇ ⋅ Exa f   

Substituting this expression for ρ  in ne  and nh , and these in turn into
the above PDE, we reduce the number of dependent variables in the
above PDE to a single one, i.e. Ex . The PDE in its complete form
would be monstrously complicated, but we can let FlexPDE make all
substitutions internally.

It would seem that the governing PDE p.227 1 contains no 2nd-
order derivative, but ne  is approximately equal to ρ /q  and the last
substitution introduces a second differentiation.

Semiconductor in an Electric Field

In a pure semiconductor, both electrons and holes contribute to the
conduction of charge through the material. Doping by impurities8p372

leads to modified equilibrium densities of free charge carriers, nh0
and ne0, so that one type of material (p) may conduct mainly by
positive holes and another type (n) by negative carriers. These carrier
densities are constants of the p and n materials respectively. If no
field is present, each of these carriers resides close to an ion of the
opposite charge, so that the material remains electrically neutral.

Let us apply the above formalism to a semiconductor film,
surrounded by a vacuum and exposed to an external field E0 per-
pendicular to its surface. The configuration is similar to that for the
metal plate in exa211. As we have just seen, the governing PDE is

q n E q D n
x

q n E qD n
x

Je e x e
ee

h h x h
hµ ∂

∂
µ

∂
∂

+ + − = 0   

We first consider the term J0 appearing in the right member of the
PDE. In the 1D model, charge conservation requires that it take the
same value everywhere.

Under definitions we specify the equilibrium numbers of free
electrons and holes for the semiconductor material. Using staged we
specify a sequence of three values for nh0, and hence for ne0. The
first value is for an electron-type material, the middle one for an
intrinsic semiconductor, and the last one for a hole-type material.
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The boundary conditions on the right and left faces of the film
impose the value Ex0 just inside the surfaces. The outside of the faces
is not part of the domain, but we could imagine a field Ev  on the
vacuum side, given by the equation of continuity D E Ex x v= =ε ε0 0 .

TITLE   'Semiconductor in an Electric Field'           { exa212.pde }
SELECT     errlim=1e-12 { Three stages are indicated by staged }
COORDINATES
   cartesian1
VARIABLES   Ex
DEFINITIONS
   Lx=2e-4
   temp=300     J0=0     Ex0=1e3 { Applied Ex }
   q=1.60e-19     kb=1.38e-23     eps0=8.85e-12     eps=12*eps0
   ni=1e16     mue=0.13     muh=0.05
   nh0=staged(0.1*ni, ni, 10*ni)     ne0=ni^2/nh0
   De=mue*kb*temp/q     Dh=muh*kb*temp/q
   rho=dx( eps*Ex) { Volume charge density }
   ne=-0.5*( rho/q- ne0+ nh0)+ sqrt[ 0.25*( rho/q- ne0+ nh0)^2+ ni^2]
   nh=-0.5*( ne0- nh0- rho/q)+ sqrt[ 0.25*( ne0- nh0- rho/q)^2+ ni^2]
   Je=q*mue*ne*Ex     Jh=q*muh*nh*Ex  { Drift current density }
   Jde=q*De*dx( ne)     Jdh=-q*Dh*dx( nh) { Diffusion current d. }
EQUATIONS
   q*ne*mue*Ex+ q*De*dx( ne)+ q*nh*muh*Ex- q*Dh*dx(nh)=J0
BOUNDARIES
region 'domain'
   start (-Lx)  point value(Ex)=Ex0 line to (Lx) point value(Ex)=Ex0
PLOTS
   elevation( Ex) from (-Lx) to (Lx) report( nh0) report( ne0)
   elevation( rho) from (-Lx) to (Lx)
   elevation( rho) from (0) to (Lx) report( eps*Ex0)  {  Charge density }
   elevation( nh) from (-Lx) to (Lx) report( 2*Lx*nh0)
   elevation( ne) from (-Lx) to (Lx) report( 2*Lx*ne0)
   elevation( Jh, Jdh) from (-Lx) to (Lx)
   elevation( Je, Jde) from (-Lx) to (Lx)
   elevation( nh*ne/ni^2) from (-Lx) to (Lx) range(0.999,1.001)
END

For the second stage we obtain the following plot of the charge
density over the right half of the domain. The general shape of this
curve resembles that for a metal, but the thickness of the charge
distribution is much larger. If we consider this to be a surface charge,
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the relation Dx = σ  should be valid. In fact, we notice that the
integral of ρ  over this layer is closely equal to the value of εEx0, also
displayed under the plot.

Evidently, the charge density arises partly from holes (nh) and
partly from electrons (ne). The figure below illustrates that the
currents due to drift and diffusion cancel to produce vanishing net
current density.
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Inspecting the plots of nh and ne, we notice that these curves
become similar if we reverse the sign of x for one of the plots. The
drift currents, Jh and Je, due to holes and electrons remain different,
however, because of the difference in mobility.

Proceeding to the plot of nh it is worth noting that the integral is
reasonably equal to the total number of holes at zero field (2*Lx*nh0).
Finally, it is satisfactory that nh*ne turns out to be equal to ni^2, as we
assumed when deriving the PDE.

Corresponding observations may be made as regards the first and
third stages in these calculations.

Current through a Semiconductor

We shall now modify the preceding descriptor for the case of a film
carrying a current. The PDE already contains the current density J0,
but we need to apply the appropriate boundary conditions.

In a region where the carrier densities vary little with x we may
eliminate the derivatives to obtain
J E q n q n Ex e e h h x0 = = +σ µ µ( )                    

Let us assume that the derivatives vanish and verify this only a
posteriori. In exa212 we used a numerical value for Ex0, but now we
input E J q n q nx e e h h0 0= +/ ( )µ µ . The changes are as follows.

TITLE   'Current through a Semiconductor'  { exa213.pde }
…
   temp=300     J0=1.0     { Defer definition of Ex0 }
…
   Ex0=J0/(q*ne*mue+q*nh*muh)
EQUATIONS
…

As is evident from the next plot, the results of the run are trivial.
The hole density nh is now constant throughout the film, and there is
no charge concentration at the surfaces.
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The results of this example are thus rather predictable, but in the
following section we shall see that a sandwich of different
semiconductor films may exhibit much more complex properties.

Model of a Silicon Junction Diode

Let us now apply the above formalism to the simplest possible p-n
diode, consisting of a film with predominately positive charge
carriers (named p) and an adjacent film with negative carriers (n). We
do not include the metal films normally used to connect this device to
the external world. As we have just seen, the governing PDE is

q n E q D n
x

q n E qD n
x

Je e x e
ee

h h x h
hµ ∂

∂
µ

∂
∂

+ + − = 0   

From the section before we know that J0 must be constant in space in
the steady state.

