

Departamento de Engenharia Elétrica SEL 384 – Laboratório de Sistemas Digitais I

PRÁTICA Nº5B

CIRCUITOS SEQUENCIAIS Contadores síncronos e gerador de PWM

1. Introdução

Nesta prática iremos compreender o funcionamento de circuitos sequenciais, em especial os contadores síncronos, e como eles podem ser utilizados para a implementação de circuitos moduladores por largura de pulso (PWM).

2. Objetivos:

Implementar um Contador Síncrono crescente/decrescente com carga paralela. Utilizar o contador síncrono para implementação de um gerador de PWM.

3. Lista de Material

CIs: 74191, 7474, 7486

Painel lógico, cabos de ligações, voltímetro, osciloscópio.

4. Conceitual Teórico

Circuitos sequenciais são uma classe de circuitos digitais cuja principal característica é que as saídas dependem não só do estado atual das entradas, mas também dos seus próprios estados anteriores. Os elementos básicos destes circuitos são os Flip-flops (FF). A partir deles podemos implementar contadores, registradores, máquinas de estados, etc.. Nesta prática verificaremos o funcionamento dos contadores síncronos e uma de suas aplicações.

A principal característica do contador síncrono é que todos os FF possuem o mesmo sinal de clock, ficando a definição do próximo estado caracterizada pelas equações de estímulo de cada FF. Estas equações levam em conta o estado atual da saída dos FF e o estado atual das entradas. Devido a estas características, os dispositivos reconfiguráveis tipo PLD são ideais para a sua implementação.

Um modulador de largura de pulso (PWM) é uma forma comum de geração de saídas analógicas a partir de um componente digital. O PWM substitui um conversor digital para analógico (DAC), o qual gera saída analógica (corrente ou tensão) proporcional à entrada digital. Como o nome indica, um PWM gera uma série de pulsos digitais de tensão ou corrente constante com larguras de pulsos, ou *duty cycles*, que são proporcionais à intensidade do sinal analógico pretendido. A série de pulsos modulados pode ser convertida a uma voltagem analógica com um filtro passa-baixa, mas isto é normalmente desnecessário.

A Figura 1 mostra um típico sinal analógico e a representação PWM digital. Em geral, um sinal analógico tem uma amplitude máxima, uma amplitude mínima, e muitos níveis no meio. Em contraste, o PWM só tem dois níveis: máximo e mínimo.

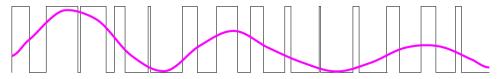


Figura 1. Sinal analógico e modulação por largura de pulso equivalente

Para converter do analógico para o digital, o sinal analógico primeiro é amostrado numa frequência portadora. Por um dado período de amostragem, a área sob o sinal analógico se iguala à área sob o pulso PWM. O princípio chave por trás do PWM é que um pulso curto em máxima amplitude tem a energia equivalente a um sinal analógico contínuo na menor amplitude. Esta simples equação determina a frequência de amostragem requerida por um circuito PWM:

$$F_{SAMPLE} = 2 * F_{RANGE}$$

onde F_{SAMPLE} é a taxa na qual o sinal analógico é amostrado e F_{RANGE} é a máxima freqüência do sinal analógico a ser reproduzido pelo PWM. O próximo passo é gerar o clock para controlar a granularidade do PWM. A equação seguinte determina a frequência do PWM:

$$F_{PWM} = 2 * F_{RANGE} * R$$

onde F_{PWM} é a frequência de clock do bloco PWM, e R é a resolução. A resolução é tipicamente um múltiplo de 2^N (onde N = número de bits nas palavras de fluxo de dados digitais)

As três aplicações mais comuns para PWMs são *driver* de LED, áudio e controle de motores. Além destas, também temos:

- Luz
 - Controle de intensidade de brilho de LED para economizar energia
 - Intensidade de *backlight* de displays
 - Mistura de cores em LED tricolor
- Som
 - Reprodução de áudio
 - Mensagens de aviso audíveis
 - Efeitos de som e de toques de chamada
 - Tons e cliques de teclados
- Movimento
 - Motores
 - Vibradores de telefones
 - Feedback de controle de videogames
 - Vibrações de alerta para controles
 - Controle de ventoinhas de refrigeramento
 - Feedback de teclados
 - Servos
 - Controle analógico de tensão
 - Controle Digital de pulsos

A Figura 2 mostra alguns exemplos de aplicação de PWM no controle de dispositivos analógicos.

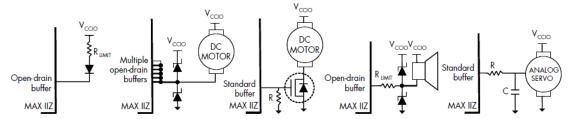


Figura 2. Circuitos para converter o sinal PWM para luz, som e movimento

O modulador de largura de pulso (ou gerador PWM) na Figura 3 requer apenas metade da lógica do que um projeto convencional de dois contadores. Com a ajuda da lógica extra, um contador síncrono crescente/decrescente com carga paralela pode codificar a informação no *duty-cycle* de um sinal de amplitude e freqüência de trabalho constantes.

