
4. Mathematical models used in engineering
structural analysis

In this chapter we pursue a formidable task − to present the most important
mathematical models in structural mechanics. In order to best situate our
present objectives, let us review some previous developments.

In Chapter 1, the hierarchical modeling process was introduced. The cen-
tral idea of this process is to provide a rational framework to select appro-
priate mathematical models to address well defined questions of engineering
interest. For structural analysis, there are a number of mathematical models
and there is the need to “know” these models to perform the hierarchical
modeling process (see Chapter 1).

In Chapter 2, we discussed fundamental conditions that should be met
whichever structural mechanics mathematical model is established and solved.

In Chapter 3, we motivated the need for a 3-D formulation of structural
problems and presented the highest hierarchical mathematical model for an
isotropic material and linear analysis − the 3-D elasticity model. In the cur-
rent chapter, based on our earlier discussion of the 3-D elasticity model, we
present the remaining most relevant mathematical models of structural me-
chanics. We start with plane elasticity and then move on to bars, plates and
shells.

4.1 Plane elasticity

We refer to plane elasticity as the set of mathematical models which describe
the behavior of a body using only displacements in a plane. The out-of-
plane behavior is assumed or inferred from the in-plane behavior. In the
following, we present the plane strain, the plane stress and the axisymmetric
mathematical models.

4.1.1 The plane strain model

The plane strain model could have been discussed at the end of Chapter 3 as
an example of a model which leads to the exact solution of the 3-D elasticity
problem when some geometric and loading restrictions apply.

In order to motivate the plane strain assumptions let us consider the dam
schematically shown in Figure 4.1. The dam corresponds geometrically to a
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prismatic solid. The loading due to the water and gravity is the same for
every cross-sectional plane. Now, suppose that at the end sections the out-
of-plane displacements w(x, y) are prevented but the in-plane displacements
u(x, y) and v(x, y) are free. At the base all displacements are prevented.
Under these conditions, by symmetry, the displacements are clearly the same
for every section of the dam. Hence, the complete behavior of the dam can
be described by the displacements u(x, y) and v(x, y) at a typical section.

Much aligned with the semi-inverse method, which was introduced for
the torsion problem, we formulate the plane strain problem by introducing
displacement assumptions for a prismatic solid.

Fig. 4.1. Schematic representation of a dam

Kinematics

Formally, let us consider a prismatic solid as shown in Figure 4.2, whose
cross-sections are parallel to the xy plane. Motivated by the above discussion,
we introduce the following displacement assumptions

u = u(x, y) (4.1)

v = v(x, y) (4.2)

w = 0. (4.3)

Strain compatibility

Using the compatibility relations

εxx =
∂u

∂x
εyy =

∂v

∂y
γxy =

∂u

∂y
+

∂v

∂x

we obtain



4.1 Plane elasticity 181

Fig. 4.2. Generic prismatic solid

εxx = εxx(x, y) (4.4)

εyy = εyy(x, y) (4.5)

γxy = γxy(x, y) (4.6)

due to the assumptions implicitly given in equations (4.1) and (4.2). Still
considering the strain compatibility relations and equations (4.1) to (4.3), we
obtain

γyz =
∂v

∂z
+

∂w

∂y
= 0

γzx =
∂w

∂x
+

∂u

∂z
= 0

εzz =
∂w

∂z
= 0.

Constitutive relations

Let us consider next the constitutive equations, i.e., the generalized
Hooke’s law (recall equation (3.110)). Starting with the component εzz

εzz = 0 =
τzz

E
− ν

E
(τxx + τyy)

which leads to
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τzz = ν(τxx + τyy) (4.7)

and considering the in-plane normal strain components, we can write

εxx =
τxx

E
− ν

E
(τyy + τzz) =

(
1 − ν2

)
E

τxx − ν (1 + ν)
E

τyy (4.8)

εyy =
τyy

E
− ν

E
(τxx + τzz) =

(
1 − ν2

)
E

τyy − ν (1 + ν)
E

τxx. (4.9)

Of course, we have used (4.7) to derive the final forms of equations (4.8) and
(4.9) . Considering the shear strains and stresses, we obtain

γxy =
τxy

G
=

2 (1 + ν)
E

τxy (4.10)

and

τxz = 0 (4.11)

τyz = 0 (4.12)

since γxz = 0 and γyz = 0. It is convenient to define the following column
matrices

τ =

⎡⎢⎢⎢⎣
τxx

τyy

τxy

⎤⎥⎥⎥⎦ , ε =

⎡⎢⎢⎢⎣
εxx

εyy

γxy

⎤⎥⎥⎥⎦ .