We may express J0 in terms of E Ex = 2  by

J E q n q n Ee e h h0 2 2 2 2= = +σ µ µ( )   

which holds near the right face (2) of the n film, sufficiently far from
the junction to make the diffusion terms negligible.
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The value E2 is to be supplied as a constant boundary value at the
right face (2). We also need a boundary value for the left face (1) of
the sandwich. From the corresponding relation
J q n q n Ee e h h0 1 1 1= +( )µ µ   

we directly obtain the value E1 for the left boundary.
Under definitions we specify the equilibrium numbers of free

electrons and holes, valid for the semiconductor materials before
being joined into a sandwich. We choose clearly different values of
carrier density, to emphasize the fact they do not have to be equal

Using stages we obtain solutions for a sequence of values of E2 at
the right end of the domain. The relation to J0 permits us to calculate
the corresponding field E1 at the left end. This is all we need for the
boundary conditions.
TITLE   'P-N Junction Diode, Forward Current'         { exa214f.pde }
SELECT     errlim=1e-6     stages=10
COORDINATES { Professional Version }
   cartesian1
VARIABLES   Ex
DEFINITIONS
   Lx=2e-5     temp=300
   q=1.60e-19     kb=1.38e-23     eps0=8.85e-12     eps=12*eps0
   ni=1.5e16     mue=0.13     muh=0.05     ne0     nh0
   E_res   { Field due to resistive voltage drop }
   nh1=1000*ni     ne1=ni^2/nh1     ne2=800*ni     nh2=ni^2/ne2
   De=mue*kb*temp/q     Dh=muh*kb*temp/q
   rho=dx( eps*Ex) { Volume charge density }
   ne=-0.5*( rho/q- ne0+ nh0)+ sqrt[ 0.25*( rho/q- ne0+ nh0)^2+ ni^2]
   nh=-0.5*( ne0- nh0- rho/q)+ sqrt[ 0.25*( ne0- nh0- rho/q)^2+ ni^2]
   Je=q*mue*ne*Ex     Jh=q*muh*nh*Ex  { Drift current density }
   Jde=q*De*dx( ne)     Jdh= -q*Dh*dx(nh) { Diffusion current d. }
   E2=(stage-1)*1e4     J0=(q*ne2*mue+q*nh2*muh)*E2
   E1=J0/(q*ne1*mue+q*nh1*muh)
   U_res=E1*Lx+ E2*Lx { Approximation to resistive voltage drop }
   Ex_reduced=Ex- E_res { Field with resistive part subtracted }
EQUATIONS
   q*mue*ne*Ex+ q* De*dx( ne)+ q*muh*nh*Ex- q*Dh*dx(nh)=J0
BOUNDARIES
region 'domain'  nh0=nh1   ne0=ne1      { Mostly holes }
   E_res=E1 { Resistive field in the hole region }
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   start (-Lx) point value(Ex)=E1
   line to (Lx) point value(Ex)=E2
region 'n_conductor'  nh0=nh2  ne0=ne2   E_res=E2
   start (0) line to (Lx)
PLOTS
   elevation( Ex) from (-Lx) to (Lx)
   elevation(Ex_reduced) from (-Lx) to (Lx)
   elevation( rho, q*ne0, -q*nh0) from (-Lx) to (Lx)
   elevation( nh0, ne0) from (-Lx) to (Lx)
   elevation( nh, ne) from (-Lx) to (Lx)
   elevation( Jh, Je) from (-Lx) to (Lx)
   elevation( Jdh, Jde) from (-Lx) to (Lx)
   elevation( nh*ne) from (-Lx) to (Lx) { Verification of equilibrium }
      report( J0)  report( U_res)
END

The plot below shows the equilibrium distribution of carriers near
the junction. Here, no net current is flowing through the diode. In the
preceding figure we find the values that would apply if the junction
were broken (nh0, ne0).

The following plot also pertains to the case of zero current. It
shows that an electric dipole barrier is present at the junction. The
charged layers arise by diffusion of holes into the right region (where
the concentration of positive carriers is smaller), and by diffusion of
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electrons in the opposite direction. We estimate the integral over the
positive charge to be about 7e-6, to be compared with the integral
over both branches of the curve (-1e-7) given below the plot. This
confirms the expectation that the total charge vanishes.

The charge distribution sets up an internal electric field, yielding
the currents Jh and Je below, which limit the amount of diffusion.

The plot of the diffusion currents Jdh and Jde demonstrates that
drift and diffusion currents just cancel for each of the carrier types.
The integral values confirm this observation quantitatively.
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Later stages illustrate what happens when there is a net forward
current through the diode. The next plot for stage 3 shows that Ex still
is constant far from the junction, but takes different values at the
ends. The external current flowing through the resistance of the p and
n materials respectively produces these fields.

If we subtract the resistive fields (E_res) from Ex we are left with
the negative cusp displayed below.

Evidently, there is an internal field pointing from right to left. The
field at the junction creates an increase in potential over a short
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region. We may calculate this contact potential as the integral of the
reduced Ex (given at the bottom of the plot).

At zero current, the contact potential is about 0.35 V but becomes
much smaller in the next stage of the calculations. Examining later
stages we notice that the contact potential does nothing to reduce the
forward current.

Reverse Current

It is easy to transform the above descriptor to model a p-n diode
subject to reverse current. We only need to change the expression for
E2 as follows.
TITLE   'P-N Junction Diode, Reverse Current'        { exa214r.pde }
…
   E2=-(stage-1)*40     J0=q*(ne2*mue+nh2*muh)*E2
…

The difference between the results is dramatic, as illustrated below.
In the final stage of the calculation we find a wide depletion region,
where virtually all the carriers are swept away from the junction at
the center.
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Looking at the following plot we find that the charge density
reaches a limiting value as we approach the junction from each side.

On the right side of the junction there are no free electrons, and
this means that the remaining charge there stems from the positive
donor ions. The resulting charge density is thus q ne0.

On the left side of the junction, all holes will be filled, which
creates the charge density −q nh0.

The next plot of Ex shows that the resistive voltage drop (near the
ends) due to the reverse current is negligible compared to the internal
potential difference, obtained by integrating the V-shaped part of the
curve. Since the latter dominates, we conclude from the integral that
the total reverse voltage is 3.08 V. In this case, the contact potential
counteracts the applied voltage.

With this reverse voltage of 3.08 V, the current density is not zero
but about 90 A/m2, but for a junction diameter of, say, 10 µm this
implies a reverse current of only 9 nA.
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In order to explore the rectifying action of the diode, we should
now compare to the results of ex224f. The integrals under the last plot
of the descriptors indicate that, for an applied forward voltage over
the junction of only 0.13 V, the current becomes J0=2.2e4. This is 244
times larger than the reverse current at -3.08 V.

Exercises

  Explore the effects of a reversed field Ex in exa211.
  Modify exa211 to show the (trivial) phenomenon of conduction

through a metal.
  Expand exa211 by studying a sandwich made of an aluminum foil

and a copper foil. Calculate the field for both directions of Ex.
 Replace the aluminum in the above sandwich by a superconductor,

simulated by a conductivity of, say, one million times that of Cu.
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22   Fields in Three Dimensions

So far, we have solved problems using one- and two-dimensional
models, and in cases of rotational symmetry we were able to access
three dimensions by resorting to cylindrical coordinates. FlexPDE
permits us, however, to employ Cartesian coordinates in ( , , )x y z
space. The PDEs then become simpler than in ( , )ρ z , and we are no
longer limited to axial symmetry. The run times will generally be
longer, however.

Let us return to p.34, where we plotted the field around point
charges. We shall now map fields in 3D, where the expression for the
electrostatic potential of a point charge at ( , , )x y z0 0 0  is

U q
R

q
x x y y z z

= =
− + − + −4 40 0 0

2
0

2
0

2πε πε ( ) ( ) ( )
   

Two Point Charges of Different Signs

Under definitions in the following descriptor, we enter an expression
for the potential U, consisting of two terms of the above type.