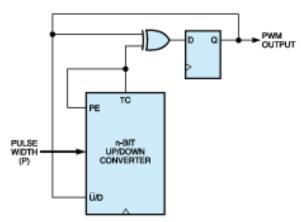


Figura 3. Circuitos gerador de PWM

O FF alterna seu estado sempre que o contador atinge o seu valor máximo, fazendo com que o contador conte alternadamente para cima e depois para baixo a partir de um valor pré-carregado. Se carregar o contador com um valor P, então a duração do período de contagem decrescente é P+1 períodos de clock, e a duração do período de contagem crescente é 2^N-P períodos de clock. O período de alternância do FF é a soma dos dois períodos, 2^N+1 períodos de clock. Este período é independente do valor pré-carregado P.

Consequentemente, a saída do FF é o sinal de PWM desejado. O período é constante, e o seu tempo em nível alto é proporcional a P+1. Desta forma, temos as seguintes expressões relativas ao sinal de saída do PWM:

- Duty-cycle+ = $(P+1)/(2^N+1)$
- *Duty-cycle* = $(2^{N}-P)/(2^{N}+1)$
- $F_{OUTPUT} = F_{PWM}/(2^{N}+1)$

5. Procedimento Experimental

Nesta prática iremos implementar o contador binário síncrono e utilizá-lo para implementar um modulador por largura de pulso, mais conhecido por PWM. O modulador a ser implementado possui um contador binário síncrono tipo *up/down* com carga paralela, um FF tipo D e uma porta XOR.

5.1 Contador síncrono

Utilizando o componente 74191 (Contador Síncrono), implemente:

•Contador síncrono *up*/d*own* com carga paralela de 4 bits

Para testar o Contador, realize as seguintes ligações:

- •As saídas QA a QD nos leds do painel lógico (L0 a L3).
- •A saída /RCO e MAX/MIN nos LEDs L8 e L9.
- •A entrada CLK no clock de 1Hz.
- •As entradas D/U e /LOAD nas chaves E e F do painel lógico.
- •As entradas A a D nas chave A a D do painel lógico.

Alterando o estado das chaves de A a H, observe o estado dos LEDs do painel. Comente no relatório o que foi observado.

5.2 Modulador por Largura de Pulso

O gerador de PWM é implementado utilizando um contador binário síncrono tipo *up/down* com carga paralela, cujas entradas de dados (D0 a D3) são carregadas com um valor P quando ocorrer um *carry* de contagem (/RCO) e cujo sentido de contagem é definido pelo sinal resultante uma operação XOR entre o sinal /RCO e a saída Q do FF que armazena o estado anterior do sentido da contagem (Figura 3). Para testar o gerador de PWM, utilize o gerador de clock do painel lógico.

Anote os seguintes dados e compare os valores obtidos com os valores teóricos esperados para um clock de 1kHz:

- a) *Duty-cycle*+ máximo
- b) Duty-cycle+ mínimo
- c) Duty-cycle- máximo
- d) Duty-cycle- mínimo
- e) F_{OUTPUT}

Para cada possível combinação de P, anote os valores de V_{RMS} e V_{MED} utilizando o osciloscópio.

5.3 Valor RMS e Médio

Considerando que o RMS de uma onda quadrada, com tensão entre 0 e V_{pico}, é dado por:

$$V_{RMS} = V_{pico} * (Duty-cycle+)^{\alpha}$$

e que o valor valor médio desta mesma onda é dado por:

$$V_{MED} = V_{pico} * (Duty-cycle+)$$

Determine: a) V_{pico} e α por meio do gráfico de $log(V_{RMS})$ vs log(P) e b) V_{pico} por meio do gráfico de V_{MED} vs P.

NOME:						NUSP											
NOME:						NUSP											
5.1	a) I pine		eva o	compo	ortame	ento d	o cont	ador,	inclui	indo uı	ma des	scrição	o da fi	ıncion	alidad	le dos	
5.2	Apı	resent	e:														
						Teórico					Experimental						
г	a) <i>Duty-cycle</i> + _{máximo} :									_						_	
ł	o) Du	ıty-cyc	cle + r	mínimo:						_						_	
C	c) Du	ty-cyc	cle - m	iáximo:						_						_	
(1) Du	ıty-cyc	cle - m	nínimo:													
										_						_	
		UTPUT:								_						_	
P V _{RMS}	0	1	2	3	4	5	6.	7	8	9	10	11	12	13	14	15	
V _{MED}																	
5.3	a)	V_{pic}	_{:o} =					_									
		$\alpha =$															

Apresente os respectivos gráficos:

Camila Martins - http://wickedmila.spaces.live.com	