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The  purpose  of  this  paper  is to  explore  the  differentiated  impact  of demand-pull  and  technology-push
policies  in  shaping  technological  patterns  in  the  biofuels  sector.  The  empirical  analysis  is  based  on a  novel
and original  database  (BioPat)  containing  patents  in  the  field  of biofuels  selected  using  appropriate  key-
words and  classified  according  to the  technological  content  of  the  invention.  Our  results  generally  show
that  technological  capabilities  and  environmental  regulation  spur  innovative  activities  in the biofuels
sector.  Both  demand-pull  and  technology-push  factors  are found  to  be  important  drivers  of  innovation
in  the  biofuels  sector.  However,  technology  exploitation  activities  in  first  generation  technologies  are
found  to  be  mainly  driven by quantity  and  price-based  demand-pull  policies.  On  the  contrary,  the  pace
of  technology  exploration  efforts  in advanced  generation  biofuels  is  shown  to  react  positively  to price-
based  demand-pull  incentives  but also to technology-push  policy.  The  clear  diversity  in  the  impact  of
different  public  support  instruments  provides  new  insights  which  fuel  discussion  on  the  optimal  policy
mix  debate  and  offers  new  elements  for  the  design  of  future  policy  strategies.
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1. Introduction

Analysis of environmental innovation is gaining growing inter-
est in the current academic and political debate (Berkhout, 2011;
Borghesi et al., 2013; Kemp and Oltra, 2011; Markard et al., 2012;
OECD, 2011). Different analytical perspectives have been adopted
to investigate the dynamics, characteristics and determinants of
eco-innovation and their impact on economic systems and soci-
eties as a whole (Arundel and Kemp, 2011; Arundel et al., 2011;
Beise and Rennings, 2005; Costantini and Mazzanti, 2012; Jaffe and
Palmer, 1997; van den Bergh et al., 2007; Wagner, 2007). In par-
ticular, there is a growing consensus on the potential pivotal role
played by environmental and innovation public policies which are
increasingly jointly investigated in order to understand how to fos-
ter the rate of introduction and diffusion of new environmental
technologies and ensure the conditions for promoting economic
development while protecting the environment (Corradini et al.,
2014; Del Río, 2009; Mowery et al., 2010; Newell, 2010).

Relevant policy instruments are conventionally classified in the
two broad categories of demand-pull and technology-push instru-
ments (e.g., Horbach et al., 2012; Peters et al., 2012; Rennings,
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2000). Both kinds of instruments have been found to be important
in spurring innovation in environmental technologies. However,
only recently scholars have focused on the differentiated impact
of these instruments on the diverse types of innovative activi-
ties such as those related to the introduction of incremental or
radical innovations (Nemet, 2009), suggesting that demand-pull
policies may  benefit mature technologies to a larger extent than
less mature technologies (Hoppmann et al., 2013). Moreover, the
existing empirical literature usually does not differentiate between
different types of demand-pull policies, i.e., price or quantity-based
instruments which may  have a different ability to spur innova-
tion activities, especially when technologies at different stages of
maturity are considered.

With regard to these issues, this paper aims to make two  main
contributions. First, it provides an econometric analysis of the
differentiated effects of demand-pull and technology-push instru-
ments on innovation performances by accounting for technology
maturity, exploiting a panel database on a large country sample and
a relevant longitudinal structure. Second, it investigates the impact
produced by different types of demand-pull policies on innovation
activities, taking into account the different stages of development
of alternative technologies.

For these purposes, the choice of the biofuels sector appears to
be appropriate as it is characterized by a strong pace of techno-
logical change and rapid evolution in terms of the emergence of
different technological trajectories. A remarkable characteristic of
the biofuels sector is in fact represented by the existence of different
technology groups at different development stages, i.e., technology
generations (Suurs and Hekkert, 2009a, 2009b). According to Janda
et al. (2012), biofuels can be classified as conventional biofuels (first
generation) which are based on conventional technologies mainly
adopted by farmers’ organizations, and advanced biofuels (second,
third and fourth generations) originating from science-based tech-
nologies.

Moreover, since biofuels represent an alternative to fossil fuels
with a high pro-environment potential related to greenhouse gas
(GHG) emission reductions in the transport sector, a number of
specific policies from both demand and supply sides have been
implemented worldwide in this sector to create a stable invest-
ment environment and allow the commercialization and diffusion
of biofuel technologies (Panoutsou et al., 2013).

Previous analyses on the effects of policies on the rate and direc-
tion of technological change in environmental sectors have proved
to be difficult due to considerable measurement problems related
to both eco-innovation and policy dimensions (Del Río 2009; Kemp
2010; Kemp and Pontoglio, 2011; Lanoie et al., 2011). In this respect,
the paper specifically addresses measurement issues on both inno-
vation and policy sides by carefully selecting information from
relevant patent documents and collecting detailed information on
different classes of policy instruments.

The rest of the paper is structured as follows. Section 2 describes
the background of the analysis with specific reference to the
relevant literature and identifies the research hypotheses to be
empirically tested. Section 3 highlights the main characteristics
of the sector under scrutiny. Section 4 presents the economet-
ric approach and the dataset, while Section 5 provides empirical
results. Section 6 offers some conclusive remarks.

2. Literature background

According to Arundel and Kemp (2011) and Arundel et al. (2011),
eco-innovation consists of new or modified processes, techniques,
systems and products for avoiding or reducing environmental dam-
age. A large body of literature has contributed to finding out which
main forces support eco-innovation, by means of theoretical and

empirical models.1 Such analyses suggest that both technology-
push and demand-pull forces are important in shaping the rates of
introduction and diffusion of new environmental technologies and
that the role played by public policies in this context is particularly
significant (Del Río 2009; Horbach, 2008; Kuhlmann et al., 2010;
Nemet, 2009).

On the technology-push side, previous evidence has shown that
the quality of the stock of knowledge and the level of technologi-
cal capabilities acquired through research and development (R&D)
activities are found to be very important for the production and
diffusion of eco-innovation both at the micro and macro levels
(Johnstone et al., 2012; Löschel, 2002; Popp et al., 2009, 2011a,
2011b). In parallel, since innovation processes need investments,
market incentives are important when creating favorable invest-
ment conditions for firms (Schmookler, 1966). In this respect, the
extent of market demand and the level of prices have been consid-
ered important incentives to eco-innovation (Beise and Rennings,
2005; Johnstone et al., 2010; Newell et al., 1999, 2006; Popp, 2002).

Public policies can act on both the demand and the supply sides
to create favorable conditions for eco-innovation (Johnstone et al.,
2012; Nemet, 2009), with environmental policies and subsidies to
R&D recognized as the most important drivers of eco-innovation.2

Stringent environmental regulation may  induce flows of innova-
tions that facilitate being compliant with the environmental targets
by changing relative prices and the relative profitability of alter-
native technologies (Jaffe and Palmer, 1997; Newell, 2010; Porter
and van der Linde, 1995). Moreover, environmental policies can
create or enlarge the potential market for specific eco-innovations
through the adoption of niche strategies (Kemp et al., 1998; Nill
and Kemp, 2009). For instance, in the case of renewable energy
technologies, demand-pull instruments aim to restore competi-
tive conditions between fossil fuels and renewable energy sources
which cannot reach their optimum performance without policy
intervention that favors technological and organizational learning
through their diffusion.

On the supply/technology side, the role of public policy in shap-
ing the pace of innovation in environmental technologies is also
important (Costantini and Crespi, 2013). A large body of literature
has identified substantial market failure in the identification of the
correct amount of resources that markets are able to allocate in the
generation of technological and scientific knowledge (Arrow, 1962;
Nelson, 1959). Moreover, the broader perspective adopted by the
innovation systems literature has expanded the range of legitimate
justification and scope for public intervention in this field to dif-
ferent types of system failures (Borrás and Edquist, 2013; Edquist,
2005; Fagerberg et al., 2005; Metcalfe, 1995; Nelson, 1993). Follow-
ing these arguments, significant amounts of public funds are spent
on programs that increase the quality of scientific and technolog-
ical capabilities in innovation systems also through the funding of
innovative activities by private firms (OECD, 2013).

Hence, in line with this reasoning, we test the following hypoth-
esis:

HP1. Demand-pull and technology-push policies are relevant
drivers of eco-innovation.

The policy instruments designed to enlarge the markets for
new environmental technologies can be distinguished between

1 Even though we are aware of strong differences in definitions, for the sake
of  simplicity, we  will use the terms environmental innovation, eco-innovation,
environmental-friendly and green technologies interchangeably in this paper.

2 In this paper, we  use the terms demand-pull policies and deployment policies
interchangeably, indicating all instruments that aim to foster market expansion
for  eco-innovation. We also use the terms technology-push, supply-push or sup-
ply  side as synonyms since only the effects of technology-push instruments have
been considered in the present analysis.
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quantity-based (such as quotas and targets) and price-based sup-
port policies (such as feed-in-tariffs and tax exemptions). Different
studies have highlighted the difficulties in ranking price-based and
quantity-based instruments with regard to their effectiveness in
spurring eco-innovation (Fischer et al., 2003; Kemp and Pontoglio,
2011; Requate, 2005; Veugelers, 2012). According to Johnstone
et al. (2010), several features influence the effectiveness of these
policy instruments on innovation dynamics, such as, for instance,
the type and strength of quantity-based instrument adopted, the
stage of maturity of the targeted technological domain and the
nature of the environmental effect. However, according to the
relatively limited number of studies devoted to evaluating the per-
formances of different instruments in enhancing eco-innovation,
price-based mechanisms are usually considered more capable of
creating a constant demand for innovation (Jaffe et al., 1999; Popp,
2003; Richard and Stewart, 1981). For example, tax exemptions
turned out to be helpful in overcoming the barriers to creating mar-
kets for new environmental friendly products (Suurs and Hekkert,
2009a), whereas quantity-based instruments had minor effects on
innovation dynamics since standards and quotas do not provide
any incentive to innovate beyond the required level of environ-
mental target (Jaffe et al., 1995, 1999; Menanteau et al., 2003).
Hence, although the design elements of price-based instruments
may  diversely influence the effectiveness of their dynamic impact
(Del Río, 2009), they are generally perceived as an incentive system
that is more stable and predictable for investors, offering a long
run perspective that may  favor innovative investments (Schmidt
et al., 2012). Moreover, by fixing the price rather than the quantity,
price-based instruments allow firms to exploit market dynamics
by gaining from increased competitiveness due to reduced produc-
tion costs and by benefiting from market share expansion (Baumol
et al., 1979). Finally, the distributive effects of different demand-
pull policy types may  also play a role in this respect. According
to Finon and Menanteau (2003) who examined the dynamic effi-
ciency of the different incentive schemes for the development of
renewable energy sources by comparing quota-based bidding sys-
tems with feed-in-tariffs, it has emerged that quota systems (green
certificates) increase the surplus gained by consumers who pay
lower prices, while with price-based instruments (feed-in-tariffs),
the surplus is entirely attributed to the producer who  consequently
receives greater incentives to eco-innovate.