The new feature here is extrusion, which takes us into the third
dimension. Under boundaries we define a base plane, which the
program automatically divides into triangular cells. The program
extrudes each of these cells into a cylinder of triangular cross-section,
and each of these cylinders is finally filled with tetrahedra, up to a
maximum level defined by the top surface.
TITLE   'Two Point Charges of Different Signs'                     { 3d221.pde }
SELECT     spectral_colors { Student Version }
COORDINATES     cartesian3
DEFINITIONS                                     
   L=1.0     d0=0.5     q=1e-10          
   eps0=8.85e-12     c=1/(4*pi*eps0)
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   U=-q*c/sqrt( x^2+(y+d0)^2+ z^2)+ q*c/sqrt( x^2+(y-d0)^2+ z^2)
   Ex=-dx( U)     Ey=-dy( U)      Ez=-dz( U)     { Field components }
   div_xy=dx( Ex)+ dy( Ey)
   E=-grad(U)     Em=magnitude(E)
EXTRUSION { Extrude a cube through the (x,y) plane }
   surface 'bottom' z=-L { Limiting surfaces }
   surface 'top' z=L
BOUNDARIES
region 'domain'
   start(-L,-L) { Trace outer boundary of base plane }
   line to (L,-L) to (L,L) to (-L,L) close
PLOTS
   grid( x,y,z)
   contour( U) painted on z=0     contour( U) painted on z=0.3
   contour( U) painted on z=1.0
   vector( E) norm on z=0     vector( E) norm on z=1.0
   elevation( Ex, Ey, Ez) from (0,-L,1) to (0,L,1)
   contour( Ez) painted on z=1.0     report( val( Ez, 0, 0.84, 1))
   contour( div_xy) on z=1.0     contour( div( E)) on z=1.0
END

The figure below shows the three-dimensional cell structure
resulting from the extrusion from the bottom to the top face.

The other plots refer to a particular plane in space, which we must
specify by a command such as on z=0. The vector plot below depicts
the field directions in that plane, which contains the point charges.
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Here, all vectors appear to have the same magnitude, since the
points of infinity obstruct the color-coding. The line through the
charges at (0,-0.5,0) and (0,0.5,0), is an axis of symmetry. Hence, any
vector plot on a plane going through x z= = 0 will look the same.

The following vector plot shows that the field diverges from a
point at about y = 084. , whereas the corresponding charge is located
at y d= =0 05. . In view of the axial symmetry, the above vector plot
may also be taken as valid for the plane x = 0. We see that Ey

vanishes at about y = 084.  on the boundary, in agreement with the
plot on z = 10. .
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From the colors and directions of the arrows it appears that the
field vanishes at (0,0.84,1.0). This is only true of the in-plane com-
ponents, however. The elevation plot below clarifies the variation of
the field components along the vertical line (0, ,1.0)y . Obviously, Ex
is zero everywhere, and Ey vanishes at about y = 084. .

The contour plot of Ez also reports the value 0.57 at (0,0.84,1.0).
From the last two plots we learn that the divergence in the ( , )x y
plane is non-zero (p.32), while the 3D divergence vanishes.

Non-Linear Set of Point Charges

The preceding charge configuration was axially symmetric. In the
next example we shall consider three point charges that are not in line.
It suffices to add a (positive) charge on the x-axis to destroy the axial
symmetry.
TITLE   'Three Point Charges'                 { 3d221a.pde }
SELECT     spectral_colors
…
   U=-q*c/sqrt( x^2+(y+d0)^2+ z^2) +q*c/sqrt( x^2+(y-d0)^2+ z^2)
        +q*c/sqrt( (x+d0)^2+y^2+ z^2)
…
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PLOTS
   contour( U) painted on z=0     contour( U) painted on z=0.3
   contour( U) painted on x=0     contour( U) painted on y=0
   contour( U) painted on z=1.0     contour( U) painted on y=x
   vector( E) norm on z=0     vector( E) norm on z=0.3
   contour( Em) painted on z=0.3
END

The following vector plot illustrates the field in a plane parallel to
that of the charges.

Although a system of three point charges appears to be a simple
one, the appearance of the 3D plots is far from trivial and it is
instructive to analyze them. For instance, in the plot of U at z = 0 3.
why are the extreme points different in magnitude? Why is the plot of
U on the plane y x=  so simple?

Laplace Equation in 3 D

We shall now revisit the example on p.49, where we treated the
Laplace equation in 2D. In that case, it was easy to obtain an analytic
solution for comparison. In 3D, this is less convenient but the sum of
a set of potentials of the type p.240 1 would still be a solution. In the
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following descriptor we use 3d221a as a template and place the point
charges outside the domain by a suitable value of d0.
TITLE   'Laplace Equation in 3D'                   { 3d222.pde }
SELECT     errlim=1e-3     spectral_colors
COORDINATES     cartesian3
VARIABLES     U
DEFINITIONS                                     
   L=1.0     d0=2.0     q=1e-10          
   eps0=8.85e-12     c=1/(4*pi*eps0)
   U_ex=-q*c/sqrt( x^2+(y+d0)^2+ z^2)+ q*c/sqrt( x^2+(y-d0)^2+ z^2)
        +q*c/sqrt( (x+d0)^2+y^2+ z^2) { Exact solution }
   Ex=-dx( U)     Ey=-dy( U)      Ez=-dz( U)     { Field components }
   div_xy=dx( Ex)+ dy( Ey)
   E=-grad(U)     Em=magnitude(E)
EQUATIONS
   div( grad( U))=0
EXTRUSION     { Limiting surfaces }
   surface 'bottom' z=-L
   surface 'top' z=L
BOUNDARIES
   surface 'bottom'  value( U)=U_ex
   surface 'top' value( U)=U_ex
region 'domain'
start(-L,-L) value( U)=U_ex { Outer boundary on base plane }
   line to (L,-L) to (L,L) to (-L,L) close
PLOTS
   grid(x,z) on y=0
   contour( U) painted on z=0     contour( U_ex) painted on z=0
   contour( U- U_ex) on z=0     { Deviation from exact U }
   contour( U- U_ex) on z=0 zoom(-0.5,-0.5,  1.0,1.0)
   contour( U) painted on z=0.3     contour( U_ex) painted on z=0.3
   contour( U) painted on z=1.0     contour( U_ex) painted on z=1.0
   contour( U- U_ex) on z=1.0
END

The following figure shows the solution in the plane of the point
charges, of which there are some signs at the edges.
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The next plot shows the solution error. Evidently, the deviation is
about 0.3% of the maximum solution value.

The first zoomed plot demonstrates that the agreement in the
interior of the domain is about 0.1%. The Professional Version with a
larger number of nodes of course yields results of much higher
quality.
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Coin in a Metal Box

This problem is analogous to the elementary electrostatic example on
p.57. We assume that a coin is suspended in the middle of a metallic
box by thin nylon threads.

In previous examples, the solution domain was a simple cube.
Here, we shall have to exclude a volume corresponding to the metallic
coin, and we do this in three steps.

Firstly, we divide the cube into three layers by surfaces parallel to
z L= − : the middle layer for the coin, the upper and lower ones for
air.

Secondly, we create a special region for the coin and specify the
value of U on the flat surfaces. The 3D version of FlexPDE lets us
exclude this region by the command void.

