PEA 2200 Energia, Meio Ambiente e Sustentabilidade

Energia Solar

Profa. Eliane Fadigas Prof. Alberto Bianchi

POSSIBILIDADES DE APROVEITAMENTO

A baixa temperatura (até 100°C)

•Aquecimento de ambientes

- aquecimento de água
- •Condicionamento de ar
- •refrigeração
- •evaporação
- •destilação
- •geradores de vapores de líquidos especiais

A média temperatura (até 1000°C)

- •Geradores de vapor d'água
- •Transformação em energia elétrica e mecânica
- fornos solares

A alta temperatura (além de 1000°C) mediante fornos solares parabólicos

Transformação direta em energia elétrica

Processos fotovoltaicos

Processos fotoquímicos

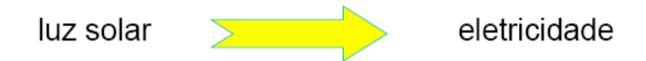
Energia

térmica

Ouímicos

Bioquímicos Biológicos

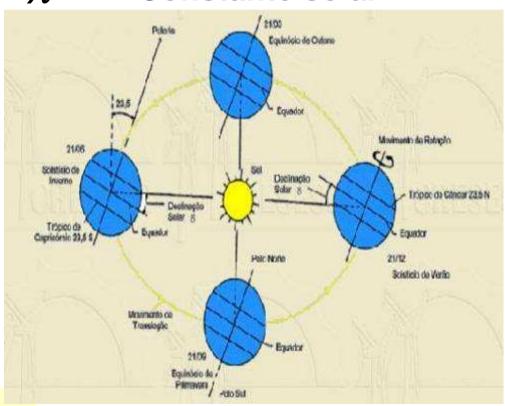
Fotossíntese


•Fotossíntese

ENERGIA SOLAR – FORMAS DE CONVERSÃO EM ELETRICIDADE

Conversão fotovoltaica

Conversão termomecânica


O RECURSO SOLAR: CARACTERÍSTICAS

Energia recebida pela terra: 1,5125 \times 10¹⁸ kWh / ano de energia

Radiação solar: Radiação eletromagnética

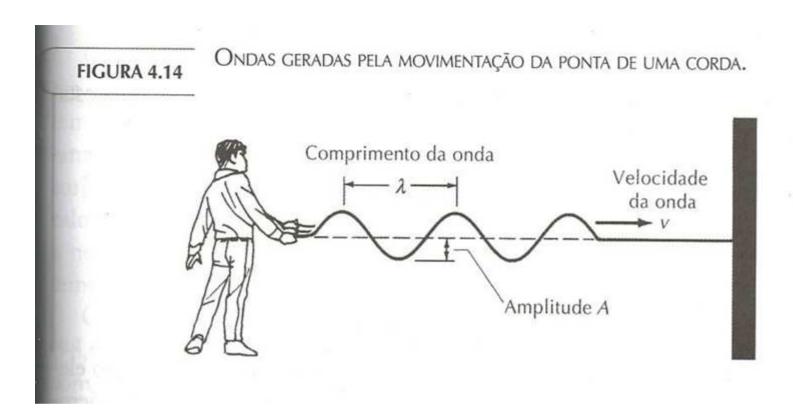
= Constante solar

 $= 1367 \text{ W} / \text{m}^2$

Quantidade de energia que incide superfície numa unitária, normal aos raios solares, por unidade de tempo, numa região situada topo da no atmosfera

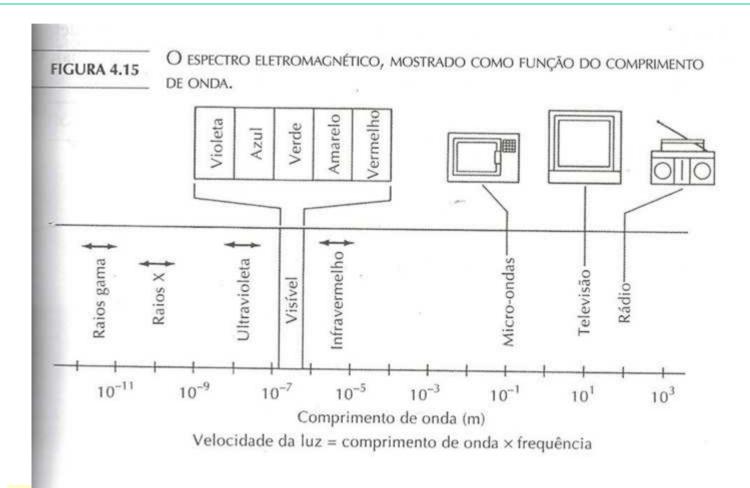
Radiação

Consiste em um dos meios de transferência de calor. Necessita de um meio para que haja propagação.


É emitida de um corpo na forma de ondas eletromagnéticas, que consiste em campos elétricos e magnéticos cujas amplitudes variam com o tempo.

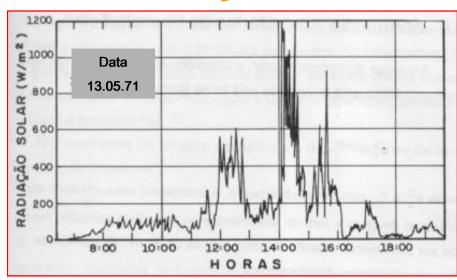
Tipos de ondas eletromagnéticas: luz visível, ondas de rádio, micro-ondas, raio X e radiação infravermelha.