Building on these analyses, we can therefore formulate the sec-
ond research hypothesis as follows:

HP2. Price-based instruments display a greater impact on inno-
vation activities than quantity-based instruments.

While the literature has provided substantial evidence on the
importance of both demand-pull and technology-push instru-
ments in shaping the dynamics of eco-innovation (see, for instance,
Horbach et al., 2012; Newell, 2010; Rennings, 2000), the focus of
recent contributions has moved towards an analysis of the bal-
ance between the two categories of instruments in the policy mix
and an analysis of their differentiated effects with regard to the
dynamics of environmental innovation at different stages of tech-
nological and commercial maturity, and with regard to the different
types of innovative activities (Hoppmann et al., 2013; Nemet, 2009;
Sagar and van der Zwaan, 2006). In particular, it has been claimed
that public financial resources invested in demand-pull measures
that aim to stimulate the deployment of renewable technologies
(like those related to photovoltaic and wind energy) largely exceed
investments in R&D supply policies (Laleman and Albrecht, 2014).
Such an unbalanced structure of public budgets in favor of deploy-
ment policies has been criticized since it may  impose high costs on
the community without producing the expected positive impacts
in terms of technological and environmental achievements which

could be more fruitfully pursued by directly funding R&D activities
(Frondel et al., 2008, 2010).

The importance of improving our understanding of the cor-
rect balance between demand-pull and technology-push measures
within the policy mix  is confirmed by recent studies that have
conducted a detailed analysis of the mechanisms lying behind
the relationship between deployment policies and technological
innovation. In particular, by recognizing that firms face trade-offs
between exploitation activities within their existing technologi-
cal portfolios and exploration activities aimed at the generation
of new technological options (March, 1991), we  can argue that the
growth of markets associated with the implementation of deploy-
ment policies may  create disincentives for the development of
non-incremental innovation which are indeed required for devel-
oping cost-efficient environmental technologies. In this respect,
Nemet (2009) uses a case study on wind energy to assess the effects
of demand-pull policies on non-incremental innovations, showing
that in the scrutinized sector major inventions do not positively
respond to demand stimuli, but, conversely, appear to be fostered
by technology-push forces. Hence, it is suggested that a strong focus
on deployment policies may  direct innovation activities toward
exploitation rather than exploration which may  lead to a reduc-
tion in the pace of radical innovations and increase the risk that the
system gets stuck in technological lock-ins (Arthur, 1989; David,
1985).

These arguments have been further tested by the analysis of
Hoppmann et al. (2013) who conducted case studies on a global
sample of nine firms producing photovoltaic modules comple-
mented by experts’ interviews. This study confirms the importance
of carefully looking at the types of innovative incentives deriving
from deployment policies and at the mechanisms linking policy
inducement effects and firms’ technological exploitation and explo-
ration activities. In particular, they do not find support for the
hypothesis that deployment policies tend to reduce investment
in technological exploration activities. On the contrary, they show
that an increase in market size induced by policy actions raises the
absolute level of investment in both exploration and exploitation.
Moreover, they find that most of the observed companies used part
of the earnings generated from the exploitation of more mature
technologies to finance exploration of alternative non-incremental
technologies. However, deployment policies are found to induce
firms that pursue more mature technologies to shift the balance
towards exploitation activities. This implies that deployment poli-
cies may  be very effective in inducing incremental innovation,
while, under certain circumstances, they can also run the risk of
generating technological lock-in effects.

Following this discussion, we can formulate the hypothesis that:

HP3. In mature technologies demand-pull policies have a greater
impact on innovation dynamics than technology-push instru-
ments.

In contrast, the reviewed literature has shown that demand
stimuli may  not be sufficient to stimulate innovation activities in
less mature technologies in the absence of adequate technological
capabilities, suggesting that:

HP4. In less mature technologies innovation is spurred by both
demand-pull and technology-push instruments.

Finally, previous discussion of the different innovation incen-
tives provided by quantity and price-based instruments suggests
that the latter are generally perceived by investors as more stable
and predictable, thus offering a long run perspective. Hence, con-
sidering that exploration activities within less mature technologies
usually request a strategic commitment towards long-term invest-
ment, we  can hypothesize that:
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HP5. In less mature technologies price-based instruments are
more effective in fostering innovation activities than quantity-
based instruments.

In order to test our research hypotheses, the present analysis
focuses on a relevant sector in the domain of renewable ener-
gies, the biofuels sector, which, as will be highlighted in the next
section, offers an appropriate research setting for our purposes
since it allows us to study the impact of both technology-push and
demand-pull policies on innovation dynamics by accounting for the
maturity of different technology generations and for the different
role played by price-based and quantity-based instruments.

3. The case of biofuels

Over recent decades, several policy instruments have been pro-
gressively adopted, especially at the European Union (EU) and
OECD level, in order to reduce GHG emissions, and actions for decar-
bonising road transport are particular relevant within this strategy
(EEA, 2012). In this respect, biofuels are expected to substantially
contribute to decreasing emissions, but also to improve the sus-
tainability of the transport sector from an energy security point of
view by reducing its oil dependence in a context of high volatility
of oil prices and increasing fossil fuel scarcity.

The global production of biofuels – liquid and gaseous fuels
derived from biomass – has been growing steadily over the last
decade from 16 billion liters in 2000 to more than 100 billion liters
in 2011 (IEA, 2012a). Today, biofuels provide around 3% of total
road transport fuel globally (on an energy basis) with considerably
higher shares achieved in certain countries and, according to IEA
projections, biofuels will undergo a huge increase in total produc-
tion and provide up to 27% of world transportation fuel by 2050
(IEA, 2011a, 2012b).3 Biofuel production costs vary significantly
across the main producing countries. Brazil has the highest com-
petitive advantage for bioethanol and is the only producer, based on
the current state of technology, that can compete with fossil fuels
without public support. This competitiveness derives directly from
the introduction of public policies supporting the Brazilian biofuel
market until the early ‘70s. Brazil is considered to be the biofuel
industry leader and serves as a policy model for other countries
since its sugarcane ethanol is the most successful alternative fuel
to date (Sperling and Gordon, 2009). Since 1976, the government
has made it mandatory to blend ethanol with gasoline, increasing
the mandate continuously. The introduction by the early ‘90s of
flex fuel vehicles ensured the complementary technology needed
to sustain market demand also on the infrastructural side and has
created a sustainable biofuel economy, where the biofuel industry
is fully competitive with the fossil fuel market.

All other producing countries have to adopt some form of pol-
icy intervention and world biofuel production and consumption
are therefore, characterized by large and pervasive public subsi-
dies. Such support is justified by the environmental, energy security
and socio-economic advantages associated with biofuels, but it is
considered a transitional measure to allow for the development of
technologies leading to cost competitiveness in the medium term
(IEA, 2011b).

Policy instruments for the biofuels sector cover a large set of sup-
port and regulatory measures (Costantini et al., 2010). Demand-side
policy measures currently provide most of the support for biofuels
and consist of both price-based and quantity-based instruments.
Most countries support the deployment of domestic production
of biofuels through favorable tax regimes that reduce cost differ-

3 Brazil, for instance, met about 23% of its road transport fuel demand in 2009
with biofuels.

entials with fossil fuels and through tax exemptions or fuel tax
rebates for gasoline and diesel, or volumetric tax credits. Quantity-
based policies to increase the demand for biofuels by substitution of
fossil fuels entail regulatory measures, such as targets and manda-
tory requirements for fuel blending shares. While some of these
do not discriminate between distinguished forms of biofuels, oth-
ers specifically target bioethanol and biodiesel. On the supply side,
public intervention is carried out through technology-push poli-
cies that aim to increase the whole quality of innovation systems
and support specific R&D activities in order to speed up the sector’s
technological evolution.

For what concerns the role of technological maturity, Hekkert
et al. (2007) and Suurs and Hekkert (2009b) suggest that the
biofuels domain offers an interesting example of different tech-
nology generations competing for public support and represents
a relevant case for studying the effects of the balancing exercise
between deployment policies and technology-push instruments.
As previously mentioned, biofuels can be classified as conven-
tional biofuels (first generation) which are based on conventional
technologies and whose additional inventive activities are mainly
confined to incremental innovation and advanced biofuels (sec-
ond, third and fourth generations) originating from science-based
non-incremental technologies (Janda et al., 2012). First genera-
tion biofuels are made from food crops rich in sugar, starch or
vegetable oil. The most common types of first generation biofu-
els are bioethanol and biodiesel obtained from coarse grains and
sugar cane and from oilseeds, respectively. They have limited per-
formance in terms of emission reduction and have been criticized
for causing deforestation and putting pressure on agricultural land
needed for food and fodder production.4 However, they are already
in a near-commercial stage of development (Cheng and Timilsina,
2011; IEA, 2013). In contrast, advanced generation biofuels pro-
duced from residual non-food parts of current crops, as well as other
crops that are not used for food purposes, such as switch grass and
jatropha, or are obtained from algae, are expected to contribute
significantly to the future energy supply mix  (Balan et al., 2013;
Carriquirya et al., 2011; Glithero et al., 2013). They are expected
to perform much better in terms of costs, land use and emission
reduction (Eisentraut, 2010; Sims et al., 2010). However, they are
in a pre-commercial stage of development. For instance, depending
on the type of biofuels, the cost of cellulosic bioethanol is found to
be two to three times higher than the current price of gasoline on
an energy equivalent basis. The average cost of biodiesel produced
from microalgae is seven times higher than the current price of
diesel.

The justification given to the huge amount of resources invested
in deployment policies which favored the diffusion of first genera-
tion biofuels rests on the argument that a market must be created
even if the actual state of technology is not environmentally and
economically sustainable because scale effects will help to discover
new (advanced generation) technologies for producing biofuels
which are more efficient and less harmful to eco-systems. This
means that the policy targets implemented until recently were set
independently of the available state of technology since they have
been designed with the specific purpose of creating a market with-
out considering the new potential technological evolution from the
production process side, but only considering it as a final goal to
make final products competitive on the fuel market. This has led to
a mainly demand-oriented biofuels policy setting which has been
criticized only recently by the international community and whose

4 According to Cheng and Timilsina (2011), current bioethanol and biodiesel pro-
duction mainly relies on raw materials which are competing with food and feed
production for the limited arable land (FAO, 2010; Zhang et al., 2010).
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effects on technological patterns have still not been systematically
addressed by the scientific literature (GSI, 2013).

Previous detailed studies on the biofuels sector (in the
Netherlands) have highlighted the primary role of deployment
policies for advancements in first generation technologies which
are increasingly perceived as a stepping stone towards future use
of advanced generation technologies (Hekkert et al., 2007; Suurs
and Hekkert, 2009a, 2009b). In fact, current exploitation efforts
in first generation biofuels on improved conversion technologies,
integration of systems, fuel quality and specifications, as well as
requirements for blending, distribution, and storage respond to the
need to overcome the technical and economic barriers that impede
unbounded expansion of the market, whatever technology (first or
advanced) is used to obtain the final product (Hoekman, 2009).