Finally, we define the circular shape as in 2D, also declaring the
boundary value on the border to be U_coin. The cylinder defined by
the line start…finish extends all the way from bottom to top of the box,
and hence we have to add layer 'metal' to restrict the validity of the
boundary value to the appropriate layer.
TITLE   'Coin in a Metal Box'            { 3d223.pde }
SELECT     errlim=1e-3     ngrid=1    spectral_colors
COORDINATES     cartesian3 { Professional Version }
VARIABLES     U
DEFINITIONS
   L=0.05     r0=0.01     d0=2e-3     U0=1.0
   Ex=-dx( U)     Ey=-dy( U)     Ez=-dz( U)
   E=-grad( U)     Em=magnitude( E)
EQUATIONS
   div( grad( U))=0
EXTRUSION { Parallel surfaces }
   surface 'bottom' z=-L
   layer 'air 1' { Layer below coin }
   surface 'lower' z=-d0
   layer 'metal' { Layer containing coin }
   surface 'upper' z=d0
   layer 'air 2' { Layer above coin }
   surface 'top' z=L
BOUNDARIES
   surface 'bottom'  value( U)=0
   surface 'top'  value( U)=0
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region 'domain' { Full solution domain }
   start (-L,-L)  value( U)=0 { For all four faces }
   line to (L,-L)  to (L,L)  to (-L,L)  close
region 'coin' { Exclude volume }
   surface 'lower' value( U)=U0
   surface 'upper' value( U)=U0
   layer 'metal' void
   start (r0,0) layer 'metal' value( U)=U0 { Coin }
   arc( center=0,0) angle=360
PLOTS
   grid(x,y,z)     grid(x,y) on z=L/2
   contour( U) painted on z=0     contour( U) painted on z=2*d0
   contour( U) painted on z=0.5*L     contour( U) painted on x=0
   vector( E) norm on z=0.5*L
   contour( Em) painted on x=0
   vector( E) norm on x=0
   elevation( U) from (-L,0,d0) to (L,0,d0)
END

FlexPDE shows all the details of layers and regions before the
solutions starts. Clicking on Domain and then Continue also displays
successive surfaces and layers from the bottom upwards. Finally we
obtain the full 3D domain below.

The 2D grid plot below looks quite complicated. It shows the inter-
section of the plot plane (z=L/2) with the tetrahedral 3D cells. The cell
density is higher at the center, due to the extension of region 'coin'.
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The following plot shows the potential around the coin in the
middle plane ( )z = 0 .

The next plot is taken farther from the coin, halfway to the wall.
We notice that the maximum value of the potential is only 20% of that
in the middle plane.
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The next plot shows another projection of the coin and indicates
the magnitude of the field in a symmetry plane.



251

Improved Gridding around the Coin

In the preceding example, the grid extrusion implies that the node
density remains high in region 'coin' all the way from bottom to top.
This is a waste of nodes and of run time, because the solution is not
expected to vary much far below and above the coin. As shown
below, we may simplify the grid by using a limited region 'coin'.
TITLE   'Coin in a Metal Box, Improved' { 3d223a.pde }
…
   line to (L,-L)  to (L,L)  to (-L,L)  close
limited region 'coin' { Exclude volume }
   surface 'lower' value( U)=U0
…

The next plot shows that the cell density is no longer enhanced
around the central region. As a result, the total node number is
reduced by nearly one half.

Electrical Conduction in a Cone

On p.91 we studied the current field in a cone with a voltage applied
between the flat ends. Let us now repeat that example in 3D, using the
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same shape, etceteras, so that the results may be compared. The first
parts of the descriptor look somewhat like that on p.65.

This example is simpler than 3d223, in the sense that there is only
one layer. On the other hand, it may be confusing that the domain is
limited from below by a broken surface. That surface consists of a
flat, circular part of radius r0 and a conical part extending to meet the
upper, flat surface.

Under extrusion we first define the conical part as a function
z x y( , ) . FlexPDE permits us to include the flat part by using the
function max(a,b). By this simple means we truncate the cone by
stating that z x y( , ) ≥ 0. We could also have used the logical if…then.
The concept of extrusion in FlexPDE means that this surface, having
the lowest z, is extruded into a volume toward higher z. The line
start(r1,0)…finish defines the size of the object, as projected on the
( , )x y  plane.

We wish to impose value boundary conditions on the flat parts and
a natural boundary condition on the conical part. For this reason only,
we define a central region in the shape of a cylinder with the radius r0.
The remaining region is a ring limited by a circular cylinder and a
conical surface. Surface 'lower' thus is conical in one region and flat in
the other. By referring to the names of both the surface and the region
we may also plot over a selected part.
TITLE   'Electrical Conduction in a Cone'                              { 3d224.pde }
SELECT     errlim=1e-3     spectral_colors { Student Version }
COORDINATES     cartesian3
VARIABLES   U
DEFINITIONS
   r0=2e-3     r1=10e-3     h=10e-3     cond=1.0e-3   { Silicon }
   Ex=-dx( U)     Ey=-dy( U)     Ez=-dz( U)
   E=-grad( U)     Em=magnitude( E)
   Jx=cond*Ex     Jy=cond*Ey     Jz=cond*Ez
   J=cond*E     Jm=magnitude( J)
   rad=sqrt( x^2+ y^2) { Radius }
   power=vol_integral( Jm*Em) { Dissipation }
   current=surf_integral( normal( J),'top')
EQUATIONS
   div( J)=0
EXTRUSION
   surface 'lower' z=max( 0, h*(rad-r0)/(r1-r0)) { Flat base plus cone }
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   surface 'top' z=h { Flat upper surface }
BOUNDARIES
   surface 'top' value( U)=1.0 { 1 volt applied on top }
region 'conical ring' { Total domain }
   surface 'lower' natural( U)=0 { dU/dn=0 on cone }
   start (r1, 0)  arc( center=0,0) angle=360 { Extension in (x,y) }
region 'cylinder' { Overwrites total }
   surface 'lower' value( U)=0 { Lower flat face }
   start (r0, 0)  arc( center=0,0) angle=360
PLOTS
   grid( x,y,z) report(power) report(current)
   contour( U) on x=0     vector( J) norm on x=0
   elevation( tangential( E))
       line_integrate from (0,r1/2,h) to (0,0,0) { Voltage }
END

The plot below illustrates the geometry and the outside mesh. It
also reports values of the power dissipated and the current. Since the
voltage is 1.0, we expect these values to be equal.

For an elevation plot we have to supply an end point of a straight
line by three coordinates, but in other respects such a plot is similar to
what we have used in 2D. The following figure shows the tangential
component of E along an arbitrary line from the top face to the
bottom. The integral value confirms the voltage applied.
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Exploiting Symmetry

The plots on x=0 from the above file are not identical to those from
exa101, since cylindrical coordinates involve a smaller domain. We
may, however, exploit the mirror symmetry of the 3D problem to
solve over only half of the volume of the cone. Many problems have
mirror symmetry without having axial symmetry, and in those cases
we may reduce the run time considerably by this means.
Alternatively, we may reduce the error without increasing the run
time.
TITLE   'Electrical Conduction in Half Cone'                       { 3d224a.pde }
…
   start (r1,0)  arc( center=0,0) angle=180 to (-r1,0) line to close
region 'cylinder' { Overwrites total }
   surface 'lower' value( U)=0 { Lower flat face }
   start (r0,0)   arc( center=0,0) angle=180 to (-r0,0)
…
   contour( 2*pi*y* U) on x=0 { Integrate over the volume }
END

The contour plot below may be directly compared to that on p.91.
The integral values are completely different, however, because the
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volume element factor 2π r  is automatically included when using
cylindrical coordinates.

