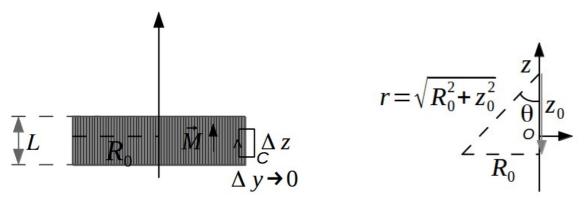

Atividade para entrega 12 – 19/05/2014



- 1) Um imã permanente consiste de um disco de raio R_0 e espessura L que está magnetizado uniformemente na direção do próprio eixo de simetria cilíndrica (vide figura): $\vec{M} = M \hat{z}$ (onde $M = |\vec{M}|$).
- (a) Sabe-se que a densidade de corrente de magnetização (devida às correntes microscópicas no interior do material) é dada pelo rotacional da magnetização: $\vec{J}_m = \vec{\nabla} \times \vec{M}$. Mostre que esta densidade de corrente é nula no interior do imã permanente.
- **(b)** Determine a densidade linear de corrente de magnetização superficial (digamos, j: $\frac{dI_m}{dL} = |\vec{j}| = j$ [A/m]) e a corrente total I_m que flui pela superfície cilíndrica do imã. Faça uma seta sobre a figura do disco indicando o sentido desta corrente (resposta em função de M).
- (c) Determine o campo magnético gerado pelo imã ao longo do eixo z (resposta em função de M, L, R_0 e z).

Sugestões: (a) faça o produto vetorial do operador Nabla: $\vec{\nabla} = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}$ com a magnetização e $\vec{M}(x,y,z)$ expressa em coordenadas cartesianas. (b) considere a circuitação de \vec{M} em uma curva C de pequenas dimensões ("principalmente" na direção y) conforme a figura abaixo, e use o teorema de Stokes. (c) Utilize o resultado conhecido para o campo no eixo de uma espira circular de raio R_0 conforme obtido na atividade 9: $\vec{B}_e(0,0,z_0) = \frac{\mu_0 I R_0^2}{2(R_0^2 + z_0^2)^{\frac{3}{2}}} \hat{z}$ e integre em z_0 as contribuições infinitesimais de corrente dI_m na

superfície. A figura seguinte sugere a mudança de variável: $z_0 = \frac{R_0}{\tan \theta}$ (→ integração em θ).

Física III – IQ 2014 (4310245)

Grupo	#			
Número USP:		Nome:	Assinatura:	

Respostas:

1) (a) [2,0]

(b) [4,0]

(c) [4,0]