However, whether the support for the diffusion of first gen-
eration biofuels could indirectly stimulate innovation activities
in advanced generation biofuels or favor investment concentra-
tion in exploitation activities still remains an open issue. Previous
evidence suggests that since advanced generation biofuels orig-
inate from science-based technologies and require technological
exploration activities, technology-push instruments are of cru-
cial importance to their development (Hoekman, 2009; Panoutsou
et al., 2013). However, a pure R&D-driven strategy may  be ineffec-
tive in the absence of market formation activities because it forms
a critical barrier to the development of advanced generation tech-
nologies. In this respect, within demand-pull policies, price-based
tools are expected to be more effective than quantity-based instru-
ments in supporting innovation in energy technologies whose cost
is not close to traditional energy technologies, by offering a longer-
term perspective that may  favor explorative activities.

4. Description of the empirical study

4.1. The empirical model

In order to identify the drivers of the innovation activity in
biofuel-related technologies and test our hypotheses, we  collected
data for OECD members and some non-OECD countries in the time
span 1990–2010.5 Building on previous contributions that have
adopted econometric analysis to study the determinants of eco-
innovation with specific attention to the role played by public
policies (e.g., Johnstone et al., 2010), we considered a standard
model setting in the form:

Yi,t = ˛i + ˇo + ˇ1(InnSysi,t−p) + ˇ2(EnvSysi,t−p) + ˇ3(BiofPoli,t−p)

+ ˇ4(EneSysi,t−p) + (Controlsi,t−p) + !i,t (1)

where Yi ,t indicates the innovation performance measure in
the biofuels sector, i = 1,. . .,N indexes countries, t = 1990,.  . .,2010
indexes time, ˛i are country-specific unobserved effects, p stands
for eventual lag structure and !i ,t are stochastic errors. In order
to test our hypotheses and account for different factors influenc-
ing innovative activities in the sector under scrutiny, four specific
groups of variables and an additional controls group have been con-
sidered, representing respectively: the national innovation system
(InnSysi,t − p), the national environmental system (EnvSysi,t − p), the
range of specific public policies in the biofuels sector BoifPoli,t − p,

5 Countries included in our analyses are: Argentina, Australia, Austria, Belgium,
Brazil, Canada, China, Denmark, Finland, France, Germany, Greece, Hong Kong, India,
Indonesia, Italy, Japan, Luxembourg, Malaysia, Mexico, Netherlands, New Zealand,
Norway, Portugal, Russian Federation, Singapore, South Africa, South Korea, Spain,
Sweden, Switzerland, Thailand, United Arab Emirates, United Kingdom and United
States of America.

the national energy system (EneSysi,t − p) and finally, further stan-
dard controls (Controlsi,t − p).

4.2. The dependent variable

Measuring innovation is a challenging task especially when spe-
cific technological domains have to be analyzed. Indeed, innovation
depends on a variety of activities ranging from formalized R&D to
production engineering. Organizational innovations and different
forms of soft innovations are also relevant (Archibugi and Pianta,
1996; Sirilli, 1997). Though widespread in the literature, the use
of patent data to measure innovation has been subjected to much
criticism (Griliches, 1990). While a single patent provides informa-
tion on relevant aspects of the innovative process, only a limited
part of produced innovations is patented and patent data classifi-
cations are not organized according to economic principles with an
intrinsic variability in patent value (Jaffe and Trajtenberg, 2002).

Nevertheless, the use of patent information often represents
the only valuable option when a specific technological domain
has to be investigated in absence of alternative statistical sources,
such as specific R&D or innovation surveys data. In the case of the
biofuels sector, large surveys and information on R&D efforts by
private firms were not available and we  therefore, chose to rely on
a patent-based innovation measure. In this respect, we  followed
a first attempt to analyze innovation drivers in the biofuels sec-
tor working with patent data provided by Karmarkar-Deshmukh
and Pray (2009) where, however, only ethanol-related patents sub-
classes in USPTO were considered.

In order to properly identify relevant patents in the investigated
sector and better map  the evolution of different generation tech-
nologies, innovative activities should be detected and classified
according to specific criteria which do not correspond to already
existing classification tools. In this respect, the hierarchical Inter-
national Patents Classification (IPC) aims to classify the innovative
content of the patent, whereas economic activities are classified
according to the domain of goods they produce. Consequently, stan-
dard IPC system is only of limited usefulness when it comes to
identify a specific sector which does not fit the criteria used in
the classification itself (Narin, 2000). This issue appears to be of
particular relevance when analyzing the biofuels sector due to its
technological cross-cutting nature since technologies which could
be ascribed to this field are heterogeneously diffused throughout
a large range of sectors (Suurs and Hekkert, 2009a, 2009b). Yet
when the set of relevant technologies is diverse, we may miss rel-
evant patents that, for a variety of reasons, do not fall within the
identified classes (Leea et al., 2011). In order to tackle this prob-
lem and properly identify relevant patents, the dependent variable
in our model is computed using a sector-specific (keyword-based)
patent database, hereafter called BioPat which also groups patents
according to different technology generations for the production of
biofuels and for different final products (Costantini et al., 2014).

More specifically, BioPat consists of a hybrid collection method
relying on a combination of a description-based keyword search
criterion together with a patent class-based search criterion.6 The

6 The only available patent class-based criterion applied to the biofuels sector is
given by green inventory (GI), developed by the world intellectual property organi-
zation (WIPO) for a large set of eco-innovation domains (WIPO, 2011). The amount
of  patents selected in BioPat is larger than counts deriving from GI methodology
since BioPat includes all biofuel-related applications, both with the direct aim of
producing biofuels or with an indirect (although declared in the description) effect
on  the biofuels sector but with a main aim that could be different from processing
biofuels. According to the experts’ validation of BioPat reported in Costantini et al.
(2014), the information contained in this database is more closely linked to inno-
vation in the biofuels sector than that deriving from GI classification. For further
details on BioPat methodology, see Appendix B.
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hybrid process used for selecting patents in BioPat is extremely
valid when it is important to understand how technologies
evolve over time, if they are narrowly focused on selected and
well-established domains, if they are expanding towards comple-
mentary sub-technologies needed to exploit market possibility, or
if they are more radically evolving towards a different technologi-
cal trajectory. This characteristic is clearly a crucial aspect of BioPat,
since it helps to analyze the diverse effects of different demand-
pull and supply-push policies on the technological dynamics of the
biofuels sector.

In this analysis, we consider that the patent application date
closely reflects the timing of inventors’ propensity to patent and
avoid considering disputes involved in patent grant processes
(Griliches, 1990). Moreover, we only consider patents applied to
EPO since, as suggested by Johnstone et al. (2010), patents regis-
tered in EPO may  be more reliable as a data source when patent
count models are developed, especially when different OECD coun-
tries are compared and several European countries belong to the
country sample.7

Our dependent variable is broadly defined as a pure count data
based on the number of patents applied to EPO which are classified
by application date and assigned to the applicant’s country. When
multiple assignees are present for a single patent, we  assigned a
proportion of the patent under scrutiny to each country on the basis
of the number of assignees for each country. Since econometric
count models work with integer values, we then approximated all
count data to the closest integer values. We  are aware that several
studies have tried to analyze innovation dynamics by also control-
ling for patent quality. In this respect, two general issues should be
accounted for. First, given that EPO applications are more expen-
sive than applications to national patent offices, inventors typically
apply to EPO if they have strong expectations in terms of economic
exploitation of the invention. Hence, for the purpose of this paper,
EPO data are superior to data from national patent offices because
the difference in costs provides a quality hurdle which eliminates
applications for low-value inventions. While the European market
is significant, it is still expected that there will be some bias toward
applications from European inventors. In the empirical analysis
undertaken in this study, this bias is addressed through the inclu-
sion of country fixed effects and a control variable reflecting data
on total patent per capita.

Turning to the research hypotheses tested in this paper, in order
to test HP1 and HP2, a total patent count variable has been built by
considering all patents applied to EPO available in BioPat. Then,
with regard to HP3–HP5, we made a distinction in BioPat between
patents related to different technology generations according to
the classification proposed by Janda et al. (2012). In particular, two
dependent variables representing first generation biofuels (here

7 There are many empirical analyses relying on patents applied to the USPTO
instead of EPO. However, in this way, results may  overestimate the role of the US
compared with other advanced economies since US firms have a higher propensity to
apply to USPTO than to other international offices. This is mainly due to the fact that
the Patent Cooperation Treaty, which streamlines the filing process in its member
country, requires an invention to be novel and involve an inventive step, but states
that being non-obvious is sufficient to involve an inventive step. The EPO has a
stricter interpretation of this term with respect to USPTO, since European patent
application involves an inventive step if it solves a technical problem in a non-
obvious way. This introduces two extra requirements: it must solve a problem (no
problem solved means no inventive step) and the problem must be technical (solving
economic problems means no inventive step). In this respect, patents applied and
granted at EPO are judged with greater accuracy in their innovative content than
USPTO ones, thus being a more stringent but also a more reliable measure of available
technology. By considering only EPO patents, it is implicitly assumed that US firms
apply for patent grants only for economically valuable inventions with a potential
higher diffusion path since it is much more costly to apply to EPO than to USPTO.
Differences in using EPO or USPTO patents at sectoral level are well detected in
Bacchiocchi and Montobbio (2010).

classified as Food and Sugar as the main technological domains
available in BioPat) and advanced generation biofuels (here classi-
fied as Ligno and Algae as the main technological domains available
in BioPat) are considered (see Appendix B for details). The for-
mer  should reflect innovative activities aimed at the exploitation
of technological and market opportunities within the dominant
design for producing biofuels for commercial purposes. The lat-
ter should capture non-incremental innovation activities deriving
from technology exploration efforts within technologies which
are still at embryonic production stages, not competing yet with
existing biofuel production technologies, but developed for the
purpose of exploring new technological and market opportuni-
ties in the medium run. Although innovations within advanced
generation biofuels could not all be considered radical ones,
patents specifically applied for regarding the production process
of advanced generation biofuels could be interpreted as a signal of
non-incremental research activities since they generally consist of
efforts to develop ecologically superior technological alternatives
to first generation biofuels with regard to energy balance and food
competition issues.