The last plot, which explicitly includes the factor 2π r , yields the
integral value 1.155e-6, close enough to the result from exa101.

Glass Block in a Parallel Electric Field

This example is analogous to exa093, part of which may serve as a
template. The 3D elements are somewhat similar to those in 3d223.
TITLE   'Glass Block in a Parallel Field'            { 3d225.pde }
SELECT     errlim=1e-4     ngrid=1     spectral_colors
COORDINATES   cartesian3 { Professional Version }
VARIABLES   U
DEFINITIONS
   L=1.0     Lx=0.1     Ly=0.05     Lz=0.03
   eps0=8.854e-12
   epsr     eps=epsr*eps0
   E0=1.0     De0=eps0*E0   { Far field }
   E=-grad(U)     Em=magnitude(E)     D=eps*E     Dm=magnitude(D)
EQUATIONS
   div( D)=0
EXTRUSION { Parallel surfaces }
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   surface 'bottom' z=-L
   layer 'air 1'  { Layer below block }
   surface 'lower' z=-Lz { Lower face of block }
   layer 'glass' { Containing glass }
   surface 'upper' z=Lz { Upper face of block }
   layer 'air 2' { Layer above block }
   surface 'top' z=L
BOUNDARIES
   surface 'bottom'  natural( U)=De0 { Since D=-eps*grad(U) }
   surface 'top'  natural( U)=-De0
region 'domain'    { Full solution domain }
   layer 'air 1'   epsr=1
   layer 'glass'   epsr=1
   layer 'air 2'   epsr=1
   start (-L,-L)   natural( U)=0   line to (L,-L)  to (L,L)  to (-L,L)  close
region 'block' { Redefine space}
   layer 'air 1'   epsr=1
   layer 'glass'   epsr=7.0 { Glass block }
   layer 'air 2'   epsr=1
   start (-Lx,-Ly) line to (Lx,-Ly) to (Lx,Ly) to (-Lx,Ly) close
PLOTS
   grid( x, y, z)
   contour( U) on x=0     contour( U) on y=0
   vector( E) norm on x=0
   vector( E) norm on x=0 zoom(-0.2,-0.2,  0.4,0.4)
   vector( D) norm on x=0 zoom(-0.2,-0.2,  0.4,0.4) report(De0)
END

We first specify natural boundary conditions on the bottom and top
surfaces by values of the applied normal component of D.

It is essential to understand how FlexPDE manages regions and
layers. The region 'domain' has three layers, or compartments, all
originally filled with air. Then we create the region 'block', which is an
extrusion of a rectangle from z=-L to z=L. This region thus overlaps
the domain first created, and there are hence six compartments, which
could contain materials with different properties, in this case given by
values of epsr. The volume common to the region 'block' and the layer
'glass' is a smaller compartment that contains only glass.

The following figure shows the geometry in one projection.
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The next plot illustrates the distortion of the field near the glass
block. The minimum value of Dm is only about 20% of the field
imposed at the boundaries.

The following descriptor fraction suggests a simpler way of speci-
fying epsr for the various compartments. In the 2D examples we
found it expedient to assign properties to each of the regions, but in
3D there may be a large number of them. The above problem has one



258

compartment only with epsr>1. Thus it seems natural to predefine
epsr=1 everywhere, and only change that default for the glass block.
TITLE   'Glass Block in a Parallel Field, Simplified'          { 3d225a.pde }
…
   epsr=1.0     eps=epsr*eps0
…
region 'domain'    { Full solution domain }
   start (-L,-L)   natural( U)=0   line to (L,-L)  to (L,L)  to (-L,L)  close
limited region 'block' { Redefine space}
   layer 'glass'   epsr=7.0 { Glass block }
   start (-Lx,-Ly) line to (Lx,-Ly) to (Lx,Ly) to (-Lx,Ly) close
PLOTS
…

We also use limited to remove unnecessary cells above and below
the glass block. This reduces the run time.

Simple Magnet Coil

The next example corresponds to that on p.145, but the PDEs and the
expression B may be taken from p.124. The coil is parallel to the
( , )x y plane, which implies that the current density Jz will vanish. We
assume that the coil is wound by thin wire, so that the current density
is essentially uniform over the cross-section.

On p.125 found the following PDE for the 2D geometry.
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Straightforward generalization to 3D gives us
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and there are of course corresponding equations for the remaining
components of J.

The run time for this example will be longer than for the preceding
ones.
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TITLE   'Simple Magnet Coil'   { 3d226.pde }
SELECT     errlim=5e-4   ngrid=1  spectral_colors
COORDINATES     cartesian3 { Professional Version }
VARIABLES      Ax     Ay     Az
DEFINITIONS                      
   L=1.0     r1=0.1     r2=0.2     z0=0.2     rad=sqrt( x^2+ y^2)
   mu0=4*pi*1e-7    mu=mu0     J00=1.0 { Current density in coil }
   Bex=dy(Az)-dz(Ay)     Bey=dz(Ax)-dx(Az)     Bez=dx(Ay)-dy(Ax)
   B=vector( Bex, Bey, Bez)     Bm=magnitude( B)
   Hx=Bex/mu     Hy=Bey/mu     Hz=Bez/mu     Hm=Bm/mu
   J0=0  { Default current density }
   Jx=-J0*y/rad    Jy=J0*x/rad     Jz=0
   J=vector( Jx, Jy, Jz)
EQUATIONS
   Ax: dx( dx(Ax)/mu)+ dy( dy(Ax)/mu)+ dz( dz(Ax)/mu)=-Jx
   Ay: dx( dx(Ay)/mu)+ dy( dy(Ay)/mu)+ dz( dz(Ay)/mu)=-Jy
   Az: dx( dx(Az)/mu)+ dy( dy(Az)/mu)+ dz( dz(Az)/mu)=-Jz
EXTRUSION { Parallel surfaces }
   surface 'bottom' z=-L
   layer 'air 1' { Layer below coil }
   surface 'lower' z=-z0
   layer 'coil' { Layer containing coil }
   surface 'upper' z=z0
   layer 'air 2' { Layer above coil }
   surface 'top' z=L
BOUNDARIES
   surface 'bottom'  value(Ax)=0   value(Ay)=0   value(Az)=0
   surface 'top' value(Ax)=0   value(Ay)=0   value(Az)=0
region 'domain' { Full solution domain }
   start (-L,-L) value(Ax)=0   value(Ay)=0   value(Az)=0
   line to (L,-L)  to (L,L)  to (-L,L)  close
limited region 'coil' { Winding }
   layer 'coil' J0=1.0
   start (r2,0) arc( center=0,0) angle=360
limited region 'hole' { Air space }
   layer 'coil' J0=0
   start (r1,0) arc( center=0,0) angle=360
PLOTS
    vector( J) on z=0 on 'coil'
    vector( B) norm on x=0
    vector( B) norm on x=0 zoom(-0.4,-0.4,  0.8,0.8)
    vector( B) norm on z=0    vector( B) norm on z=L
    contour( Bm) painted on x=0
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    contour( Bm) painted on y=0
END

The first vector plot shows the current density. The magnitude is
evidently constant, and the current directions follow circles.