Therefore, from (4.8) , (4.9) and (4.10)

ε = Dτ (4.13)

where

D =
(1 + ν)

E

⎡⎢⎢⎢⎣
(1 − ν) −ν 0

−ν (1 − ν) 0

0 0 2

⎤⎥⎥⎥⎦
which can be inverted leading to

τ = D−1ε = Cε (4.14)

where

C =
E (1 − ν)

(1 + ν) (1 − 2ν)

⎡⎢⎢⎢⎣
1 ν

1−ν 0
ν

1−ν 1 0

0 0 1−2ν
2(1−ν)

⎤⎥⎥⎥⎦ .
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We note that the same notation (τ, ε, D and C) was used for the 3-D
problem for which we have, in general, all non zero stress and strain com-
ponents and additional entries in the constitutive matrices. Of course, the
correct meaning of these matrices is implied by the context. We also note
that τzz, εzz were not considered in the above definitions, since εzz = 0 and
τzz is obtained from τxx and τyy by equation (4.7). Therefore τ and ε, as
defined, fully characterize the stress and strain states. We remark that equa-
tions (4.14), (4.4), (4.5) and (4.6) imply that the stress components τxx, τyy

and τxy are functions of x, y only, i.e., τxx = τxx(x, y), τyy = τyy(x, y) and
τxy = τxy(x, y).

Equilibrium

We need to enforce the equilibrium conditions which read

∂τxx

∂x
+

∂τxy

∂y
+

∂τxz

∂z
+ fB

x = 0 (4.15)

∂τxy

∂x
+

∂τyy

∂y
+

∂τyz

∂z
+ fB

y = 0 (4.16)

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
+ fB

z = 0. (4.17)

Introducing (4.7), (4.11), (4.12) and taking into account that τxx = τxx(x, y),
τyy = τyy(x, y), τxy = τxy(x, y), we conclude that fB

x = fB
x (x, y), fB

y =
fB

y (x, y) and fB
z = 0. Otherwise, we would not be able to satisfy the equilib-

rium conditions, which are then expressed by

∂τxx

∂x
+

∂τxy

∂y
+ fB

x = 0

∂τxy

∂x
+

∂τyy

∂y
+ fB

y = 0.

Note that as long as fB
z = 0, equation (4.17) is identically satisfied. Also,

we should interpret the conditions on fB
x , fB

y and fB
z as restrictions on the

loading such that the displacement assumptions given in (4.1) to (4.3) are
appropriate.

Boundary conditions

We need to consider next the boundary conditions. Although, when we
introduced the plane strain problem, we did not distinguish between displace-
ment and force boundary conditions, we can now consider the most general
set of boundary conditions which would be compatible with the basic as-
sumptions expressed by equations (4.1) to (4.3). Referring to Figure 4.2, let
us consider first the lateral surface. On part of the lateral surface, Su, we can
prescribe displacements as long as Su is given by the extrusion along the z
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direction of a curve Lu defined at a cross-section boundary as schematically
shown in Figure 4.3. The prescribed displacements are defined by

u(x, y, z) = û(x, y) (4.18)

v(x, y, z) = v̂(x, y) (4.19)

for any point on Su.

Fig. 4.3. Schematic representation of Su, Sf and Lu, Lf

Let Sf be the complementary part of the lateral surface defined by the
extrusion along z of Lf , the complementary curve to Lu, as also shown in
Figure 4.3. Since the solid is prismatic, the normal unit vector at every point
on the lateral surface is given by n = nxex + nyey and the force boundary
condition reads

Tn = fS

for every point on Sf , which in components is given by⎡⎢⎢⎢⎣
τxx τxy 0

τxy τyy 0

0 0 τzz

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

nx

ny

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
fS

x

fS
y

fS
z

⎤⎥⎥⎥⎦ .