4.3. The independent variables

4.3.1. The innovation system
Let us now describe the set of regressors included in the anal-

ysis. The first group of control variables are related to the national
innovation system (InnSysi,t − p).8 In this work, we have included
alternatively three measures of the innovative capacity at coun-
try level: gross expenditures in R&D (GERD), here expressed as a
percentage of GDP taken from the OECD Science, Technology and
R&D Statistics (OECD, 2012); the total number of triadic patents by
applicants in per capita units taken from World Bank, World Devel-
opment Indicators (WDI) online database (World Bank, 2013); the
stock of accumulated knowledge in the specific biofuels domain
taken by BioPat according to the formula:

KPATi,t =
t∑

s=1

PATi,se[−"(t−s)] (2)

where PATi,s represents the number of patents in the biofuels sector
taken from BioPat applied in country i in year s, where s repre-
sents an index of years up to and including year t, whereas " is the
decay rate. Through this knowledge accumulation measure, accord-
ing to Jaffe et al. (1998), some sector-specific features associated
with knowledge cumulativeness can be captured, such as learn-
ing by inventing effects which might not be captured by broader
country-based measures.

4.3.2. The environmental system
The second group of regressors is included in the model in

order to control for the effects that the environmental system
(EnvSysi,t − 1) at national level may  have on the innovation perfor-
mance of the biofuels sector. For this purpose, previous literature
used information on environmental protection expenditure, car-
bon intensity or proxied environmental stringency through count
variables based on the number of policies implemented in a specific
field (Brunnermeier and Cohen, 2003; Costantini and Crespi, 2008,
2013; Johnstone et al., 2010; Lanjouw and Mody, 1996).

In view of the fact that expansion of the biofuels sector is
strongly related to the objective of reducing the carbon intensity of
economic systems, in the proposed empirical analysis, we  account
for this aspect by including an index of carbon intensity in the model

8 For a synthetic view of all variables considered in the analysis, main statistics
and correlation matrix, see Appendix A, Tables A1–A3.
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specification, built as the ratio between CO2 emissions (kt) and GDP
in PPP (at current international $) taken from the WDI. We  adopted
CO2 emissions in equivalent terms, meaning that we include here
all GHG emissions expressed in CO2 terms since we  would like to
rely on a measure that is quite strongly related to the environ-
mental domain of biofuels and represented exactly by fossil fuels
combustion-based emissions. Since the higher the carbon inten-
sity of one country, the lower the domestic efforts in protecting the
environment, we expect to find a negative relationship between
this index and the innovation performance of the biofuels sector
which is consistent with previous evidence (Costantini and Crespi,
2008, 2013; Ghisetti and Quatraro, 2013).

We  also controlled for a direct measure of a pro-environmental
setting built as the number of policy actions promoting renewable
energy sources (solar, wind, geothermal, biomass, biofuels etc.,) by
taking information from the IEA/JRC Global Renewable Measures
Database which provides data on policies applied in over 100 coun-
tries in support of renewable energy from the early 1970s until
now. In so doing, we followed the approach proposed in Johnstone
et al. (2010) and we constructed a composite policy variable in the
form of a count variable given by the annual cumulative number
of already existing policies with the aim of fostering renewable
energies production, adoption and diffusion in place for each i-th
country.9

4.3.3. The biofuels policy setting
In the proposed empirical analysis, a specific effort was  made

to map  public policies in the field of biofuels according to a clas-
sification criterion that was able to disentangle demand-pull and
supply-push policies as well as divide price-based from quantity-
based policy tools. In this respect, the case of biofuels is particularly
intriguing since information can be collected on several distin-
guished measures for a broad range of countries in a homogenous
way.

On the demand side, we focused our attention on two main
tools which have been shown to mostly influence the biofu-
els sector, namely fuel mandate (here undistinguished between
bioethanol and biodiesel) representing a quantity-based instru-
ment, and excise exemptions distinguished by bioethanol and
biodiesel as a form of price-based instrument. More specifically,
in the third group of variables in Eq. (1) representing public poli-
cies applied to the biofuels sector (BiofPoli,t − p), the price-based
policy has been built up by looking at tax exemptions obtained
by reports provided by the Global Subsidies Initiative (GSI, various
years). Based on this information, the variable “excise exemption” is
computed for distinguished bioethanol and biodiesel and for biofu-
els as an aggregate. All tax reductions for distinguished bioethanol
and biodiesel were originally expressed in national currencies and
current exchange rates with the US dollar were applied to obtain
comparable information expressed in US dollars. All excise exemp-
tions were standardized by expressing them in terms of the weight
of the exemption on the excise tax applied to gasoline and biodiesel:

eji,t =
exemption(US $ per litre)ji,t

excise(US$ per litre)ji,t
× consumption(litres)ji,t (3)

where i is the country and j is alternatively given by the cou-
ple bioethanol–gasoline or biodiesel–diesel. In this way, we can
obtain a measure of support policy which reflects the effective

9 We are aware that more specific environmental protection measures would
offer a complementary, accurate representation of the environmental setting, but
data availability would force us to drop several non-OECD countries such as
Argentina, Brazil and China among others whose innovation efforts in biofuels are
currently faster than for OECD countries.

weight of public support for biofuels compared with the cost of
standard fossil fuels.10 Recalling that energy prices related to pro-
duction costs are quite homogeneous across countries, the specific
factor influencing differences in energy prices is given by taxa-
tion. This is particularly relevant for transport fuels. This means
that the same excise exemption in monetary value may  have a dif-
ferent economic impact if the total excise tax paid for gasoline or
biodiesel is substantially different across countries. To some extent,
this standardization procedure allows the direct effect related to
biofuel policies and the inducement effect related to energy prices
to be simultaneously accounted for. Moreover, weighting the excise
exemption with the corresponding fuel consumption allows us
to quantify the real effect of the price-based tool with respect to
the market dimension. Finally, the “excise exemption (biofuels)”
variable is derived by computing the arithmetic mean of the two
fuel-specific variables.

Quantity-based demand-pull policies are here represented by
the variable “fuel mandates”, including information on mandates
for blending targets for bioethanol and biodiesel in gasoline and
diesel distributed for final consumption. The corresponding data
are also taken from GSI (various years) and are computed as per-
centage ratios of total fuel consumption. In this specific case, we did
not distinguish between bioethanol and biodiesel, since mandates
are quite homogenous for the whole country sample analyzed, but
more importantly due to the fact that in several countries, the
blending mandate is given as a common value that is not distin-
guished for the two  different fuels, thus making it difficult to have
separate measures for bioethanol and biodiesel for the whole coun-
try sample.

On the supply side, the most specific comparable measure at
a cross-country level is public R&D expenditures in the bioenergy
domain (IEA, 2011b) here expressed as a percentage of GDP (RD
bioenergy), representing a technology-push policy. Since the bio-
fuels sector is complex and strongly interconnected, we  adopted
the broader category of bioenergy rather than focusing only on liq-
uid biofuels. In addition, data availability for R&D in liquid biofuels
is so poor that most of observations in our country sample will
disappear.

4.3.4. The energy system and other controls
The fourth group of variables allows us to account for some

characteristics of the energy system at country level (EneSysi,t − p),
as suggested by Johnstone et al. (2010) and Popp et al. (2011b).
For this purpose, we  took two measures expressed as total energy
consumption and total energy consumption in the transport sector
both from the WDI.

Finally, the fifth group of variables refers to further controls to
be included in the analysis. In this case, we adopted the level of
export flows as a percentage of GDP in order to capture the open-
ness degree of each country as a broad measure of the capacity to
compete on the international market (also taken from the WDI).
We also included a dummy variable (dummy biodiesel) assuming
value 1 if the country is a large producer or consumer of biodiesel.
In this way, we can also control for the type of agricultural sys-
tem which might influence the patterns of innovative activity at
country level. For instance, the US, compared with many European
countries, is specialized in the production of bioethanol since the
agricultural system is highly competitive in producing maize and
wheat, whereas in Europe, crop specialization focuses on oilseeds.

10 We are particularly indebted to an anonymous reviewer for suggestions received
regarding the statistical treatment of excise exemption variables.
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Lastly, we include year dummies in order to control for cyclical
variations in the number of patent counts.11

4.4. Econometric methodology

The use of patent data as proxies for innovative activity implies
that we have to deal with count variables, that is, variables with
non-negative integer values.12 Econometric models specifically
designed for this kind of variable are the Poisson Regression Model
(PRM) and the Negative Binomial Regression Model (NBRM). The
PRM is the natural starting point for an analysis of count data but it
may  be biased by an excess in zeros and an overdispersion problem.
In many applications, the model underestimates the probability
of a zero count and in general of low counts.13 In addition, the
well-known equidispersion assumption of the Poisson model, the
equality of the conditional mean and the conditional variance, is
commonly violated. Real variables are often overdispersed, that is,
the variance exceeds the mean. The major disadvantage with the
presence of overdispersion is that estimates are inefficient with the
standard errors biased downward, resulting in spuriously large z-
values and small p-values (Cameron and Trivedi, 1986). In these
cases, the NBRM, which addresses the failure of the PRM by intro-
ducing unobserved heterogeneity across the Poisson means, could
be used.

Given that our dependent variables are strongly overdispersed
and do not have an excessive number of zeros, a fixed effects NBRM
model is used to estimate Eq. (1).14 The basic model in the context of
panel count data was proposed by Hausman et al. (1984). According
to their specification, we model the number of patents in one year
for each country as a negative binomial process, that is, a Poisson
process with distribution parameter randomly distributed in the
population and following a gamma  distribution yi ,t∼ Poisson(# i ,t).

Finally, in order to account for unobservable country specific
heterogeneity, we rely on the fixed effects estimator by condition-
ing the probability of the counts for each group on the sum of the
counts for the group.15 The maximum likelihood method is used to
estimate the model parameters.16

When looking at temporal structure, it is worth mentioning that
all explanatory variables are treated with a potential number of lags

11 Except for the dummy variable for countries specialized in biodiesel production
and  consumption, all the other explanatory variables have been log transformed
so  that coefficients can be interpreted as elasticities. For the former variable, the
coefficients can be interpreted as semi-elasticities as usual.

12 Further research could be devoted to the exploitation of patent data using con-
tinuous variables, for example, by computing the ratio of biofuels-related patents
to total patents or GDP. Clearly, in such cases, the econometric estimation would
have more flexibility since several more approaches could be used than for count
variables.

13 Alternative methods are designed for variables with excessive zeros (Zero-
inflated negative binomial regression, Hurdle model, etc.). See Cameron and Trivedi
(2009) for a more comprehensive discussion.

14 If the likelihood-ratio test on the overdispersion parameter provides strong evi-
dence of overdispersion, then the NBRM is preferred to the PRM. See the Appendix
for  descriptive statistics of the dependent variables and graphical representations of
the observed and predicted probability assuming a Poisson and a negative binomial
univariate distribution for the dependent variables (Fig. A1).

15 The Hausman test points out that the fixed effects estimator is more appropriate
than the random effects estimator.

16 The maximum likelihood negative binomial mean-dispersion estimator is not
consistent if the variance specification is incorrect. As an alternative estimation
strategy, we  estimated our basic equation with the PRM using the pseudo maximum
likelihood approach. This approach only requires the conditional mean function
to  be correctly specified and allows consistent estimate of the coefficients even
if  the count variable is not Poisson distributed (Wooldridge, 1999) and results do
not change substantially. Thus, in the following, we simply report those based on
the  NBRM which, in the absence of significant changes in the estimated coeffi-
cients, remain the most efficient estimation method. All results based on the pseudo
maximum likelihood approach are available upon request from the authors.

equal to p. This is quite a common choice in the literature, where
the dependent variable is represented by an innovation output
measure. This modelling choice also reduces potential endogene-
ity issues related to regressors such as, for instance, the innovation
input or the policy variables which may  be endogenously linked to
the dependent variable.