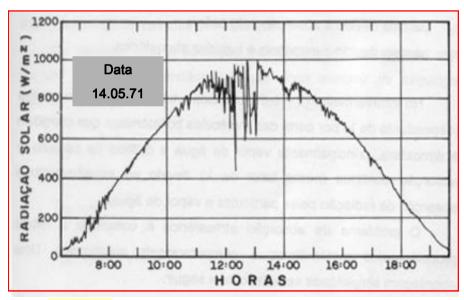
Os diferentes tipos de radiação eletromagnética têm uma propriedade em comum: todos eles possuem a mesma velocidade no vácuo — a velocidade da luz, $3.0 \times 10^8 \text{m/s}$. A diferença entre estas ondas é a sua frequência e seu comprimento de onda.


Exemplo: Qual o comprimento de onda da radiação eletromagnética emitida por uma estação de rádio que transmite 1500kHz?

Resp: Comprimento de onda X frequência = velocidade da luz

$$\lambda = \frac{3 \times 10^8 m/s}{1500 \times 10^3 Hz} = 200 \text{m}$$

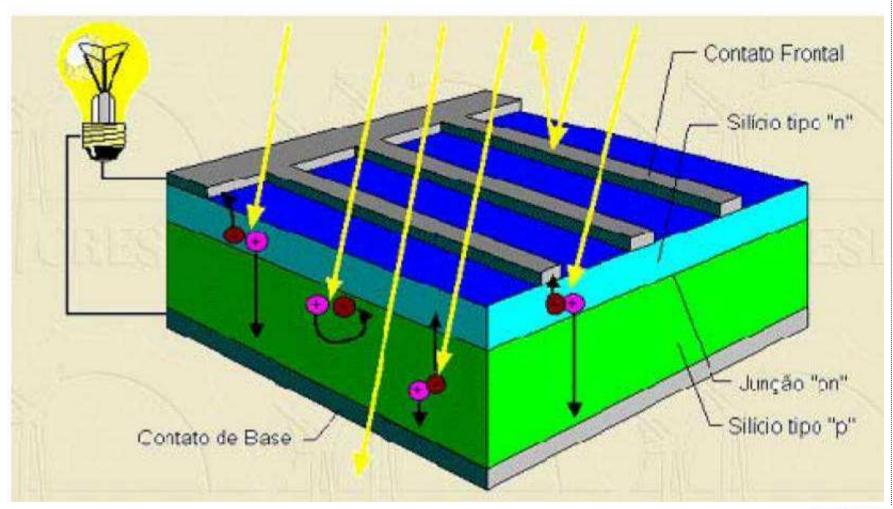

O sol cuja temperatura na superfície é de aproximadamente 6000 graus, emite um espectro de radiação centrado na região do visível, principalmente perto da região amarela. Entretanto há componentes intensos de luz infravermelha e ultravioleta da ordem de 50% e 9% respectivamente.


RADIAÇÃO SOLAR NA SUPERFÍCIE TERRESTRE

Variabilidade da radiação solar

É função:

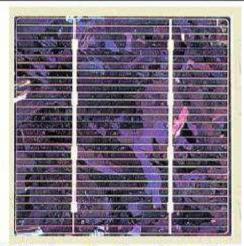
- da alternância de dias e noites;
- das estações do ano;
- · dos períodos de passagem de nuvens.


Condições atmosféricas ótimas:

- Ao nível do mar = 1kW/m2;
- A 1000 metros de altura = 1,05 kW/ m2;
- Nas altas montanhas = 1,1 kW/ m2;
- Fora da atmosfera = 1,367 kW/ m2.

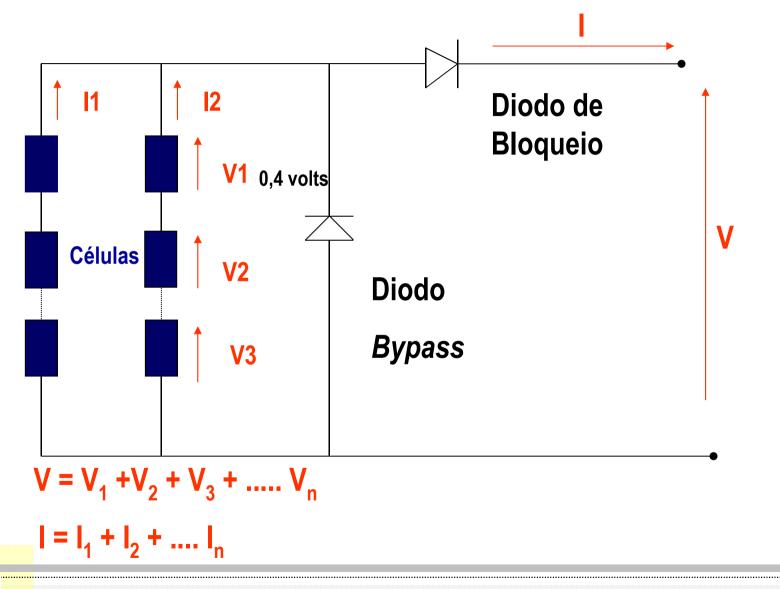
EFEITO FOTOVOLTAICO - 1

Corrente CC, tensão de saída = 0,6Volts



MATERIAIS UTILIZADOS NA FABRICAÇÃO DAS CÉLULAS

Materiais	Rendimento	
Silício Monocristalino	15 - 17,5 %	
Silício Policristalino	11 - 12,5%	
Silício Amorfo	9%	
Silício amorfo com liga de silício-germânio	10%	
Arseneto de Gálio	20%	
Disseleneto de Cobre-Índio	14%	
Telureto de Cádmio	12,70%	



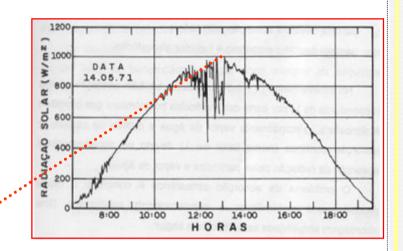
Silício Policristalino

MÓDULO - ARRANJO DAS CÉLULAS

POTÊNCIA INSTALADA DE UM SISTEMA FOTOVOLTAICO

Por exemplo: Deseja-se instalar 480Wp de potência:

Potência = $\eta \times A \times RSI$ [Watts] onde


 η - rendimento do módulo

A - área do painel - m2

RSI - radiação solar incidente - W/m2

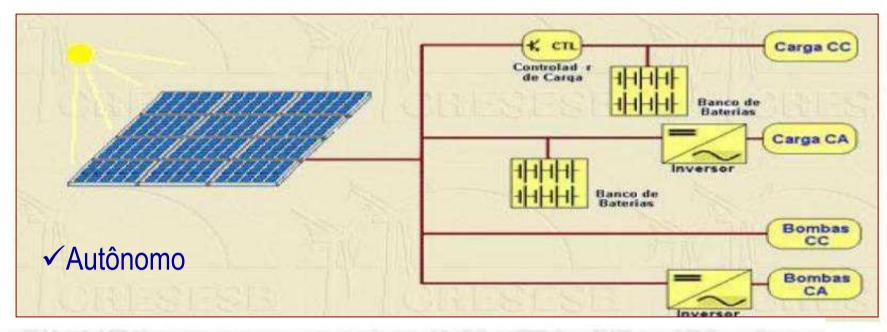
Sendo potência instalada em Wp,

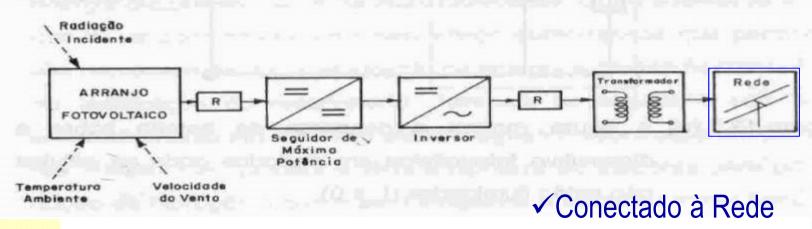
então: radiação solar = 1000W/m²

Considerando uma eficiência do módulo de 10%, então:

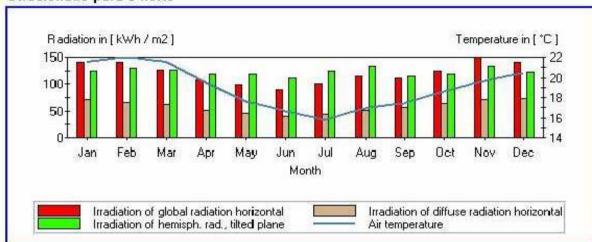
A – área ocupada pelo módulo

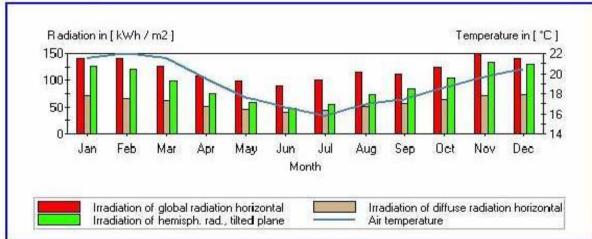
 $A = 480Wp/(1000Wp/m^2 . 0,10)$




 $A = 4.8 \text{ m}^2$

TIPOS DE SISTEMAS FOTOVOLTAICOS




Dezembro N S W Marco/Setembro N W Junho N W

INCLINAÇÃO? ORIENTAÇÃO?

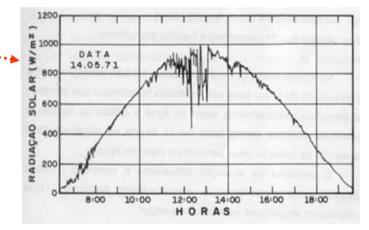
Direcionado para o norte

Direcionado para o sul

São Paulo (Lat. - 23,43)

Critério de projeto: Pior mês? Valor Médio? Radiação no Inverno ou Verão?

Exemplo: Deseja-se usar um módulo fotovoltaico para alimentar uma carga cujo consumo diário seja de 600Wh = 10 Lâmpadas de 60W, 12 Volts, ligadas durante 1 hora por dia.


Sendo a radiação solar diária incidente = 5 kWh/dia

= <u>5 horas</u> . 1000W/m²:·····

600Wh = P (Wp) . 5 horas de sol pleno

P (Wp) = 600/5 = 120Wp

Se usarmos módulo de 60Wp, 6 volts

Teremos de comprar dois módulos e ligá-los em série para alimentar a carga.

SISTEMA FOTOVOLTAICO - APLICAÇÕES

- Produtos de consumo
- · calculadoras
- brinquedos
- relógios
- aparelhos portáteis/ uso doméstico
- Sistemas autônomos
- telecomunicações
- bombeamento de água
- sinalização (bóias, faróis)
- iluminação pública
- residências / postos de saúde
- Sistemas interligados com a rede