Hence

fS
x = τxxnx + τxyny (4.20)

fS
y = τxynx + τyyny (4.21)

fS
z = 0. (4.22)
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The above equations establish additional restrictions for the external load.
In fact, besides the restriction given by equation (4.22), equations (4.20) and
(4.21) imply that fS

x = fS
x (x, y) and fS

y = fS
y (x, y) since τxx and τyy are

functions of x, y only and the normal unit vector at a point on the lateral
surface does not change with the coordinate z.

The top and bottom surfaces are peculiar1 with respect to the imposition
of boundary conditions. In fact, in order to be compatible with the displace-
ment assumption w = 0 we should consider that w = ŵ = 0 at the top and
bottom surfaces. The in-plane displacements, however, can not be restrained.
For example, on the top surface n = ez and the surface tractions fS = Tn
are given by⎡⎢⎢⎢⎣

τxx τxy 0

τxy τyy 0

0 0 τzz

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0

0

1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
fS

x

fS
y

fS
z

⎤⎥⎥⎥⎦ .

Therefore

fS
x = 0

fS
y = 0

fS
z = τzz = ν(τxx + τyy) (4.23)

which shows that there can not be any surface tractions applied tangentially
to the plane and the surface traction in the direction ez is given by (4.23).
Here fS

z can be interpreted as a reactive surface traction compatible with the
restriction given by w = 0. Analogous derivations would lead for the bottom
surface for which n = −ez to

fS
x = 0

fS
y = 0

fS
z = −τzz = −ν(τxx + τyy).

Hence, we may say that the top and bottom surfaces behave as if supported
on rollers, free to roll into the x and y directions.

Differential formulation

Now we can summarize the formulation of the plane strain problem. Let
us consider a prismatic solid as shown in Figure 4.3. On the lateral surface
Su we have prescribed displacements as given by (4.18) and (4.19). On the
lateral surface Sf we have prescribed forces defined by
1 In fact, this is an example in which at a point on the surface the displacement is

restricted in a direction and the surface tractions are prescribed in the remaining
directions (see Section 2.1.1)
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fS
x = f̂S

x (x, y)

fS
y = f̂S

y (x, y)

fS
z = 0 (4.24)

and on the top and bottom surfaces w is prescribed to be zero and fS
x =

fS
y = 0.

Fig. 4.4. Domain of unit thickness representing the prismatic solid, A = cross-
section, V = volume = 1 × A, Su = Lu × 1, Sf = Lf × 1

Under these conditions the solution of the 3-D elasticity problem can be
formulated in a plane as defined in Figure 4.4, for the indicated solid of unit
thickness.

Differential formulation of the plane strain model

Given fB
x = fB

x (x, y) and fB
y = fB

y (x, y) defined in V , find u(x, y), v(x, y);
τxx = τxx(x, y), τyy = τyy(x, y) and τxy = τxy(x, y); εxx = εxx(x, y), εyy =
εyy(x, y) and γxy = γxy(x, y) such that

∂τxx

∂x
+

∂τxy

∂y
+ fB

x = 0 (4.25)

∂τxy

∂x
+

∂τyy

∂y
+ fB

y = 0 (4.26)
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εxx =
∂u

∂x
(4.27)

εyy =
∂v

∂y
(4.28)

γxy =
∂u

∂y
+

∂v

∂x
(4.29)

τ = Cε (4.30)

for every point in V ;

fS
x = f̂S

x (x, y) (4.31)

fS
y = f̂S

y (x, y) (4.32)

for every point in Sf and

u = û(x, y) (4.33)

v = v̂(x, y) (4.34)

for every point in Su
2.

Once the solution to this plane problem has been found, the solution for
the 3-D problem is given by appending

w = 0 (4.35)

εzz = γxz = γyz = 0 (4.36)

τxz = τyz = 0 (4.37)

τzz = ν(τxx + τyy). (4.38)

4.1.2 The plane stress model

The motivation for the formulation of the plane stress model is the analysis of
a thin plate subjected to loading in its own plane. Consider the plate shown in
Figure 4.5 with its mid-surface in the xy plane. We assume that both fB and
fS have no component into the z direction, the top and the bottom surfaces
are free from any imposed surface tractions and the thickness of the plate,
denoted by h, is small when compared to a characteristic length dimension
on the plane of the plate that is h

L � 1.

