6ª Lista de Exercícios - Álgebra Linear - Prof. Erica Romão.

Base e dimensão.

- 1. Quais dos seguintes conjuntos de vetores formam uma base do R³? Explique sua conclusão.
 - a) (1, 1, -1), (2, -1, 0), (3, 2, 0)
 - b) (1, 0, 1), (0, -1, 2), (-2, 1, -4)
 - c) (2, 1, -1), (-1, 0, 1), (0, 0, 1)
 - d) (1, 2, 3), (4, 1, 2)
- 2. O conjunto A = $\{t^3, 2t^2 t + 3, t^3 3t^2 + 4t 1\}$ é linearmente independente em P₃(t)? Se sim, o conjunto A é uma base de P₃(t)? Justificar.
- 3. Determinar uma base do R^4 que contenha os vetores (1, 1, 1, 1), (0, 1, -1, 0) e (0, 2, 0, 2)
- 4. Encontre uma base do subespaço V de P_2 , que consiste em todos os vetores da forma at² + bt + c, em que c = a b.
- 5. Determinar uma base e a dimensão do espaço solução do seguinte sistema:

$$s: \begin{cases} x - y - z - t = 0 \\ 2x + y + t = 0 \\ z - t = 0 \end{cases}$$

- 6. Mostrar que os polinômios $p_1 = 1 + 2x 3x^2$, $p_2 = 1 3x 2x^2$ e $p_3 = 2 x + 5x^2$ formam uma base do espaço de polinômios de grau ≤ 2 e calcular o vetor-coordenada de $p = -2 9x 13x^2$ na base $B = \{ p_1, p_2, p_3 \}$.
- 7. Seja V = R^3 e o conjunto B = {(0, 1, 1), (1, 1, 0), (1, 2, 1)} $\subset R^3$. Verificar se o conjunto B é base do R^3 . Determinar uma base do R^3 que possua dois elementos de B.
- 8. Determinar a dimensão e uma base para o subespaço vetorial S de M(2,2). Informar qual a dimensão de S e dê uma de base de S.

$$S = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix}; c = a - 3b \ e \ d = 0 \right\}$$

9. Encontrar uma base e a dimensão para o subespaço:

$$S = \{(x, y, z, t) \in \mathbb{R}^4 / \begin{pmatrix} 1 & 2 & -2 & -1 \\ 2 & 4 & 1 & 1 \\ 1 & 2 & 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \}$$