MAIORES PLANTAS FOTOVOLTAICAS DO MUNDO

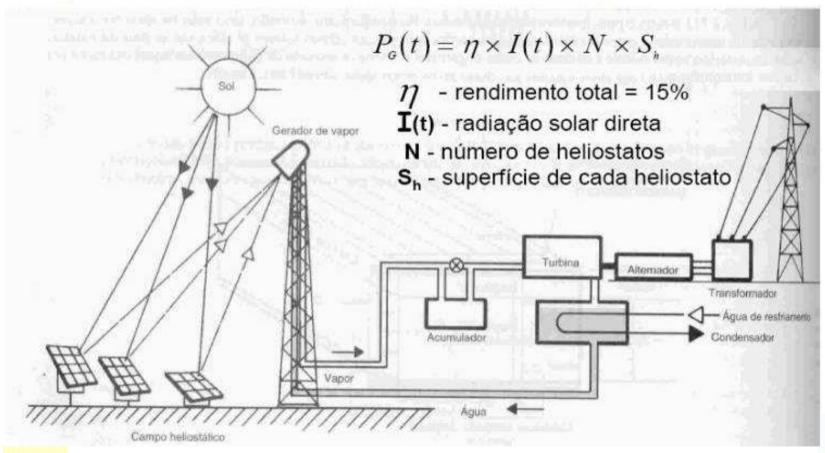
Planta	Localidade/Ano	Potência (MWp)
Sarnia PV Power Plant	Canadá, 2010	97,0
Moltalto di Castro	Itália,2010	84,2
Finsterwalde Solar Park	Alemanha, 2010	80,7
Rovigo PV Power Plant	Itália, 2010	70,0
Olmedilla PV Park	Espanha, 2008	60,0
Strasskirchen Solar Park	Alemanha, 2009	54,0
Liebrose PV Park	Alemanha, 2009	53,0
Puertollano PV Park	Espanha,2009	50,0

Fonte: Prof. Roberto Zilles – LSF/IEE-USP

SARNIA PV POWER PLANT – ONTARIO/CANADÁ

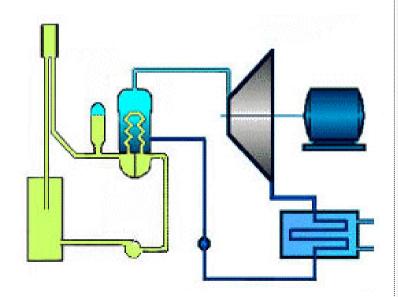
Sarnia PV		
Módulos Fotovoltaicos	1.300.000	
Área total	960.000 m ²	
Potência	97 MWp	
Geração anual	120 GWh	
Fator de capacidade	0,17	

Fonte: Sarnia PV



SISTEMAS TERMOSOLARES

Sistema de Receptor Central - Torres de Potência - Princípio de Funcionamento



SISTEMAS TERMOSOLARES

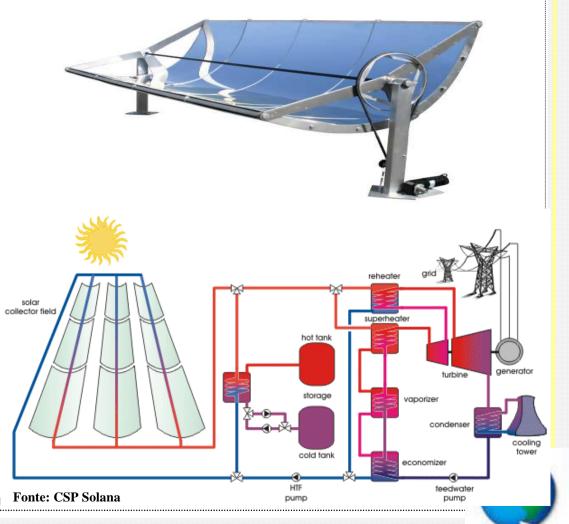
UTFs Termossolares → Ciclo Rankine

Nestas centrais existe uma torre receptora (caldeira com sal líquido) que recebe os raios refletidos por espelhos sempre orientados para o sol (heliostatos). O sal é bombeado de um depósito "frio" a cerca de 290°C para a torre e daí segue para o depósito "quente" a 565°C. Este sal é utilizado para produzir vapor de água a 540°C num gerador de vapor. Este vapor é utilizado para acionar as turbinas da central.

SISTEMAS TERMOSOLARES

UTEs Termossolares → Ciclo Rankine

UTE BARSTOW		
Heliostatos	1818	
Área - heliostato	39,9 m ²	
Área total	291.000 m ²	
Potência	42 MW	
Altura da torre	77,1 m	
Receptor	24 painéis de 13,7 m de altura, cada painel tem 12,7 mm de diâmetro	
Diâmetro do Receptor	7 m	



SISTEMAS TERMOSOLARES

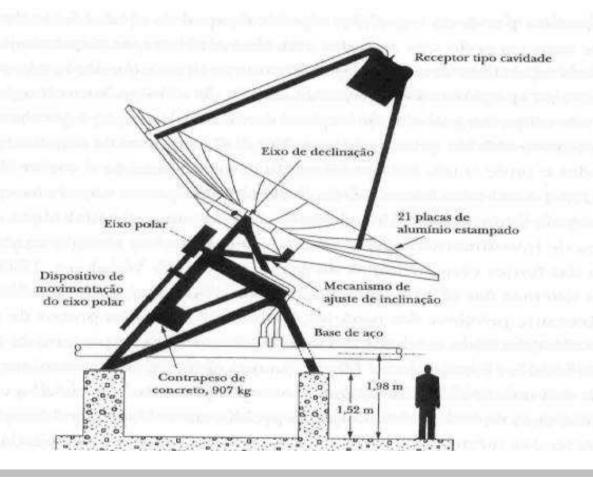
UTEs Termossolares Parabólicas → Ciclo Rankine

 Nestas centrais não existe uma torre solar concentrada, mas, espelhos parabólicos (CSP) com dutos de sal líquido que recebem o calor solar e, através de conexões série-paralelo, levam o sal líquido para o Ciclo de Rankine.