The geometry in this problem is the same as in exa132, and we
may directly compare the results for the vector B. Of course, we could
also improve conditions in the present example by exploiting the two
mirror symmetries. This would yield more accurate result for the
same run time.
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Steady Heat Conduction

The following example illustrates heat conduction through a copper
rod, soldered to an iron plate, as shown in the first figure. Under
extrusion we first define the three parallel surfaces limiting the metal
components.

The next task is to assign properties to the two layers delimited by
the surfaces. The lower layer consists of iron. In the first step, under
'domain', we declare the upper layer to be void, or empty space. Then
we extrude a cylinder from the circle in the bottom plane. The
conductivity k is non-zero inside this cylinder, but the rest of the
upper layer remains insulating.

Under boundaries we then specify vanishing flux through the
bottom plane and the value 1e6 through the top circle. The bottom of
the plate is thus insulated, as is one of the side faces. The other sides
are kept at 300 kelvin.
TITLE   'Steady Heat Conduction'                     { 3d227.pde }
SELECT     errlim=1e-3     ngrid=1     spectral_colors
COORDINATES   cartesian3 { Student Version }
VARIABLES   temp
DEFINITIONS
   L=0.1     r0=0.015     z0=0.02 { Plate thickness=z0 }
   k     heat=0             { Thermal conductivity and power density }
   in_fluxd=1e6 { Input heat flux density at top }
   fluxd_x=-k*dx(temp)     fluxd_y=-k*dy(temp)     fluxd_z=-k*dz(temp)
   fluxd=vector( fluxd_x, fluxd_y, fluxd_z)     fluxdm=magnitude( fluxd)
EQUATIONS
   div( fluxd)=heat
EXTRUSION { Parallel surfaces }
   surface 'bottom' z=0
   layer 'iron'  
   surface 'middle' z=z0 { Interface }
   layer 'copper'
   surface 'top' z=L
BOUNDARIES
   surface 'bottom'  natural( temp)=0 { Insulated }
   surface 'top'  natural( temp)=-in_fluxd { Input flux density }
region 'domain'    { Full solution domain }
   layer 'iron'    k=82 { Thermal conductivity }
   layer 'copper'  void
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   start 'outer' (0,0)   natural( temp)=0
      line to (L,0)   value( temp)=300   line to (L,L)  to (0,L)  close
region 'cylinder'
   layer 'iron'    k=82 { Thermal conductivity }
   layer 'copper'   k=400 { Redefine void }
   start (L/4+r0,L/4)  arc( center=L/4,L/4) angle=360
PLOTS
   grid( x,y,z)
   contour( temp) on x=y     contour( fluxdm) painted on x=y
   vector( fluxd) norm on x=y     vector( fluxd) norm on z=0
   contour( temp) on y=0     contour( temp) on y=L/4
   contour( temp) on x=L/4
   contour( temp) on z=z0 on 'iron'    contour( temp) on z=0
END

In the following plot, the vertical cylinder is of copper and the base
plate of iron.

The following vector plot confirms that one side of the plate is
insulating. Most of the heat flux exits through the part of the left side
that is closest to the copper rod.
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The plot of the temperature below shows a linear decrease along
the copper rod, except close to the lower end. It also confirms that the
iron plate is at 300 kelvin at the corners of the diagonal plane.

The vector plot below finally illustrates the flux density in a
diagonal plane, which cuts the copper cylinder in two equal parts. As
far as can be judged from the arrow colors, the input flux density is
what we specified.
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The last two contour plots indicate that three of the sides have
uniform temperature (300) as intended.

Temperature Transients

This problem has the same geometry and materials as the preceding
one, but now we study the temperature distribution as a function of
time, from the moment we apply a constant heat flux at the top.

This problem is analogous to exa183. We just need to change
3d227 as follows. This calculation takes rather long time.
TITLE   'Transient Heat Conduction'            { 3d228.pde }
SELECT     errlim=1e-3     ngrid=1     spectral_colors
COORDINATES   cartesian3 { Student Version }
VARIABLES   temp( threshold=0.2)
DEFINITIONS
   L=0.1     r0=0.015     z0=0.02
   k     rcp     heat=0             { Thermal parameters }
   in_fluxd=1e6
   fluxd_x=-k*dx(temp)     fluxd_y=-k*dy(temp)     fluxd_z=-k*dz(temp)
   fluxd=vector( fluxd_x, fluxd_y, fluxd_z)     fluxdm=magnitude( fluxd)
   f_angle=sign(fluxd_y)*arccos(fluxd_x/fluxdm)/pi*180
INITIAL VALUES
   temp=300
EQUATIONS
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   div( fluxd)+ rcp*dt( temp)=heat
EXTRUSION { Parallel surfaces }
   surface 'bottom' z=0
   layer 'iron'  
   surface 'middle' z=z0 { Interface }
   layer 'copper'
   surface 'top' z=L
BOUNDARIES
   surface 'bottom'  natural( temp)= 0 { Insulated }
   surface 'top'  natural( temp)=-in_fluxd { Input flux density }
region 'domain'    { Full solution domain }
   layer 'iron' k=82  rcp=7.87e3*449 { Fe }
   layer 'copper'  void
   start 'outer' (0,0)   natural( temp)=0
      line to (L,0) value( temp)=300 line to (L,L)  to (0,L)  close
region 'cylinder'
   layer 'iron' k=82  rcp=7.87e3*449 { Fe }         
   layer 'copper' k=400  rcp=8.96e3* 385 { Redefine void to Cu }
   start (L/4+r0,L/4)   arc( center=L/4,L/4) angle=360
TIME 0 to 1e6
PLOTS
for t=1, 10, 100, 1e3, 1e4, 1e5, 1e6
   contour( temp) painted on x=y
END

On running this file we obtain a sequence of plots like the
following one, which shows the temperature distribution at 1.0 s.
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The following is the final plot, which corresponds to 1e6 s.

At sufficiently large times the temperature distribution should
approach the one previously found in the static case.

Exercises

  Replace the coin in 3d223 by a metal cube with a side length of
2*r0.

  Modify 3d224 to model a copper cylinder of radius r0 inside an
iron block with side lengths equal to 8e-3 and height h=20e-3. Note
that the result is predictable.

  Fill the central cylindrical region in 3d224 with iron and let the
conical ring be of copper.

  Change 3d225 to make the field y-directed. Also modify the 'block'
region to obtain a square projection with corners in the x and y
directions. Add suitable plots to show the field concentration at the
edges.

  Add a second copper rod to 3d227, on the same side of the plate
but centered at (3*L/4,3*L/4). Let all the faces of the iron plate be
insulated and let the temperature be 300 kelvin at the end of one
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copper rod and 400 at the end of the other one. Hint: create a new
region for the second copper rod and specify the temperatures
differently on surface 'top'.