2 Note that in each of the problem formulations given in Section 3.5 and Chapter 4,
we assume that continuous displacements are sought and that sufficient boundary
conditions on Su are prescribed to make the solution possible
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Fig. 4.5. Thin plate subjected to loading in its plane

Based on this problem description, specific assumptions can now be in-
troduced regarding the stress field and the loading.

Stress assumptions

For the plate characterized in Figure 4.5, we assume that

τzz = τxz = τyz = 0 (4.39)

and taking into account that the plate is thin, we further assume that

τxx = τxx(x, y), τyy = τyy(x, y), τxy = τxy(x, y). (4.40)

Equilibrium

The equilibrium equations given in (3.114) can be simplified and become

∂τxx

∂x
+

∂τxy

∂y
+ fB

x = 0 (4.41)

∂τxy

∂x
+

∂τyy

∂y
+ fB

y = 0. (4.42)

Therefore equations (4.41) and (4.42) are now phrased in a two-dimensional
domain leading also to the restrictions fB

x = fB
x (x, y) and fB

y = fB
y (x, y).

Constitutive relations

In light of the stress assumptions (4.39), the constitutive equation can be
simplified leading to
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εxx =
τxx

E
− ν

E
τyy

εyy =
τyy

E
− ν

E
τxx

εzz = − ν

E
(τxx + τyy)

γxy =
τxy

G
=

2 (1 + ν)
E

τxy

γxz =
τxz

G
= 0

γyz =
τyz

G
= 0.

We can organize the constitutive relations in matrix form as given by
(4.13) and (4.14) where

D =
1
E

⎡⎢⎢⎢⎣
1 −ν 0

−ν 1 0

0 0 2 (1 + ν)

⎤⎥⎥⎥⎦ (4.43)

and

C =
E

1 − ν2

⎡⎢⎢⎢⎣
1 ν 0

ν 1 0

0 0 1−ν
2

⎤⎥⎥⎥⎦ . (4.44)

Note that we use the same stress and strain column matrix definitions as for
the plane strain problem.

Differential formulation

Now we are ready to characterize the plane stress problem. Let us consider
the 3-D problem described in Figure 4.5 where a plate is subjected to a field
of body forces

fB
x = fB

x (x, y)

fB
y = fB

y (x, y)

fB
z = 0.

Displacements are prescribed in Su according to

u(x, y, z) = û(x, y)

v(x, y, z) = v̂(x, y)
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and the tractions are prescribed on Sf as

fS
x = f̂S

x (x, y)

fS
y = f̂S

y (x, y)

fS
z = 0.

The top and bottom surfaces are free from any surface tractions.
The plane stress problem associated with the 3-D problem described above

admits a formulation in a plane domain as generically described in Figure 4.4,
but now the thickness is h.

Differential formulation of the plane stress model

Given fB
x = fB

x (x, y) and fB
y = fB

y (x, y) defined in V = A · h, find u(x, y),
v(x, y); τxx = τxx(x, y), τyy = τyy(x, y) and τxy = τxy(x, y); εxx = εxx(x, y),
εyy = εyy(x, y), γxy = γxy(x, y) such that

∂τxx

∂x
+

∂τxy

∂y
+ fB

x = 0 (4.45)

∂τxy

∂x
+

∂τyy

∂y
+ fB

y = 0 (4.46)

εxx =
∂u

∂x
(4.47)

εyy =
∂v

∂y
(4.48)

γxy =
∂u

∂y
+

∂v

∂x
(4.49)

τ = Cε (4.50)

for every point in V ;

fS
x = f̂S

x (x, y) (4.51)

fS
y = f̂S

y (x, y) (4.52)

for every point in Sf ; and

u = û(x, y) (4.53)

v = v̂(x, y) (4.54)

for every point in Su.
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We note that the solution of the plane stress problem appended by

τzz = τxz = τyz = 0 (4.55)

γxz = γyz = 0 (4.56)

εzz = − ν

E
(τxx + τyy) (4.57)

and by w(x, y, z) obtained by the integration of (4.57) with respect to z is not
the exact solution of the 3-D problem just described. The reason is that we
started from some assumptions on the stress field and did not impose all the
compatibility relations (3.115). The 3-D strain field given by the εxx, εyy and
γxy solution of the plane stress problem appended by (4.56) and (4.57) does
not always lead to a compatible 3-D displacement field, that is, continuous
displacements u(x, y, z), v(x, y, z) and w(x, y, z) that satisfy the displacement
boundary conditions (with w on Su free).