SISTEMAS TERMOSOLARES

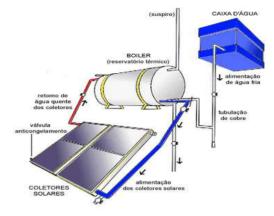
UTE Termossolar Parabólica – CSP Solana – Arizona/EUA

UTE CSP Solana			
Concentradores parabólicos	50.400		
Área - concentrador	99,75 m²		
Área total da planta	7,72 km²		
Potência	280 MW		
Energia	1,2 TWh		
Fator de capacidade (com armazenamento de energia)	0,49		


Fonte: CSP Solana

Sistema Distribuído

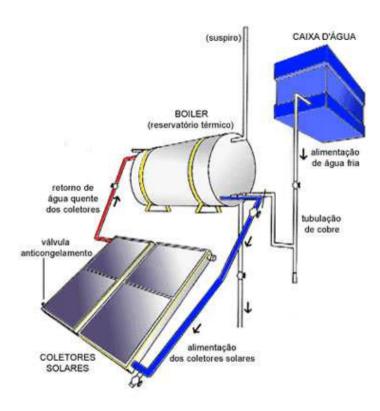
No sistema distribuído, a energia solar é convertida em energia térmica no próprio coletor solar.



Aplicação da Energia solar como Energia Térmica

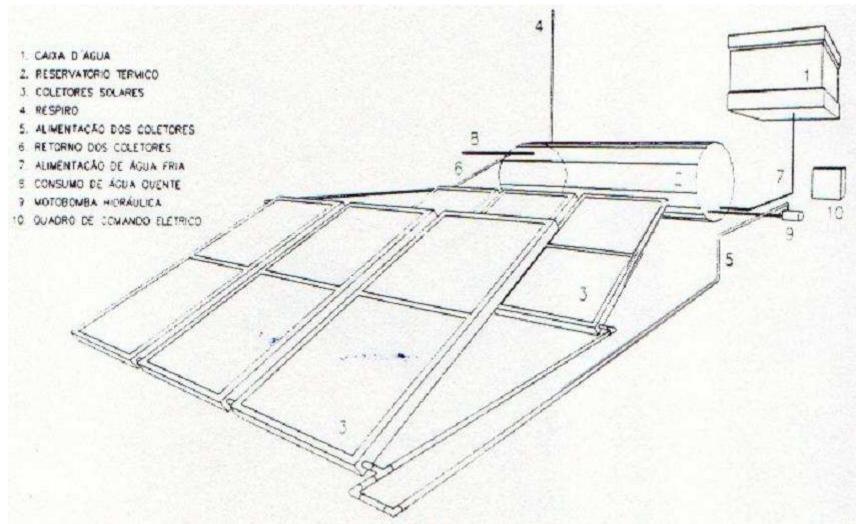
Aplicação de baixa temperatura

Atualmente, nos setores comercial e residencial, o aquecimento solar é basicamente utilizado em piscinas e para obtenção de água quente doméstica.

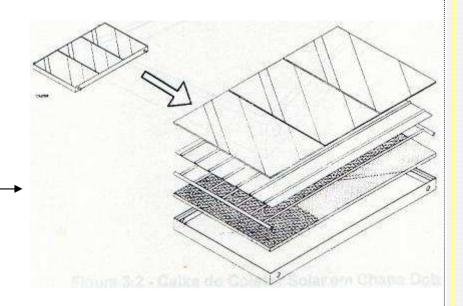

Os dois tipos principais são:

- Sistemas de circulação natural termossifão
- Sistema de circulação forçada com bombeamento

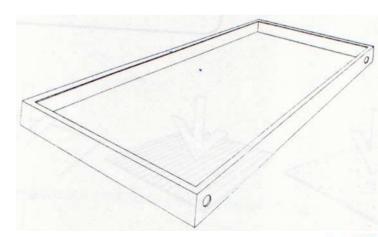
Instalação emTermossifão


Circulação natural em função da diferença entre a densidade da água

http://www.brasilescola.com/fisica/aqueci mento-agua-por-energia-solar.htm acesso 20/01/2013