In order to test the validity of alternative lag structures, we per-
formed a Bayesian information criterion (BIC) applied to model in
Eq. (1) testing for p assuming value 1, 2, 3. Since the penalty term for
the number of parameters in the model is larger in BIC than in AIC,
the first one is to be preferred as a more stringent overfitting model
test. Results on BIC for alternative lag structures are reported at the
end of Table 2 which includes the highest number of regressors,
thus being characterized by the highest probability of overfitting.17

The resulting temporal structure from BIC values is characterized
by one year lag. This empirical result is consistent with existing
contributions (see Johnstone et al., 2010 among others). Moreover,
from a conceptual point of view, environmental policy variables
over this short horizon (five to eight years, since public policies
supporting biofuels were implemented in a systematic way by the
early 2000s) are rather stable or growing slightly (in terms of fuel
mandates or excise exemptions) because they respond to a long run
commitment in policy design and therefore it is difficult to estimate
complicated lag structures.18

Since there are some concerns at theoretical level about poten-
tial mutual causality where technological progress may  lead to a
perception of comparative advantage in this specific technological
domain which may  be a catalyst for deciding to adopt pro-biofuel
policies in order to exploit the already achieved profitable con-
ditions, treating policy variables with temporal lags may not be
enough to mitigate potential endogeneity. To this purpose, we
also carried out robustness checks and estimated Eq. (1) by imple-
menting a GMM  estimator for count variables with endogeneous
regressors (Windmeijer, 2006, 2008).

Nonetheless, from a conceptual point of view, we  have to
remember that biofuels policies are reasonably standardized
among the countries considered in our panel and they have mainly
responded in the past to energy security and emission reduction
criteria, as has been emphasized in Section 3 which describes the
biofuels sector as a whole. This means that countries setting policies
supporting biofuels have designed policy instruments without spe-
cific considerations about existing best available technologies and
related competitive advantages, but with the main purpose of cre-
ating a market for well-established – but over costly – technologies
that already exist.

5. Results

The empirical results are presented to reflect the research
hypotheses outlined in Section 2. As a first step, we  propose
different specifications for a baseline model to select relevant con-
trol variables accounting for the level of technological capabilities
within the national innovation system, the energy and environ-
mental setting as well as other factors. Table 1 reports results
obtained by performing an NBRM applied to patent count data,
where the dependent variable is represented by a count of all

17 It is worth mentioning that BIC tests could be carried over models with the same
number of observations, hence for each model in Table 2, the three alternative lag
structures have been tested over the same sample, resulting in fewer observations
than those reported for time structure with one lag (which is that reported in full
detail in Table 2).

18 This is also valid for the other explanatory variables, especially those related to
innovation capabilities (Hall et al., 1986).
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Table  1
Baseline model (dependent variable: total patents in BioPat).

(1) (2) (3) (4) (5) (6) (7) (8) (9)

GERD % GDP 1.158*** 1.141***

(7.57) (7.77)
Total patents per capita 0.245*** 0.269*** 0.284*** 0.272*** 0.286***

(5.07) (5.59) (5.83) (5.56) (5.77)
Patent  stock in BioPat 0.629*** 0.603***

(10.5) (12.24)
Export % GDP 0.878*** 1.084*** 0.833*** 0.789*** 0.896*** 0.881*** 0.855*** 0.850*** 0.809***

(4.54) (6.63) (5.43) (4.93) (5.8) (6.32) (5.48) (5.27) (4.95)
Energy  consumption 0.106 0.369*** (0.081)

(0.73) (2.96) (−0.70)
Road energy consumption 0.376 0.623** 0.024 0.597** 0.586** 0.557**

(1.26) (2.46) (0.11) (2.31) (2.23) (2.08)
Carbon intensity −0.697* −0.668*

(−1.77) (−1.68)
Policy  count in renewables −0.095 −0.093

(−1.55) (−1.52)
Country specialization dummy  in
biodiesel

0.767** 0.986*** −0.375 0.789** 0.745** −0.241 0.646** 0.735** 0.642**

(2.25) (3.07) (−1.08) (2.47) (2.42) (−0.81) (2.04) (2.34) (1.99)

N  407 549 601 407 549 601 548 531 530
ll  −1282 −1516 −1593 −1281 −1517 −1593 −1511 −1507 −1501
$2 362 410 568 350 387 570 392 395 398
BIC  2511 2541 2466 2510 2539 2468 2544 2544 2549
Condition number 8.64 8.36 9.04 5.72 5.72 5.61 8.02 7.6 9.16
Mean  VIF 1.42 1.4 1.56 1.06 1.01 1.07 1.03 1.07 1.09
Wald  test carbon intensity ($2) 3.14* 2.83*

z statistics in parentheses.
* p < 0.1.

** p < 0.05.
*** p < 0.01.

Table 2
The role of biofuel public policies (dependent variable: total patents in BioPat).

(1) (2) (3) (4) (5) (6) (7) (8)

Total patents per capita(t − 1) 0.487*** 0.490*** 0.493*** 0.486*** 0.480*** 0.468*** 0.511*** 0.471***

(6.10) (5.94) (6.19) (6.09) (6.03) (5.68) (6.28) (5.61)
Carbon intensity(t − 1) −1.269*** −1.257*** −1.253*** −1.313*** −1.090** −1.084** −1.094**

(−3.01) (−2.98) (−2.97) (−3.14) (−2.45) (−2.42) (−2.49)
Policy  count in renewables(t − 1) -0.074 -0.070

(-1.20) (-1.15)
Excise exemption (biofuels)(t − 1) 0.567*** 0.644*** 0.579*** 0.528*** 0.527***

(3.14) (3.53) (3.22) (2.91) (2.94)
Excise  exemption (bioethanol)(t − 1) 0.497***

(3.08)
Excise exemption (biodiesel)(t − 1) 0.576***

(2.95)
Fuel mandate(t − 1) 7.038 5.022 5.380

(1.63) (1.22) (1.31)
Public  R&D (bioenergy)(t − 1) 0.067**

(2.42)
Export  % GDP(t − 1) 0.994*** 1.008*** 0.941*** 0.956*** 1.036*** 0.984*** 1.001*** 1.104***

(5.74) (5.62) (5.22) (5.50) (5.92) (5.61) (5.96) (6.51)
Road  energy consumption(t − 1) 2.744*** 1.026*** 0.923*** 0.982*** 0.910*** 0.863*** 0.928*** 1.025***

(5.42) (3.21) (2.77) (2.94) (2.72) (2.57) (2.81) (3.12)
Country dummy  in biodiesel 1.141** 1.404*** 1.142** 1.140** 1.123** 1.225** 1.286*** 1.261***

(2.40) (3.15) (2.42) (2.38) (2.38) (2.54) (2.67) (2.63)

N  323 324 323 323 323 323 323 323
ll  −1128 −1136 −1127 −1128 −1129 −1131 −1128 −1125
$2 305 309 310 304 301 289 320 332
BIC  2395 2402 2400 2395 2396 2402 2400 2400
Condition number 9.56 10.09 11.17 9.55 9.54 9.69 16.20 16.20
Mean  VIF 1.33 1.38 1.49 1.33 1.33 1.33 1.77 1.77
Wald  test carbon intensity ($2) 9.08*** – 8.87*** 8.85*** 9.84*** 5.98** 5.86** 6.20**

BIC for lag 1 2005 2024 2011 2007 2005 2018 2008 2010
BIC  for lag 2 2021 2039 2032 2022 2031 2027 2027 2029
BIC  for lag 3 2034 2056 2050 2035 2051 2043 2046 2054
N  obs. for BIC in lags 278 278 278 278 278 278 278 278

z statistics in parentheses.
*p < 0.1.

** p < 0.05.
*** p < 0.01.
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patents available in BioPat related to EPO applications which have
direct and indirect use in the investigated sector.19

This first round of econometric estimates confirms the impor-
tance of technological capabilities in shaping the rate of patenting
activities in the biofuels sector. By comparing results for the three
alternative variables used to describe the national innovation sys-
tem, it is worth noting that whatever innovation measure we adopt,
innovation performance in the biofuels sector is positively and sig-
nificantly influenced by the available scientific and technological
capabilities.20

In the baseline model, we also control for the dimension and
the quality of the energy sector and transport sector. As expected,
the two variables enter the model with positive and significant
coefficients when total patents per capita variable is considered
as a technology capacity measure (Columns 2 and 5). Considering
the importance of the role of the energy system and the fact that
all innovation system related variables are statistically significant,
we chose the total patents per capita as a proxy for technologi-
cal capabilities in the next specifications. This variable also has the
advantage of allowing us to control for the general propensity to
patent at country level (Johnstone et al., 2010). Moreover, since
the two variables associated with the energy system are almost
equivalent in terms of robustness, the model fitting (BIC value) of
Column 5 is slightly better than in Column 2 and, most importantly,
the energy consumption for road transport variable is more directly
linked with the biofuel market as reflected by the higher coefficient,
we chose the model specification as in Column 5.

Building on this result, we finally include the effect of the envi-
ronmental setting as defined in the previous Section (Columns 7–9).
The first variable under scrutiny is carbon intensity as broadly
reflecting the potential contribution of biofuels to decarbonising
the transport sector. The sign of the estimated coefficient is coher-
ent with our expectations since carbon intensity is found to be
inversely related to patenting activity. This result should reflect the
work of an inducement mechanism so that the lower the carbon
intensity of one country, the higher the domestic pressure from
decarbonization policies and, hence, the faster the pace of innova-
tion in biofuel-related technologies.

The second variable associated with the environmental policy
framework here tested refers to a policy count measure. As a matter
of fact, this dimension seems to have no impact on the propen-
sity to innovate in biofuels, when considering it both as the only
measure for the environmental setting or combining it with car-
bon intensity. Although when including carbon intensity the model
fitting worsens slightly (see BIC values in Columns 5 and 7), we
opt to keep carbon intensity as a valuable covariate since the Wald
test for omitted variables applied to carbon intensity reveals that
this is an omitted variable. This result is strongly confirmed when
the full model considering specific biofuels policies is estimated
(Table 2).21

With regard to other controls included in the analysis, the
employed measure of market openness and international competi-
tiveness of the overall economic system results in a quite robust and

19 It should be noted in Table 1 and the others that the number of observations
does not correspond to the total given for the examined years and the countries
investigated. This is due to the fact that not all the explanatory variables are available
for each country in the sample for the same years.