  Modify the preceding exercise by attaching the second copper rod
to the lower side of the plate, as suggested by the figure below.
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Appendix:
Principles of Finite Element Analysis

The main idea of finite element analysis (FEA) is to divide the
domain of interest into sub-regions (cells) of simple shapes and to
solve over each one of those simultaneously. FlexPDE divides the
domain into triangles, or rather prisms of triangular cross-sections.
Cells in contact with the boundary may have the outer side slightly
curved. The cells we see on the screen are thus projections of the
prisms on the viewing plane.

The program solves a PDE by determining the values of the
dependent variables at discrete points (nodes), i.e. at the corners of the
triangles and at the midpoints between corners. The only record of the
solution process is thus a list of values at these nodes. In order to
obtain function values and derivatives at other points of a triangular
cell, the program applies an algorithm for interpolation between
nodes.

Interpolation and Differentiation in 2D

Since the interpolation algorithm is of paramount importance in FEA,
we begin by studying how it performs. At the same time we test the
differentiation routines. A priori we do not know precisely how the
program calculates derivatives, but we may easily check if the results
are accurate.

Let us take a simple function of two variables, plot it as well as its
derivatives, and compare to the exact expressions for these. This is the
objective of the following descriptor, which concerns the function
f x xy( ) sin( )= .

TITLE   'Interpolation of sin(x*y)'     { apx1.pde }
DEFINITIONS { Student Version }
   Lx=pi/2     Ly=pi/2
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   f=sin(x*y)     fx=dx(f)     fx_ex=cos(x*y)*y { Exact derivative }
   fxy=dx(dy(f))     fxy_ex=-sin(x*y)*x*y+ cos(x*y)
BOUNDARIES
region 'domain'  start(-Lx,-Ly)
   line to (Lx,-Ly) to (Lx,Ly)  to (-Lx,Ly) close
PLOTS
   contour( f)     surface(f)     surface( fx)
   contour( fx- fx_ex)     surface( fxy)     contour( fxy- fxy_ex)
END

The contour plot of the error of fx (not shown) yields exactly zero,
which must mean that the program internally uses symbolic
differentiation, employing the same analytic procedures as any mathe-
matician would. Our observations thus suggest that the program treats
derivatives, and functions of derivatives, specified in the definitions
segment by exact means. In other words, a single differentiation of an
analytic expression does not introduce additional errors.

The next figure is a surface plot of the mixed derivative, which
does differ somewhat from the analytic one, as shown by the last plot
of the deviation fxy- fxy_ex.
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Interpolating to Obtain a Solution

Once the program has produced a solution, it stores it in a table where
the values of the dependent variable (or variables) are given for each
node point. To compute the solution at any point in space the program
interpolates this table by a quadratic algorithm.

The procedure involved in this interpolation is simple. For each
triangular region the program uses a polynomial of the following form

P x y a a x a y a xy a x a y( , ) = + + + + +0 1 2 3 4
2

5
2 .

Function values are known at three corners and three midpoints, a
total of six points, corresponding exactly to the number of coefficients
in P(x,y). In order to determine the coefficients ai the program just
solves a system of six linear equations.

We shall now solve a simple Poisson equation and observe how the
program interpolates to obtain a complete solution on the basis of
node values only. Starting with an arbitrary function, we apply the
Laplacian operator to it. We then use the result r(x,y) of that operation
to construct a PDE which has the function we selected as a solution.
The equation ∇ =2U r x y( , )  obviously meets our needs. The value
boundary conditions we obtain directly from the initial function, and
the descriptor becomes as listed below.

For clarity, we wish to have a small number of nodes, hence the
nodelimit statement. Furthermore, we use fixed range to limit the
plotted function values to a minute interval around zero.
TITLE   'Poisson Equation'     { apx2.pde }
SELECT   errlim=1e-15   nodelimit=10      
VARIABLES     u
DEFINITIONS
  Lx=1     Ly=1     u_ex=y^2* sin(x)
EQUATIONS
   del2(u)= -(y^2-2)*sin(x)
BOUNDARIES
region 'domain' start 'outer'  (0,0)  value(u)=u_ex
   line to (Lx,0) to (Lx,Ly) to (0,Ly) to finish
PLOTS
   grid( x,y) zoom(0,0,  0.3,0.3)
   contour( u-u_ex)  zoom(0,0,  0.3,0.3)  fixed range(-1e-8, 1e-8)
END
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The error with respect to the exact solution is of particular interest.
Inspecting the following plot we notice that all contour curves are
superimposed and correspond to virtually zero. Hence that combined
curve should pass through all the nodes, where the agreement is very
good. Since the contour curves are generated by interpolation of the
error surface, which is rather ragged, we cannot expect to find
crossings exactly at the node points. If we overlay the plot below with
the grid plot for the same region, however, we find that the zero curve
mostly passes through the corners and the midpoints.

Solving for Node Values

In FEA, knowing the node values of the dependent variables is
equivalent to having a solution to the problem. If the dependent
variables are known at all the nodes of the grid, we may interpolate to
obtain values at any point of the solution domain and also differen-
tiate the polynomials to obtain derivatives of first and second order.

The crucial task of calculating the values pertaining to the nodes is
much more difficult than to interpolate the results. A general, linear
PDE of second order reads
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where fk are functions of x and y. If u x y( , )  is an exact solution to the
PDE, then Eq  remains zero over all of the solution domain D. Inte-
grating over this domain we also have

E dxdyq
D
zz = 0

It is not true, however, that a function u x y( , )  that satisfies this
relation must be a solution: Eq  might take positive as well as negative
values, which could cancel in the integral. If, on the other hand, we
take the square of the PDE, the condition

E dxdyq
D

2 0zz =

implies that u x y( , )  is a solution. In fact, it is possible to use this
relation for solving the equation numerically.

For a given PDE, the above integral of Eq
2  may be regarded as a

function of the node values.

I u u u E u x y dxdyn q i
D

( , ,... ) ( , , )1 2
2 0≡ =zz   

Of course, in view of the limited accuracy of numerical computation
we could never hope to find a set of node values ui  which makes the
integral I u u un( , ,... )1 2  exactly equal to zero, so we must be content
with a set that minimizes the integral. This is equivalent to finding the
minimum of a function of many variables, and there are standard
methods available for solving this type of problem. The effect of
taking the square of Eq , however, is to make the integrand more
complicated and also non-linear.

An alternative method, which only involves linear analysis, as long
as the PDE itself and its boundary values are linear, proceeds as
follows. Instead of condensing the problem into a single integral
expression as in the scheme above, we now introduce a whole set of
equations of the same type (numbered j= 1, 2, ...m):
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I u u u W x y E u u u x y dxdyj n j q n
D

( , ,... ) ( , ) ( , ,... , , )1 2 1 2 0≡ =zz   

These equations are no longer squared. W x yj ( , ) is a weight function,
which may emphasize one sub-domain (cell) inside the total solution
domain D. We are free to choose the various weight functions as we
please, but from the point of view of computations the simplest
strategy would be to let the weight be either 0 or 1. In the first
equation, for instance, we might use unit weight within one of the
triangular cells and zero in all the others. The principle is to force the
trial function (eventually the solution) to satisfy the PDE over every
cell.

One way of applying the above method would be to use unit
weight in cell number j and zero elsewhere, which would give us m
equations concerning various parts of the solution domain. The
problem is that the number of cells (m) always is much smaller than
the number of nodes (n).

Let us assume that there is only one dependent variable (u) and that
the boundary conditions are specified by value all around. All the
values on the boundary are hence known, and we only need to solve
for values on the interior nodes. Even this number is generally larger
than the number of cells, however, which means that we need some
flexible means of increasing the number of equations.