Namely, in general, the solution of the plane stress problem leads to
stresses τxx and τyy which vary with (x, y). Hence, from (4.57)

εzz = εzz (x, y)

and

∂w

∂z
= εzz (x, y)

which integrated with respect to z leads to

w(x, y, z) = zεzz (x, y) + f(x, y)

where f(x, y) is an arbitrary function of x and y. Assuming that w(x, y, z) is
zero at z = 0, we obtain f(x, y) = 0 and

w(x, y, z) = zεzz (x, y) .

Now, we can evaluate

γyz =
∂w

∂y
+

∂v

∂z
= z

∂εzz

∂y

which is, in general, zero only for z = 0. Analogously

γxz =
∂w

∂x
+

∂v

∂z
= z

∂εzz

∂x
.

Hence the transverse shear strains obtained from the displacement field
are not zero showing that, in general, the plane stress solution is not the
exact solution of the 3-D elasticity problem. However, it is possible to show
(Timoshenko and Goodier, 1970) that the solutions of the plane stress prob-
lem and of the related 3-D problem are “close” as long as the plate is thin.
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The 3-D solution has additional terms which are proportional to z2 leading
to small differences for the solution variables when the thickness is small.

We can appreciate from the above description that the plane strain and
plane stress models represent quite distinct behaviors and they each need to
be used considering the assumptions contained in the models. In particular,
the kind of restrictions imposed on the out-of-plane displacements, i.e., w in
the notation used above, helps to identify which model reflects best the behav-
ior of the physical problem. However, although there are distinctly different
behaviors, the mathematical formulations of these models lend themselves to
a unified presentation.

Consider the differential formulations of the plane strain and plane stress
problems given by equations (4.25) to (4.34) and (4.45) to (4.54), respec-
tively. We recognize that the equations for u(x, y), v(x, y), εxx(x, y), εyy(x, y),
γxy(x, y), τxx(x, y), τyy(x, y) and τxy(x, y) are identical except that C, which
expresses the constitutive equation, is different. However, if we define, for
ν < 0.5,

E∗ =
E

1 − ν2
(4.58)

and

ν∗ =
ν

1 − ν

as the effective Young’s modulus and effective Poisson’s ratio and introduce
these in place of E and ν in the C matrix for the plane stress model, we
obtain

C =
E∗

1 − ν2∗

⎡⎢⎢⎢⎣
1 ν∗ 0

ν∗ 1 0

0 0 1−ν∗
2

⎤⎥⎥⎥⎦ . (4.59)

Then introducing the definitions of E∗ and ν∗, we obtain

C =
E

1−ν2(
1 − ν

1−ν

)(
1 + ν

1−ν

)
⎡⎢⎢⎢⎣

1 ν
1−ν 0

ν
1−ν

1 0

0 0
1− ν

1−ν

2

⎤⎥⎥⎥⎦
which gives

C =
E (1 − ν)

(1 + ν) (1 − 2ν)

⎡⎢⎢⎢⎣
1 ν

1−ν 0
ν

1−ν 1 0

0 0 1−2ν
2(1−ν)

⎤⎥⎥⎥⎦
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i.e., the C matrix for the plane strain model.
Therefore, both the plane stress and the plane strain models can be for-

mulated with the same set of equations, for example (4.45) to (4.54), using
the definition of C given in (4.14) for plane stress and (4.59) for plane strain.
Of course, having the solution for the in-plane variables of the plane stress
model, we can readily obtain the solution for the in-plane variables of the
plane strain model by replacing E by E∗ and ν by ν∗ in the analytical ex-
pressions for these variables. The solution for the remaining variables is given
by (4.35) to (4.38) for the plane strain model and by (4.55) to (4.57) for the
plane stress model.