20 The regressor adopted for the specific stock here is computed by applying a
decay rate equal to 0.15 as suggested by Hall (1990). As a robustness check, we
have tested how much the decay rate may  influence results by computing a patent
stock measure by using decay rates equal to 0.05, 0.10, 0.15, 0.20, 0.30 alternatively.
Results obtained with alternative decay rates remain unchanged and are available
upon request from the authors.

21 No collinearity bias arises in the nine models since Mean VIF and Condition
number values are below the threshold levels of 5 and 30, respectively.

significant regressor. Finally, in order to control for the influence of
specialization on the production of one or the other type of biofuels,
a dummy  variable for countries that are specialized in biodiesel pro-
duction or whose consumption patterns are more oriented towards
biodiesel is introduced.22

The selection of relevant control variables allows us to specifi-
cally test the validity of the research hypotheses outlined in Section
2. The results reported in Table 2 refer to HP1 and HP2 and con-
sider the total patent count built on all patents in BioPat as a
dependent variable. The econometric estimates support HP1 since
both demand-pull and technology-push policies are simultane-
ously important for shaping the dynamic patterns of technical
change in the biofuels domain. Hence, although demand-side poli-
cies are dominant in the biofuels sector, other complementary
technology-push supports are needed to increase the availability
of scientific and technological capabilities and foster the pace of
innovation in this domain.23

Price-based policies here modelled as an excise exemption for
biofuels as a whole, and distinguished by bioethanol and biodiesel,
are shown to play a strong positive inducement effect, fostering
innovation dynamics in the investigated field with stable and statis-
tically robust coefficients. On the contrary, patenting activity turns
out to be non-responsive to quantity-based tools as represented
by fuel mandates. This result is confirmed when both types of
instruments are jointly introduced in the model (Column 7).24 This
finding is consistent with HP2 but, considering that as mentioned
in Section 2, the relative effectiveness of the two  types of demand-
pull instruments may  be influenced by several factors including
the stage of the evolution of different technologies, the evidenced
neutrality of the quantity-based instrument on innovation activi-
ties may  reflect the use of the dependent variable referring to the
biofuels patenting activity as a whole.

The statistical robustness of these results has been further inves-
tigated with respect to the lag structure, the goodness of fit and
potential endogeneity problems. With regard to the first issue, the
temporal structure with one year lag is here decided on the basis
of BIC values computed on three alternative lag structures, namely
one, two or three year lags. BIC values for one lag structure are the
highest ones. This result is in line with a large part of the empirical
contributions reviewed in Section 2 addressing policy inducement
effects in other eco-innovation domains. In addition, BIC values
also reveal that by including policy variables, the overall good-
ness of model estimation is not negatively affected by the number
of parameters estimated. In this respect, mean VIF and Condition

22 The count of forward citations has been acknowledged to be a good proxy for
the  technological importance and economic value of patents. Hence, as a control,
we  test our model on a count indicator based on forward citations received by the
BioPat patents in the five years after their publication using the information con-
tained in the OECD EPO Indicators Database (Squicciarini et al., 2013). Results are
largely confirmed but we prefer to keep models based on patent counts since results
based on forward citation measures can be biased due to the truncation problem.
For the sake of simplicity, we have only reported results for the simple patent count
variables in the text, but all results based on citation patent counts are available
upon request from the authors.

23 In order to control for the potential influence of the chosen innovation mea-
sure  here adopted, as a robustness check we  estimated all models in Table 2 by
including GERD as % of GDP and alternatively specific patent stock, as represented
in  Tables A4a and A4b in the Appendix A. Results are fully consistent with those
reported in Table 2.

24 Coefficients of excise exemption for bioethanol and biodiesel differ slightly,
the  one for bioethanol being somewhat lower than the other. The specific way the
exemption variables are built allows us to exclude potential bias related to diverse
energy prices in different countries. Since energy prices for final consumption con-
sist of production costs which are fairly homogeneous among all OECD countries
and tax rates which are fairly heterogeneous among countries, by standardizing
exemption for bioethanol and biodiesel with excise amounts for gasoline and diesel
respectively, we  almost eliminate the impact of energy price differences.
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Table  3
The role of biofuel public policies: first and advanced generation biofuel related patents.

First generation Second generation

(1) (2) (3) (4) (5) (6)

Total patents per capita(t − 1) 0.535*** 0.544*** 0.597*** 0.340** 0.315** 0.360**

(5.38) (5.26) (5.79) (2.30) (2.11) (2.44)
Carbon intensity(t − 1) −1.445*** −1.291** −1.132** −1.611* −1.510* −1.297

(−2.57) (−2.29) (−1.96) (−1.79) (−1.68) (−1.42)
Excise exemption (biofuels)(t − 1) 0.789*** 0.701*** 0.769** 0.697*

(3.17) (2.83) (2.01) (1.81)
Fuel  mandate(t − 1) 14.160** 11.407** 10.492 8.202

(2.56) (2.13) (1.41) (1.12)
Public  R&D (bioenergy)(t − 1) 0.020 0.018 0.020 0.137** 0.128** 0.134**

(0.50) (0.46) (0.53) (2.14) (2.05) (2.10)
Export % GDP(t − 1) 0.861*** 0.833*** 0.922*** 0.213 0.173 0.253

(3.50) (3.50) (3.97) (0.70) (0.58) (0.86)
Road  energy consumption(t − 1) 0.015 −0.244 −0.102 1.653** 1.555** 1.607**

(0.03) (−0.51) (−0.22) (2.21) (2.07) (2.18)
Country dummy  in biodiesel 0.426 0.496 0.550 1.186 1.468* 1.408*

(0.85) (1.02) (1.12) (1.34) (1.83) (1.74)

N  323 323 323 323 323 323
ll  −1059 −734 −1058 −732 −733 −733
$2 221 216 243 215 211 218
BIC  2264 2267 2265 1608 1611 1617
Condition number 16.20 16.11 16.90 16.20 16.11 16.89
Mean  VIF 1.77 1.73 1.87 1.77 1.73 1.87

z statistics in parentheses.
* p < 0.1.

** p < 0.05.
*** p < 0.01.

number also confirm that by including policy variables the models
are not affected by multicollinearity problems.

Finally, as already mentioned in Section 4, as a robustness check,
the same models in Table 2 have been estimated by using a GMM
estimator for count variables, revealing that all results obtained for
policy variables are not biased by potential endogeneity (see the
Appendix A, Table A4c).25

We  now turn to testing more specific hypotheses (HP3–HP5)
on the potential different role demand-pull and technology-push
policies may  have on innovation activities in technologies char-
acterized by different technology maturity by disentangling our
dependent variable according to different biofuels generations.

Consistently with HP3, the empirical results reported in Table 3
(Columns 1–3) show that deployment policies play a prominent
role in shaping the pace of innovation within first generation tech-
nologies for the production of biofuels. Moreover, in this case, both
price-based and quantity-based instruments play a positive and
significant role in triggering patenting activities, confirming the
importance of accounting for the stage of maturity of technolo-
gies in evaluating the relative effectiveness of different types of
demand-pull policies.

In contrast, the role of technology-push instruments appears to
be negligible since the coefficient associated with the specific public
R&D variable is not statistically significant.

In parallel, when analysing the drivers of innovation activities in
advanced generation biofuels, results show that these are found to
be sustained by technology-push forces leveraged through specific

25 In Table A4c the coefficient associated with the variable “total patents per capita”
loses its statistical significance though endogeneity issues are not expected to be rel-
evant for this variable. This is probably due to the differences in estimation methods’
structure between GMM and NBRM. We believe that NBRM generally provides the
most reliable estimates given the structure of our data. However, in order to test that
the overall robustness of our results on policy variables is not affected by the choice
of the innovation system variable, we ran the same regressions in Tables A4a and A4b
by applying the GMM  estimator. In these cases, both policy and innovation variables
turned out to be robust and statistically significant. All results are available upon
request from the authors.

R&D policies along with demand-pull policies, as claimed in HP4.
In addition, consistently with HP5, while price-based mechanisms
seem to positively affect the development of innovations in the
domain of advanced biofuels, quantity-based instruments appear
to have no impact in pulling technology exploration activities.

These results show that different types of policy instruments
may  have differentiated effects on technology exploration and
exploitation activities, and hence on the dynamics of innovation
in different technological trajectories. With regard to the case
under scrutiny, such evidence confirms concerns raised by the
international community (IEA, 2011a) which has suggested that
an unbalanced policy mix  mainly based on pervasive public sup-
port tools directed toward market exploitation may potentially
lead to reducing the propensity to engage in exploration activ-
ities, thus favouring the emergence of a technological lock-in.
However, results also show that technology exploration activities
leading to the generation of innovations in advanced biofuels can-
not rely only on technology-push policies, but that the expectations
on the growth of demand induced by deployment policies tend
to increase the incentives towards exploratory innovative invest-
ments. Here, the dynamic incentives related to the adoption of
price-based mechanisms are found to be effective in favouring tech-
nology exploration by creating a constant demand for innovation.

6. Conclusions

In this paper we  have analysed the role of demand-pull and
technology-push policy instruments in shaping innovation activ-
ities in the biofuels sector. More specifically, the analysis builds
upon recent contributions to the differentiated effects of these two
categories of instruments on the dynamics of environmental inno-
vation at different stages of technological maturity. In this respect,
the present paper offers a systematic study based on an econo-
metric analysis focused on the biofuels domain, a sector which is
expected to substantially contribute to decreasing GHG emissions
and improve the sustainability of the transport sector and which is
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characterized by a pervasive role of public policies, in particular on
the demand side.

The role of different policy instruments has been analysed by
considering the diverse stages of maturity of biofuel technolo-
gies. In addition, the differentiated effects of demand-pull policies
have been addressed by distinguishing between price-based and
quantity-based instruments.

The empirical investigation relies on an original source of infor-
mation that gathers international patents in the biofuels sector
collected using a keyword-based methodology and organized in
order to distinguish between different technology generations.
Such information has been matched with a wide range of country-
level public policies specifically designed to sustain the biofuels
sector either by quantity and price-based deployment instruments
and technology-push instruments.

The econometric analysis has been designed to test five specific
research hypotheses grounded on previous relevant literature. Our
results can be summarized as follows. First, by looking at the gen-
eral innovation performance in the biofuels sector, we  find that
both demand-pull and technology-push instruments are relevant
in shaping the speed of technological change, revealing that the
combination of both types of policy support is required to start a
positive dynamic evolution of the technological trajectory in the
biofuels sector.

Second, we find that at a general level price-based deployment
instruments display a greater impact on innovation activities with
regard to quantity-based instruments, providing a robust empiri-
cal evidence for the ongoing debate about the choice of the correct
deployment policies to be implemented. In this respect, the paper
makes a step beyond the current debate when the impact of dif-
ferent policy types is scrutinized by accounting for the different
degree of maturity of alternative technologies. When we  distin-
guish between first and advanced technological generations within
the biofuels domain, we find that in the former case innovation
activities mainly respond to demand-pull instruments, both price
and quantity-based. On the contrary, in the case of (less-mature)
advanced generation technologies, these are found to be influenced
by both demand-pull and technology-push public supports, with
price-based instruments displaying a greater innovation induce-
ment effect than quantity-based tools.