Instalação básica em circulação forçada

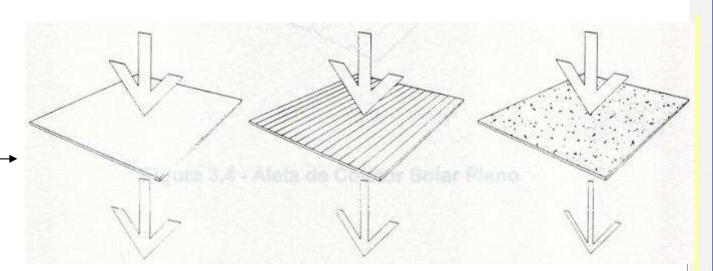
Componentes


Coletor solar plano

Caixa do coletor

Material: alumínio, aço galvanizado e

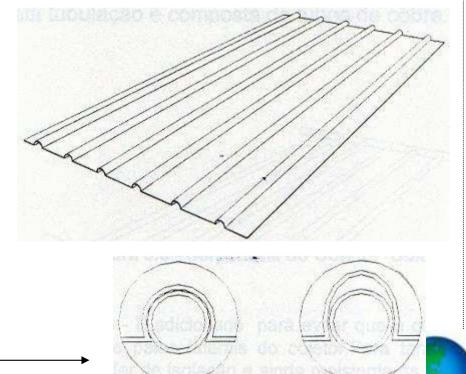
fibra-de-vidro



Cobertura

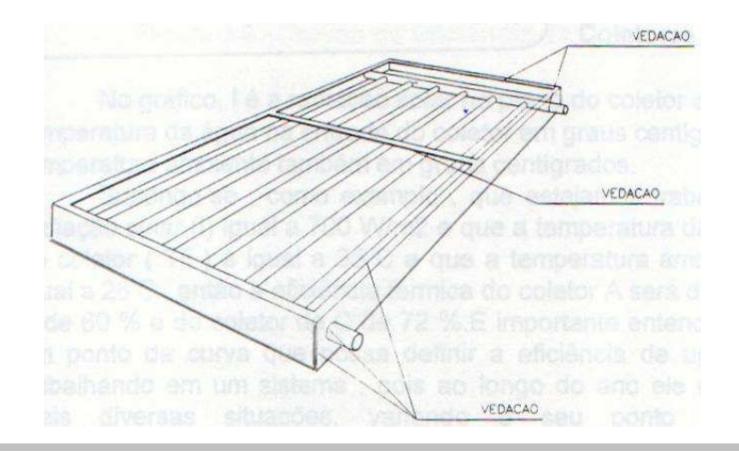
Material: vidro

2,3,4 mm de espessura

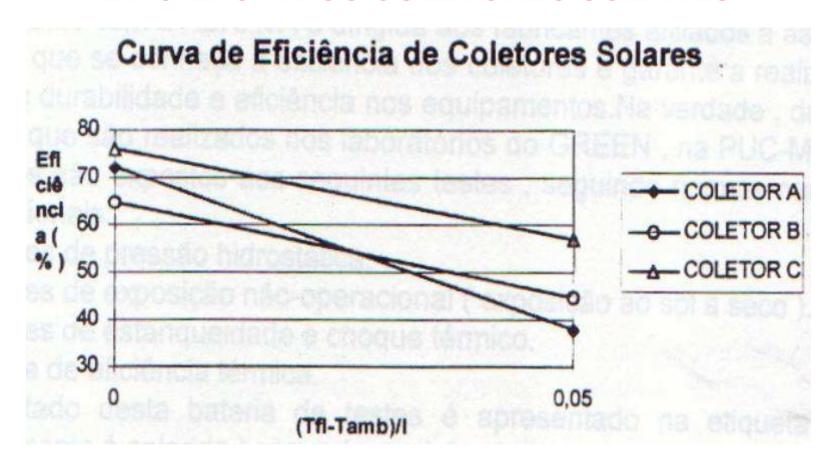

Aletas

Aleta com bom contato e contato ruim com o tubo

Material: alumínio e cobre

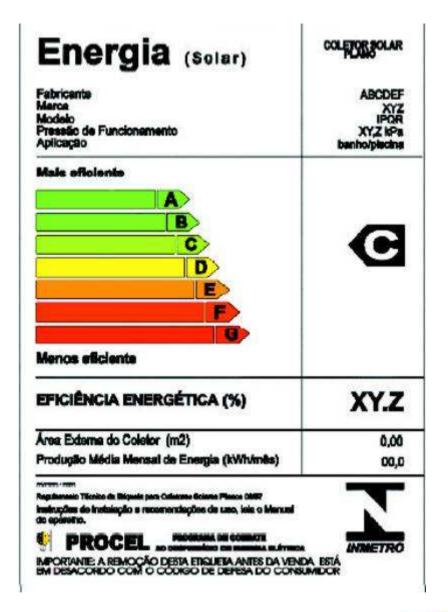

Aço inoxidável

-Tintas. Como as aletas normalmente são de material reflexivo, é necessário cobrí-las com uma tinta que absorva o máximo de radiação solar


- tubos de cobre (serpentinas): Função: conduzir a água, permitindo a passagem de calor das aletas para seu interior onde está a água a ser aquecida
- isolamento térmico. Ex: lã de vidro. Função: evitar que o calor absorvido seja perdido pelo fundo e pelas laterais do coletor
- vedação. Evitar entrada de umidade. EX: silicone

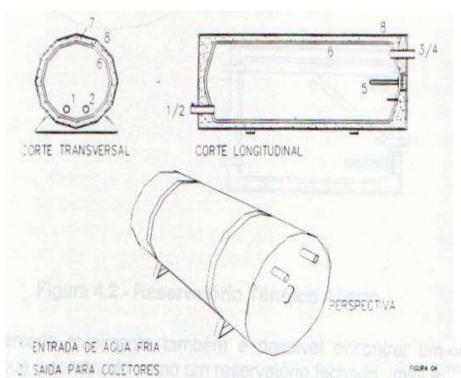
EFICIÊNCIA DOS COLETORES SOLARES

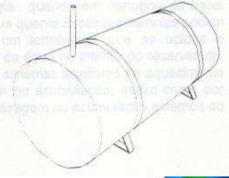
Tfi = temperatura da água na entrada do coletor °C


I – radiação solar = W/m^2

Etiqueta de eficiência energética

Inmetro - Procel

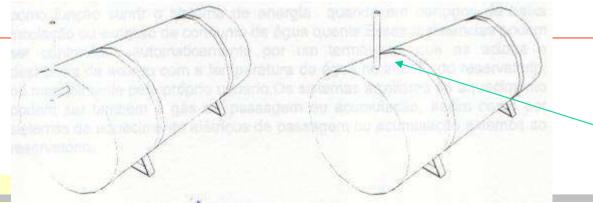

Atenção: ao escolher um coletor verificar se este tem certificação


RESERVATÓRIO TÉRMICO - BOILER

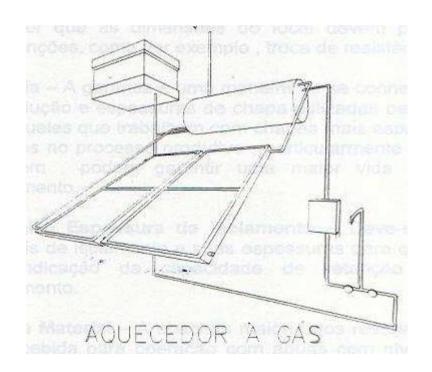
- •- Corpo interno
- •- Isolamento térmico
- •- Proteção externa
- •-Respiro ou suspiro
- Sistema auxiliar de aquecimento