Since E∗ and ν∗ are larger than E and ν the plane strain model is stiffer
than the plane stress model. This fact is expected because the out-of-plane
displacements in the plane strain model are constrained to be zero.

Example 4.1

Study the solution of a thin plate subjected to its own weight as shown in
Figure 4.6. At the edge y = a a uniform distribution of surface tractions fS

= fS
y ey = ρgaey is applied (ρ is the density and g the acceleration due to

gravity) and at the three edges y = 0, x = −b/2 and x = b/2 there are
no externally applied surface tractions. To suppress rigid body motions the
displacements at point P (x = 0, y = a) are prevented and the plate is not
allowed to rotate about P .

Fig. 4.6. Plate subjected to gravity
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Solution

We consider a plane stress model and derive the solution. Due to gravity

fB
x = 0, fB

y = −ρg, fB
z = 0.

Since there are no externally applied surface tractions at the three edges
x = −b/2 and x = b/2 the stress components τxx and τxy should be zero at
these edges. Taking

τxx = 0 and τxy = 0

for any point in the domain, the equilibrium equation

∂τxx

∂x
+

∂τxy

∂y
+ fB

x = 0

is identically satisfied and

∂τxy

∂x
+

∂τyy

∂y
+ fB

y = 0

leads to

τyy = ρgy + f(x)

where f(x) is a function of x only. The boundary condition at y = a implies

fS
y = ρga = τyy(y = a) = ρga + f(x) ⇒ f(x) = 0

and, hence

τyy = ρgy. (4.60)

The free edge condition at the lower horizontal edge

fS
y (x, 0) = 0 = τyy(x, 0)

is verified by the τyy given in (4.60) .
We can obtain the strains using the constitutive equations

εxx =
τxx

E
− ν

E
τyy = − ν

E
τyy = − ν

E
ρgy

εyy =
τyy

E
− ν

E
τxx =

ρgy

E

γxy =
τxy

G
= 0

where E, ν and G = E
2(1+ν)

are respectively, as usual, the Young modulus,
the Poisson ratio and the shear modulus.
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To obtain the displacement field, we need to integrate the compatibility
relations. Consider

εxx =
∂u

∂x

which leads to

∂u

∂x
= − ν

E
ρgy ⇒ u(x, y) = − ν

E
ρgxy + f1(y) (4.61)

where f1(y) is a function of y only. Also

εyy =
∂v

∂y

leading to

∂v

∂y
=

ρgy

E
⇒ v(x, y) =

ρgy2

2E
+ f2(x) (4.62)

where f2(x) is a function of x only. The shear strain is given by

γxy =
∂u

∂y
+

∂v

∂x
= 0 = −νkx +

df1

dy
+

df2

dx
, k =

ρg

E
. (4.63)

Let us define

g1(x) = −νkx +
df2

dx
, g2(y) =

df1

dy
. (4.64)

Rewriting equation (4.63) using the definitions given in (4.64), we obtain

g1(x) + g2(y) = 0. (4.65)

We note that (4.65) has to hold for any (x, y) in the domain. Therefore

g1 = C2, g2 = −C2

where C2 is a constant. Using (4.64) yields

−νkx +
df2

dx
= C2

which by integration leads to

f2(x) = C2x +
νkx2

2
+ C3

and from (4.64)

df1

dy
= −C2 ⇒ f1(y) = −C2y + C4.



196 4. Mathematical models used in engineering structural analysis

Therefore

u = −νkxy − C2y + C4 (4.66)

v =
k

2
y2 + C2x +

νkx2

2
+ C3. (4.67)

Let us impose the kinematic boundary condition at point P

u(0, a) = −C2a + C4 = 0 (4.68)

and

v(0, a) =
ka2

2
+ C3 = 0. (4.69)

In order to impose that there is no rigid body rotation about point P , we
enforce that the horizontal infinitesimal fiber with origin at point P remains
horizontal. This condition is given by

∂v

∂x
(0, a) = 0.

From equation (4.67)

∂v

∂x
(0, a) = C2 ⇒ C2 = 0.

Therefore equation (4.68) gives

C4 = 0

and from (4.69)

C3 = −ka2

2
.