These results appear to have relevant analytical and policy
implications. Public policies seem to be effective in shaping the
dynamics of eco-innovation and a well-designed policy framework
therefore has the potential to allow innovation and energy sys-
tems to escape carbon lock-in. Moreover, our study provides new
insights into the importance of carrying out detailed analyses of
the mechanisms linking demand-pull and technology-push policies
with the rate, type and direction of innovation activities in environ-
mental technologies. Indeed, the effects of these instruments may

be significantly influenced by the specificities of sectors and the
different degree of maturity of technological options.

More specifically, these results perfectly fit the current debate
on the reform of policy incentive to renewable energies and in par-
ticular to biofuels occurring both in EU and the US. For instance,
according to the proposal for a new Directive for renewable energy
debated by the European Commission (EU, 2014), the key points to
be discussed in the near future regarding the biofuels support policy
setting concern both demand-pull and technology-push instru-
ments that aim to: (i) encourage the transition to advanced biofuels,
by inviting member states to promote the consumption of such bio-
fuels and requiring them to set specific national targets favoring
advanced biofuels; (ii) increase R&D investments in advanced bio-
fuels in order to speed up the transition from first to second and
third generation technologies.

The empirical results provided in this paper may  fuel such policy
debate by confirming that both demand-pull and technology-push
policies are valid support for stimulating innovation, but also by
suggesting that if advanced generation technologies are the main
policy objective, tax exemptions or other price-based mechanisms
should be preferred to targets and blending mandates. In addition,
the proposed analysis confirms the idea that public R&D efforts
are crucial when new technologies for advanced generation biofu-
els have to be promoted in order to reduce the potential risks of
technological lock-in within first generation technologies.

With regard to future research directions, our study contributes
to highlighting the importance of working on the design of policy
mix  in order to foster sustainable transition by providing appro-
priate incentives that favour technology exploration activities and
avoid the system being locked-in within the dominant technol-
ogy design. In this regard, further research is certainly needed to
study how policy instruments, both on the demand and the supply
side, interact and affect the intensity and the direction of tech-
nical change in environmental domains. Finally, considering the
potential strong interrelations between different policy tools, com-
plementarities and coordination at the national and supra-national
levels emerge as important aspects to be studied for policy design.
In this context, an important issue which is still poorly investi-
gated is represented by the role of international policy spillovers.
On the one hand, these may  influence the domestic propensity to
innovate since environmental and energy policies implemented by
foreign countries may  foster the conditions for the generation and
diffusion of new technologies also in the domestic context; on the
other hand, technology-push policies adopted by foreign countries
may  shape domestic technological capabilities, due to knowledge
spillover effects.

Appendix A.

Data description and main statistics.

Table A1 Variable definition and data sources.

Variable name Definition Source

Dependent variables
Patent count BioPat Patent count selected by keywords or technological

domain in BioPat
EPO via Thompson Innovation

Regressors
GERD % GDP Gross domestic expenditure on R&D as % of GDP OECD (2012)
Total patents per capita Total number of patent application by applicant per

1000 inhabitants
World Development Indicators (WDI) Online database
(World Bank,2013)
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Specific  patent stock Stock of past applied patents (calculated on past
values of the dependent variable as Eq. (5), decay
rate = 0.15 (Table 1))

EPO via Thompson Innovation

Carbon intensity Ratio between CO2 emissions (kt) and GDP in PPP
(current international $)

WDI

Energy consumption Total energy used including petroleum products,
natural gas, electricity and combustible renewable
and waste as % of GDP in PPP (current international $)

WDI

Road energy consumption Total energy used in the road sector including
petroleum products, natural gas, electricity and
combustible renewable and waste as % of GDP in PPP
(current international $)

WDI

Export % GDP Total export value as % of GDP in PPP (current
international $)

WDI

Excise exemption (biofuels) Average ratio between value of excise tax reductions
for bioethanol and biodiesel (US $ per litre) and
energy tax (US $ per litre) weighted by specific fuel
consumption

International Institute for Sustainable Development’s
Global Subsidies Initiative (GSI, 2008), IEA (energy taxes),
OECD (fuel consumption)

Excise exemption (bioethanol) Ratio between value of excise tax reductions for
bioethanol (US $ per litre) and energy tax (US $ per
litre) weighted by total gasoline consumption

GSI, IEA (2011b), OECD

Excise  exemption (biodiesel) Ratio between value of excise tax reductions for
biodiesel (US $ per litre) and energy tax (US $ per
litre) weighted by total diesel consumption

GSI, IEA, OECD

Fuel  mandate Mandates for blending targets for ethanol and
biodiesel consumption on gasoline and diesel (% of
total fuel consumption)

GSI

Policy count in renewables Number of already existing policies with the aim of
fostering renewable energies production, adoption
and diffusion

IEA Policies and measures database for renewable energy
(IRENA)

RD  bioenergy Public R&D expenditures in Bioenergy as % of GDP IEA RD&D Online data service

Table A2 Descriptive statistics (variables in natural logarithm except for count and dummy  variables).

Variable name No Obs. Max  Min  Mean St. Dev. % of zero

Patent count total Biofuels (BioPat) 735 1958 0 74.48 233.27 22%
Patent count first gen (BioPat) 735 1226 0 47.15 155.19 30%
Patent count advanced gen (BioPat) 735 283 0 10.15 30.80 47%
GERD  % GDP 461 1.42 −1.61 0.42 0.60
Total  Patents per capita 607 8.02 −1.87 4.45 1.92
Specific patent stock (15% decay rate) 735 9.21 0 3.48 2.31
Export  % GDP 685 5.45 1.88 3.51 0.71
Energy  consumption 688 14.66 8.01 11.34 1.39
Road  energy consumption 665 1.97 −0.69 0.97 0.37
Carbon intensity 629 1.41 −0.02 0.85 0.26
Excise  exemption (biofuels) 399 1.16 0 0.08 0.14
Excise  exemption (bioethanol) 399 1.14 0 0.08 0.15
Excise  exemption (biodiesel) 399 1.18 0 0.08 0.14
Fuel  mandate 398 0.10 0 0.01 0.01
Total  policy count 714 14.00 0 0.65 1.46
RD  bioenergy 406 7.70 −4.34 2.83 1.77

Note: All variables including zeros as valuable information when transformed logs were treated as value + 1 in order to retain all useful information.

Table A3 Correlation matrix.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

(1) Patent count total biofuels (BioPat) 1
(2) Patent count first gen (BioPat) 0.99 1
(3)  Patent count advanced gen (BioPat) 0.94 0.95 1
(4) GERD % GDP 0.38 0.38 0.37 1
(5)  Total patents per capita 0.60 0.60 0.59 0.84 1
(6) Specific patent stock (15% decay rate) 0.70 0.69 0.68 0.59 0.65 1
(7)  Export % GDP −0.64 −0.63 −0.53 0.01 −0.30 −0.40 1
(8) Energy consumption 0.60 0.58 0.56 0.36 0.47 0.82 −0.66 1
(9)  Road energy consumption 0.04 0.03 -0.05 0.11 −0.05 0.11 −0.35 0.47 1
(10) Carbon intensity 0.19 0.19 0.20 −0.42 −0.16 0.10 −0.32 0.16 0.07 1
(11)  Excise exemption (biofuels) −0.05 −0.03 0.06 0.14 0.02 0.18 0.14 0.07 −0.03 −0.17 1
(12) Excise exemption (bioethanol) −0.03 −0.01 0.07 0.16 0.04 0.20 0.13 0.12 0.00 −0.19 0.97 1
(13)  Excise exemption (biodiesel) −0.07 −0.06 0.04 0.11 0.01 0.14 0.14 0.01 −0.07 −0.13 0.97 0.88 1
(14)  Fuel mandate −0.09 −0.07 0.04 0.09 −0.05 0.11 0.16 0.02 −0.02 −0.16 0.69 0.62 0.72 1
(15)  Total policy count 0.20 0.20 0.22 0.28 0.24 0.41 −0.34 0.57 0.45 0.08 0.38 0.39 0.34 0.35 1
(16)  RD bioenergy 0.58 0.57 0.60 0.58 0.69 0.78 −0.41 0.71 0.15 0.13 0.24 0.27 0.19 0.16 0.52 1
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Table A4a
Robustness check for alternative innovation measures in Table 2 – GERD.

(1) (2) (3) (4) (5) (6) (7) (8)

GERD % GDP(t − 1) 1.397*** 1.354*** 1.390*** 1.412*** 1.360*** 1.328*** 1.400*** 1.391***

(8.50) (8.29) (8.43) (8.54) (8.29) (7.90) (8.49) (8.46)
Carbon intensity(t − 1) −0.614 −0.557 −0.610 −0.772 −0.863* −0.566 −0.845

(−1.20) (−1.07) (−1.19) (−1.54) (−1.68) (−1.06) (−1.60)
Policy  count in renewables(t − 1) −0.055 −0.041

(−0.92) (−0.68)
Excise exemption (biofuels) (t − 1) 0.797*** 0.888*** 0.805*** 0.781*** 0.807***

(3.65) (4.18) (3.69) (3.50) (3.73)
Excise  exemption (bioethanol)(t − 1) 0.712***

(3.96)
Excise exemption (biodiesel)(t − 1) 0.659***

(2.72)
Fuel  mandate(t − 1) 4.321 1.322 1.097

(1.01) (0.32) (0.27)
Public  R&D (bioenergy)(t − 1) 0.065**

(2.41)
Export % GDP(t − 1) 0.599*** 0.638*** 0.572*** 0.541*** 0.634*** 0.524*** 0.595*** 0.688***

(3.29) (3.45) (3.04) (2.98) (3.35) (2.71) (3.28) (3.84)
Road  energy consumption(t − 1) 0.230 0.126 0.224 0.281 0.192 0.238 0.221 0.315

(0.69)  (0.38) (0.67) (0.85) (0.57) (0.69) (0.66) (0.95)
Country specialization dummy  in
biodiesel

0.637 0.608 0.662 0.645 0.634 0.765 0.680 0.672
(1.31)  (1.32) (1.37) (1.30) (1.33) (1.54) (1.36) (1.35)

N  294 294 294 294 294 294 294 294
ll  −1035 −1035 −1043 −1034 −1038 −1041 −1036 −1033
$2 285 279 287 291 268 255 287 302

z statistics in parentheses.
* p < 0.1.

** p < 0.05.
*** p < 0.01.

Table A4b
Robustness check for alternative innovation measures in Table 2 – specific patent stock.