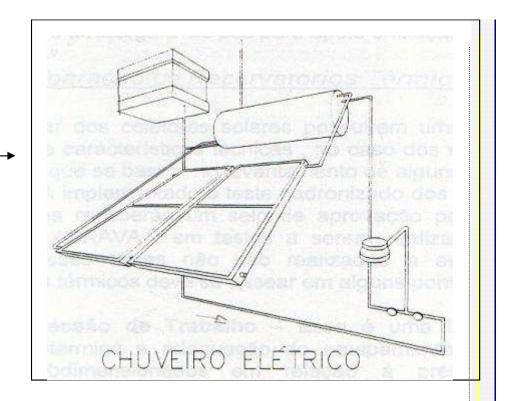
respiro

- 2 CONSUMO DE ÁGUA QUENTE
- + RETORNO DOS COLETORES
- SISTEMA AUXILIAR DE AQUECIMENTO
- CORPO INTERNO
- SOLAMENTO TERMICO
- PROTECÃO EXTERNA



Componentes:


- •- Corpo interno: responsável pelo contato direto com a água. Deve possuir excelente resistência mecânica e à corrosão. Material: aço inoxidável e cobre
- •- Isolamento térmico. Dele depende o real funcionamento do reservatório térmico. Sua condutividade térmica e sua espessura irão determinar o poder de retenção de calor no interior do reservatório. Material: lã de vidro e poliuretano expandido
- •- Proteção externa. Têm a função de proteger o isolamento térmico da umidade excessiva, de danos no transporte ou instalação e da radiação solar. Material : alumínio, aço galvanizado ou aço carbono pintado.
- •-Respiro ou suspiro. Faz parte do conjunto de tubulações do reservatório. Têm a função de permitir a saída de ar ou vapor, aliviar sobrepressões e pressões negativas
- Sistema auxiliar de aquecimento. Normalmente os reservatórios recebem uma ou mais resistências elétricas blindadas que tem como função suprir o sistema de energia em período de baixa insolação ou excesso no consumo.



suspiro

Aquecimento auxiliar com chuveiro elétrico

Aquecimento auxiliar com aquecedor a gás de passagem

Como dimensionar um sistema para aquecimento de água usando coletor solar?

DETERMINAR O VOLUME DE ÁGUA QUENTE

ESTÁ ASSOCIADO Á:

- pontos de consumo de água quente
- número de usuários
- freqüência de utilização
- nível de conforto desejado

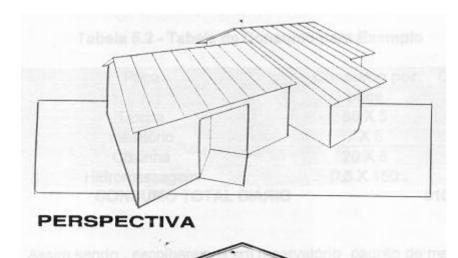
Nível de conforto

- Vazão típica de um chuveiro elétrico = 3 a 6 litros por minuto
- Vazão de uma ducha = varia, podendo chegar a vazões > 30 litros
- Vazão recomendada para atingir um bom nível de conforto = 7 a
 10 litros/ minuto
- tempo de banho = 8 a 10 minutos

Consumo médio de água quente por peça

Para referência

Peça ,	Consumo diário
Ducha	70 a 90 litros / pessoa
Lavatório	5 a 7 litros / pessoa
Bidê	5 a 7 litros / pessoa
Cozinha	20 a 30 litros / pessoa
Lavanderia	8 a 15 litros / kg de roupa seca
Banheira	30 a 50% do volume da banheira



EXEMPLO DE RESIDÊNCIA

Residência com:

- 5 moradores

Casa instalada em São Paulo (SP)

PEA2200 Aula 7: Fontes Alternativas de Energia - Energia Solar

13/05/2014 slide 39 / 19

CORTE ESQUEMATICO

Cálculo do consumo diário de água quente

Tabela 1

Peça	Consumo por peça	Consumo total
Ducha	80 ´ 5	400
Lavatório	7 ´ 5	35
Cozinha	20 ′ 5	100
Hidromassagem	0,5 ´ 150	75
Consumo total diário		610 litros

Escolhe-se um reservatório padrão de mercado que seja de volume igual ao volume do consumo diário estimado de água quente

No exemplo = 600 litros

Cálculo da área e número de coletores

Aspectos a considerar:

- eficiência do coletor
- temperatura do local
- radiação solar disponível (kWh/m²/dia)
- volume de água quente necessário

Opção 1- tabela fornecida por fabricante

Relação volume / área do coletores para algumas cidades

Tabela 2

Localidade	Área de Coletor (m2) para cada 100 litros
São Paulo	1,75 – 1,85
Campinas	1,20 – 1,30
Ubatuba	1,65 – 1,75
Bauru	1,10 – 1,20
Campos do Jordão	2,00-2,10
Ribeirão Preto	1,00-1,10
Presidente Prudente	1,10 – 1,20

Obs: relação desenvolvida para uma eficiência média de coletor, vidros lisos

Opção 2

Cálculo via equação de balanço de energia:

$$RSI \times A \times \eta = m \times c \times \Delta t$$

Onde:

RSI – radiação horária média mensal – kWh/m²

C= 4180 joules/kg°C – calor específico da água

m – massa de água (kg) ou litros

 η eficiência do coletor

$$\rho = 1000 \text{ kg/m}^3$$

A – área do coletor

 Δt - diferença entre a temperatura de entrada e saída do coletor $^{\circ}$ C

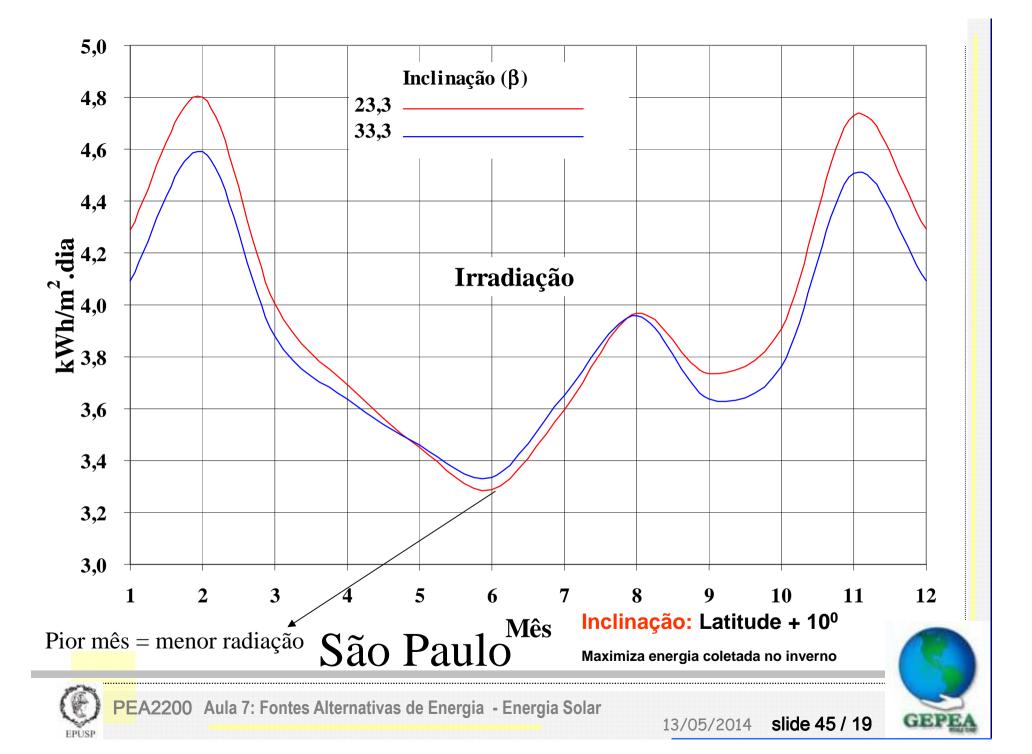
O número de coletores deverá ser selecionado de acordo com o volume do reservatório e o padrão do mercado de coletores.

No nosso exemplo em São Paulo, consideramos um coletor de 1,6 m² (comercial) Assim sendo, de acordo com a tabela 2 necessitaremos de :

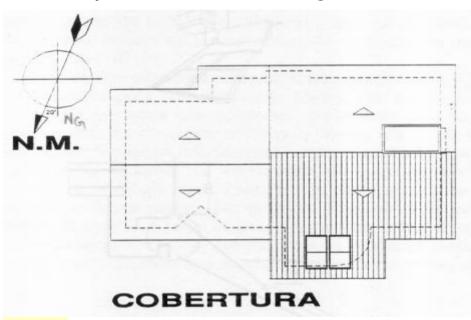
- 10,5 m² de coletores = 7 coletores

1,75m2 - 1001

X - 6001



COMO INSTALAR O COLETOR SOLAR?


Face Norte – Verdadeiro ou geográfico

Ao avaliarmos o projeto de localização da cobertura definimos a água do telhado em destaque na figura abaixo.

Esta parte do telhado entretanto, apresenta um desvio em relação ao Norte magnético de 20 graus oeste.

Como o norte magnético está a aproximadamente 20 graus a oeste do norte geográfico para São Paulo, teremos um desvio total de 40 graus .

A inclinação do telhado é de 19 graus.

Compensação da área devido ao desvio.

Área total Fator de compensação = 10,5 1,18 = 12,4 m²

Considerando o coletor de 1,6 m² – recomenda-se a instalação de 8 coletores

Custo

PREÇO DO SISTEMA:

COLETOR+RESERVATÓRIO+TUBULAÇÕES+ACESSÓRIOS= 450R\$/m²

Aproximadamente 8R\$ por litro de água aquecida

Preço do sistema: 8 coletores \times 1,6 m² \times 450R\$/m² = 5750,00 R\$

OBS: Não estão incluídos (caso seja necessário) preço de tubulação hidráulica de água quente interna e revestimento de paredes

Dever de casa:

Vida útil = 20 anos

Considerando que a tarifa residencial é igual a 0,400R\$/kWh, calcule o retorno (tempo) do investimento.

Considerar um consumo médio de energia elétrica complementar (para dias nublados de 30% com relação ao consumo original (com chuveiro)

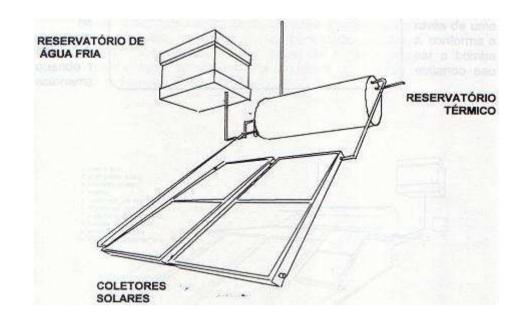
Exercício

Dados:

Radiação solar – 5,6 kWh/m²

Área do painel – 2 módulos de 1,6 m2

Latitude: 23,5 °C


Eficiência térmica – 50%

Tfi – entrada do coletor – 15 graus C

Tfs – saída do coletor – 45 $\,^{0}C$

Cp – calor específico – 4186 joule/kg/m³

Densidade da água = 1000kg/m^3

Calcule : Quantidade de água diária aquecida e capacidade do boiler