Several methods of choosing weight functions are known5. One set
of rules that would give the right number of equations is the follow-
ing. If node j is a midpoint, let Wj = 1 for the two cells sharing this
point and choose Wj = 0 elsewhere. If node j is a corner, let Wj = 1
for the cells sharing this corner and let Wj = 0 elsewhere. If a point is
on the boundary, we use only one cell. This procedure provides the
correct number of equations, and all the sub-domains for integration
become different, hence yielding independent equations.

Naturally, we need more sophisticated weighting schemes in the
case of several dependent variables. The producers of FlexPDE do not
reveal the details of the method actually used.

If the PDE and the boundary conditions are linear, the result of the
analysis is a system of linear equations.



274

If the PDE or the boundary conditions are non-linear we obtain a
more general system of algebraic equations. The program solves non-
linear systems by iterative methods, which generally take longer time
and may be capricious.

Natural Boundary Conditions

So far we have assumed that the values of the solution are given on
the entire boundary. If the problem involves natural conditions over
the entire boundary or part of it, this information must be incorporated
by special means. A well-known theorem that connects the integral of
a PDE with the outward normal component of a field F is

∇ = ∇⋅ ∇ = ∇ ⋅ = ⋅zzz zzz zzz zz2UdV U dV dV d( ) F F s

When we integrate the PDE over a sub-domain, the volume integral of
the Laplacian may be replaced by a surface integral involving the
natural boundary condition. The other two surfaces of the cell yield
integrals that must be matched against those of adjacent cells.

Whenever there are natural boundary conditions it is important to
remember that multiplying the PDE by a certain factor is bound to
change the volume integral, and hence the surface integral over the
boundary. Thus, if we multiply through by a factor f, the corre-
sponding natural boundary condition must also be multiplied by the
same factor.

Exercises

  Calculate and plot the function f x y= sin( ) cos( )  and its second
derivatives. Determine the errors (magnified if necessary) with
respect to the exact derivatives.

  Investigate the effect of multiplying the PDEs in exa061 (p.49)
and exa063 by the factor 1+ xy.
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Conclusion

While working your way through this volume, you have probably
found that
♦ you only need a small sub-set of the FlexPDE syntax to generate

curves and surfaces
♦ the simple and powerful plot routines make it easy to display

analytic expressions for fields
♦ solving a standard Laplace or Poisson equation only requires a few

more commands
♦ a solution, including graphical presentation of the results, usually

takes only a few seconds
♦ the gross structure of a descriptor remains the same for a wide

variety of problems
♦ the visual presentation of results is ideal for exploring fields in

university education
♦ at least half of the conventional analytic field theory may be

replaced by FEA exploration
♦ using FlexPDE prepares for future professional FEA work

Academic teachers and students who do not agree with some of the
above points are invited to discuss these matters by email under the
address

gunnar.backstrom@physics.umu.se
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Vocabulary of FlexPDE

The following table is a reminder of the syntax rules, given as
descriptor fragments. The commands in blue pertain to 3D. The
numbers refer to pages in the book where the usage has been
illustrated by examples. More details are available in the Manual and
under Help while using the program.

 TITLE              pages
    'FileName' 7

 SELECT
    spectral_colors 10
    errlim=1e-5 49
    ngrid=1     stages=5     nodelimit=10 60, 189, 270

 COORDINATES                                      { Default: (x,y) }
    cartesian1                                { One-dimensional (x) } 7
    ycylinder('r','z') 44
    cartesian3                                                       { (x,y,z) } 240

 VARIABLES
    temp(threshold=1e-3) 201

 DEFINITIONS                                                  { SI units }
    grad_f=vector(dx(f),dy(f))     del2     div 10, 40, 32, 49
    E=-grad(U)     Em=magnitude(E) 34
    globalmin(U)     globalmax(Bm) 99, 126
    mesh_spacing=0.1*d0*…            { Applied to domain } 136
    Q=line_integral(-normal(D),'rod1') 109
    Qe=surf_integral(-2*normal(D),'ellipsoid') 46, 92, 101
    W0=area_integral(0.5*eps0*Em^2) 119, 122
    W=vol_integral(0.5*Dm*Em) 119
    nh0=staged(0.1*ni, ni, 10*ni) 229
    unit_x=vector(1,0)     ustep(x) 115, 198
    transfer('tempr', tempr)            { Data from file 'tempr' } 218
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 INITIAL VALUES
    temp=1300     U=U1*x/Lx      181, 188

 EQUATIONS
    div(grad(U))=0     div(J)=0     div(D)=0 49, 64, 77
    (1/r)*dr( r*Jr)+ dz( Jz)=0     div(fluxd)=heat 91, 163
    dx(Hy)-dy(Hx)=Jz     dz(Hr)-dr(Hz)=J_phi 126, 146
    tempr: div(-k*grad( tempr))- omega*rcp*tempi=heat 215

CONSTRAINTS                         { Integral relations only }

 EXTRUSION
    surface 'bottom' z=-L 241
    layer 'metal' 247
    region 'coin' 248
    limited region 'coin' 251
    layer 'glass' epsr=7.0 256

 BOUNDARIES                     { Drawn counterclock-wise }
region 'domain' start(-Lx) line to (Lx)                       { 1D } 7
 region 'domain' start 'box' (-Lx,-Ly) line to … close 42
    start (r1,0) arc to (0,r1) to (-r1,0) to (0,-r1) to  finish 18
    value(U)=U_ex     natural(U)=2*x 49, 51
    point value(U)=U_ex 52
 region 'iron' cond=1.03e7              { Overrides definition } 71
    mesh_spacing=0.2*r0         { Applied to line segment } 136
 feature
    start 'inner' (r0+r2,0) arc(center=r0,0) angle=360 21

 TIME
    from 0 to 3000 196

 MONITORS                                             { Screen plots }
 { Similar syntax as under PLOTS } 181

 PLOTS
    elevation(f,fx,fxx) from (-Lx) to (Lx)                      { 1D } 7
    grid( x, y)     vector(grad_f) as 'Gradient' 10
    surface(f)     surface( temp) viewpoint(-r0,Lz/2,0) 10, 207
    contour(f) painted     contour(abs(vx)) log 10, 18
    contour( Ex) painted zoom(-Lx/2,-Ly/2,  Lx, Ly) 71
    contour(U) painted on z=0 241
    elevation(normal(D)) on 'box'     area_integrate 42, 44
    elevation(tangential(v)) on 'inner' 21
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    elevation(tangential(E)) on 'circle' on 'domain' 85
    elevation(Ex, Ey, Ez) from (0,-L,1) to (0,L,1) 241
    line_integrate     surf_integrate     vol_integrate 91
    vector(E) norm        { Unit length, magnitude by color } 57
    contour(J_angle) on 'iron'     fixed range(0,3e-10) 74, 136
    report(eps0*Ex0)     report('text') 85, 119
    report(val(Ez,x0,y0,z0)) 241
    transfer(tempr) file('tempr')                      { Data to file } 215
    for  t=100 by 100 to 3000     for t=10, 30, 100, … 196, 198
 summary 112

 HISTORIES
    history( temp) at (0,0) at (1,0) at (0,2) ... 200

 END 7
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