(1) (2) (3) (4) (5) (6) (7) (8)

Patent stock in BioPat(15%)(t − 1) 0.696*** 0.668*** 0.711*** 0.704*** 0.679*** 0.678*** 0.699*** 0.685***

(10.52) (10.62) (10.46) (10.71) (10.26) (10.23) (10.59) (10.34)
Carbon  intensity(t − 1) −0.909** −0.953** −0.893** −1.021*** −0.981** −0.822* −0.932**

(−2.27) (−2.37) (−2.24) (−2.59) (−2.36) (−1.93) (−2.20)
Policy  count in renewables(t − 1) 0.031 0.052

(0.56) (0.96)
Excise exemption (biofuels)(t − 1) 0.524*** 0.644*** 0.511*** 0.489*** 0.503***

(3.20) (4.00) (3.12) (2.82) (2.97)
Excise  exemption (bioethanol)(t − 1) 0.512***

(3.68)
Excise exemption (biodiesel)(t − 1) 0.400**

(2.26)
Fuel  mandate(t − 1) 5.232 2.083 2.109

(1.57) (0.61) (0.62)
Public  R&D (bioenergy)(t − 1) 0.054**

(2.32)
Export % GDP(t − 1) 0.680*** 0.811*** 0.717*** 0.645*** 0.698*** 0.654*** 0.684*** 0.782***

(4.49) (5.03) (4.68) (4.36) (4.40) (4.21) (4.58) (5.14)
Road  energy consumption(t − 1) 0.263 0.280 0.316 0.308 0.214 0.139 0.233 0.321

(0.91) (0.96) (1.08) (1.07) (0.72) (0.46) (0.80) (1.09)
Country specialization dummy  in
biodiesel

0.197 0.414 0.178 0.164 0.209 0.321 0.283 0.208
(0.42) (0.98) (0.38) (0.35) (0.46) (0.68) (0.59) (0.43)

N  341 342 341 341 341 341 341 341
ll  −1165 −1165 −1174 −1164 −1168 −1169 −1165 −1163
$2 434 414 432 447 418 417 436 454

z statistics in parentheses
* p < 0.1.

** p < 0.05.
*** p < 0.01.
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Table  A4c
Robustness check for endogeneity of policy variables in Table 2 (GMM estimator for count variables).

(1) (2) (3) (4) (5) (6) (7) (8)

Total patents per capita(t − 1) −0.189 −0.246 −0.135 −0.154 −0.206 −0.231 −0.174 −0.209
(−0.59) (−0.76) (−0.41) (−0.50) (−0.66) (−0.86) (−0.61) (−0.77)

Carbon intensity(t − 1) −1.90** −1.819** −1.791** −2.242*** −2.234*** −1.988*** −1.910**

(−2.29) (−2.24) (−2.19) (−2.67) (−2.85) (−2.63) (-2.32)
Policy  count in renewables(t − 1) −0.053 −0.038

(−1.44) (−1.07)
Excise exemption (biofuels)(t − 1) 0.782* 1.053*** 0.825** 0.830** 0.904***

(1.95) (2.58) (2.23) (2.85) (2.58)
Excise  exemption (bioethanol)(t − 1) 0.834***

(2.84)
Excise exemption (biodiesel)(t − 1) 0.436

(0.81)
Fuel  mandate(t − 1) 4.466 −1.672 −1.463

(0.50) (−0.26) (−0.24)
Public R&D (bioenergy)(t − 1) 0.108***

(2.57)
Export  % GDP(t − 1) 1.543*** 1.605*** 1.529*** 1.505*** 1.469*** 1.414*** 1.519*** 1.596***

(4.31) (3.70) (4.17) (4.85) (3.37) (3.35) (4.04) (4.22)
Road  energy consumption(t − 1) 2.744*** 2.568*** 2.562*** 2.876*** 2.527*** 2.380*** 2.769*** 2.771***

(5.42) (5.54) (4.95) (5.97) (4.52) (4.37) (5.60) (5.85)

N  323 324 323 323 323 323 323 323

z statistics in parentheses.
* p < 0.1.

** p < 0.05.
*** p < 0.01.
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Fig. A1. Robustness check for dependent variable patent count BioPat: observed and predicted probability assuming a Poisson and a negative binomial univariate distribution.

Appendix B.

Synthetic description of BioPat.
The main purpose of BioPat is to gather full information on

the technological patterns of the biofuels sector encompassing
drawbacks in standard IPC class selection methods. The patents
related to biofuels are spread across several IPC classes because
the technology that characterizes the sector basically consists of
thermo/bio-chemical processes and very common raw materi-
als that can find applications in several fields. For this purpose,
a keyword analysis seems to be more appropriate than using
IPC codes as given by GI classification (WIPO, 2011) in order to

include all biofuel-related technologies. The last decade’s litera-
ture on keyword analysis basically consists of selections of words
from already existing keyword lists or the extraction of keywords
from titles and, at least, abstracts of patents and scientific publica-
tions.

According to Suurs and Hekkert (2009a, 2009b), the biofu-
els sector can be defined as an emerging technological domain,
meaning that technologies that are already well established in the
production process constitute only a small part of the technolog-
ical options that are under development in the whole sector. As
emphasized in Costantini et al. (2014), the rapid dynamics of a
biofuels innovation system in terms of increasing technological
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Fig. B1. Alternative structures of database and classifications using keywords in BioPat.

opportunities and exploring new trajectories is well described by
the investigation into emerging new IPC classes where patents are
classified, revealing that technologies directly or indirectly related
to the biofuels sector are rapidly expanding in several directions
and consist both of complementary innovations in an established
technological domain or more radical inventions related to new
emerging technological trajectories.

The first step towards building BioPat was the selection of a
keyword list to be used in patent research engines. The search for
keywords was divided into two different steps: the first one was
dedicated to a search for “raw material” keywords, where a relevant
number of technical and scientific papers was analysed in order

to pick out the terms describing the biomass used (or potentially
used) to produce biofuels. The second step consisted of an accu-
rate description of the “transformation process” currently known
in biofuels production, including pre-treatment processes, chem-
ical agents involved in the process and technical instrumentation
used in it. Hence, the final selection of keywords comes from an
iterative procedure which allows results from scientific articles to
be compared with patent results. This first step led to the selection
of several keywords which showed positive results both in patents
and articles via Scopus. Then, keywords extracted by examining
scientific publications and Scopus were validated and completed
by technical experts.

Table B1
Validation of BioPat for EPO patents: % of patents related to the biofuels sector.

Type GI % of biofuel-related patents GI filtered by keywords % of biofuel-related patents

Direct application 5% 28% 15% 40%
Indirect application 14% 72% 23% 60%
Total  19% 38%

Source: Costantini et al. (2014).

Table B2
Structure and classifications using keywords in BioPat.

Type Keyword Bloc Generation Biodiesel Bioethanol Biogas

Algae Chlorella vulgaris 3–4 2 1 1 0
Algae  Dunaliella tertiolecta 3–4 2 1 1 0
Livestock Anaerobic digestion 8 1 0 0 1
Crop  Corn 2 1 0 1 0
Crop  Maize 2 1 0 1 0
Crop  Colza 1 1 1 0 0
Crop  Soybean 2 1 0 1 0
Ligno  Switchgrass 4 2 0 1 0
Ligno  Miscanthus 4 2 0 1 0
Ligno  Poplars 4 2 0 1 0
Livestock Edible tallow 3–5 2 1 0 1
Livestock Animal manure 3–5 2 1 0 1
Oleaginous Palm oil 1 1 1 0 0
Oleaginous Vegetable oil 1 1 1 0 0
Oleaginous Coconut oil 1 1 1 0 0
Oleaginous Jatropha 3 2 1 0 0
Sugar  Sugarcane 2 1 0 1 0
Sugar  Sorghum 2 1 0 1 0
Sugar  Bagasse 2 1 0 1 0

Source: adapted from Costantini et al. (2014).
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The patents were downloaded using Thomson innovation. The
selection method was applied by searching for keywords in the title,
abstract, description and claim fields. According to the IPC terms of
reference, patent novelty is usually classifiable following two main
principles: a patent can be characterized by engineering content
or by bio-chemical content. The latter is true for the biofuels sec-
tor and represents an explanation of the cross-cutting shape that
it assumes in the IPC classification. In light of this, unlike the stan-
dard procedure where only title and abstract field are included, we
decided to expand the use of keywords to the “patent descriptions”
and “patent claims” fields in order to exploit the possibility of catch-
ing all patents that have a hypothetical, and not necessarily direct,
function in the biofuels production process.

All process-specific and raw material keywords were used in the
Thomson innovation jointly with a more general keyword (such
as bio-diesel, bio-ethanol, bio-gas, bio-fuels) in order to exclude
patents that share the same raw materials or transformation pro-
cesses (pharmaceutics and cosmetics are strongly related to the
biofuels sector, for example).

All the patents included in BioPat amount to 1,293,197 records,
including duplicates (21% EPO, 59% USPTO, 20% WIPO, consider-
ing both applications and grants). Patents included in BioPat were
compared with those obtained by using IPC codes included in GI,
in order to consider to what extent the two classification systems
overlap. It is worth mentioning that a large amount of patents
included in green inventory (GI) is also present in BioPat, hence
resulting in the possibility of applying a hybrid method where key-
words used for BioPat could be used as searching criteria in GI
output. According to Costantini et al. (2014), the validation process
of the patents included in GI and patents in GI filtered by BioPat
keywords shows that this second criterion is helpful in selecting
patents whose main object is closely related to the biofuels sector,
allowing those patents included in GI but out of the biofuels sector
to be dropped.

More specifically, a group of experts was interviewed in order
to distinguish between patents with a direct application in the bio-
fuel production process and an indirect one. We  downloaded the
description field of the whole universe of patents belonging to GI
classes from which we randomly selected a 1% sample. Experts
were then asked to validate the same GI classes filtered with key-
words. The sample was built as follows: from the EPO patents in
BioPat database, the patents that showed at least one IPC class
belonging to GI were selected, the duplicates eliminated and 1%
of the selected patents randomly extracted.

The results of the validation are summarized in Table B1 which
shows that the keywords selection method applied to GI classes
doubled the percentage of patents related to the sector. Moreover,
the results of the validation procedure also showed that the share
of patents directly related to the investigated sector increases when
GI classes are filtered by the selected keywords.

As a mere example of how data in BioPat can be classified, Fig. B1
and Table B2 represent the disaggregation between raw materials
and processes which in turn can be divided into conventional and
advanced generation biofuels and further subdivided into the final
product, bioethanol or biodiesel.

The database structure allows the building of several alter-
native statistics on patent count according to the topic under
investigation. For the purpose of the current work, we  used block
classification, for instance, referring to bioethanol vs. biodiesel,
summing up blocks referred to the specific final good and after that,
dropping all duplicate patents in each sub-domain in order to avoid
double counting. It is worth mentioning that in this specific dis-
tinction, the same patent could be classified both as bioethanol and
biodiesel. Such patents were not dropped from one or the other sub-
domain since they refer to patents which are valid for producing
both liquid biofuels.

Source: adapted from Costantini et al. (2014)
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