Introducing all the determined constant values into (4.66) and (4.67) leads
to

u = −νρg

E
xy

v =
ρg

2E

(
y2 + νx2 − a2

)
.

We note, as physically expected, the thickness h of the plate does not enter
the solution.

�
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Example 4.2

Consider now that Figure 4.6 defines the section of a 3-D prismatic solid
of length L in the z direction. At the end sections z = L/2 and z = −L/2
the displacements w(x, y) = 0 and the surface tractions fS

x = fS
y = 0. The

rotation about the line (x = 0, y = a, z) is prevented and the displacements u
and v of points on this line are also prevented. At the lateral surfaces y = 0,
x = −b/2 and x = b/2 there are no surface tractions. Find the displacement
field and the tractions at the end sections z = L/2 and z = −L/2 when the
solid is subjected to its own weight and to a uniform distribution of surface
tractions fS = fS

y ey = ρgaey at the surface y = a (ρ is the density and g the
acceleration due to gravity).

Solution

Under the stated conditions, we have a plane strain situation with the same
load and boundary conditions as for the plane stress problem of Figure 4.6.
Therefore, the in-plane solution is directly obtained from the plane stress
solution using the effective elastic constants E∗ = E

1−ν2 and ν∗ = ν
1−ν

in
place of E and ν. Hence

u = −ν (1 + ν)
E

ρgxy

v =

(
1 − ν2

)
ρg

2E

(
y2 +

ν

1 − ν
x2 − a2

)
and, of course, w = 0. At the end section with normal ez, we obtain

fS = τzzez = ν (τxx + τyy) ez = νρgyez

and at the opposite end section

fS = −τzzez = −νρgyez.

�

4.1.3 The axisymmetric model

Cylindrical coordinate system

For the definition of the axisymmetric model a cylindrical coordinate system
is commonly used and effective. In Figure 4.7, a Cartesian and a cylindrical
coordinate system are given. As long as the z axis, the horizontal plane and
the line from which the angle θ is measured are defined, the location of
every point in 3-D space is uniquely given by the coordinates r, θ and z.
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Associated with every point, we define orthonormal base vectors er, eθ and
ez. The unit vectors er and ez have the direction of r and z, respectively, and
eθ is orthogonal to the plane of er and ez. Therefore, from point to point, er

and eθ change directions, different from using a Cartesian coordinate system
for which ex, ey and ez are always the same for every point.

Fig. 4.7. Definition of a cylindrical coordinate system

The stress components in a cylindrical system are referred to the local
system (er, eθ, ez) which changes from point to point.

Equilibrium

A differential element of a solid at a given point corresponding to infinitesimal
increments dr, dθ and dz and the stress components are shown in Figure 4.8.
Further, in Figure 4.9 a top view is given. We have also in this system that
τrθ = τθr, τrz = τzr and τθz = τzθ. Equilibrium in the direction er requires(

τrr +
∂τrr

∂r
dr

)
(r + dr)dθdz − τrrrdθdz

−
(

2τθθ +
∂τθθ

∂θ
dθ

)
drdz

dθ

2

+
(

τrθ +
∂τrθ

∂θ
dθ

)
drdz − τrθdrdz

+
(

τrz +
∂τrz

∂z
dz

)(
r +

dr

2

)
dθdr − τrz

(
r +

dr

2

)
dθdr
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Fig. 4.8. Stresses on a differential element described by cylindrical coordinates.
Stresses are shown only on visible faces

Fig. 4.9. Stresses on a differential element described by cylindrical coordinates.
Stresses are shown only on visible faces

+fB
r

(
r +

dr

2

)
dθdrdz = 0.

Neglecting infinitesimals of fourth order, we obtain

∂τrr

∂r
+

1
r

∂τrθ

∂θ
+

∂τrz

∂z
+

τrr − τθθ

r
+ fB

r = 0. (4.70)

Equilibrium in the direction eθ requires
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(
τθr +

∂τθr

∂r
dr

)
(r + dr)dθdz − τθrrdθdz

+
(

τθθ +
∂τθθ

∂θ
dθ

)
drdz − τθθdrdz

+
(

τrθ +
∂τrθ

∂θ
dθ

)
drdz

dθ

2
− τrθdrdz

dθ

2

+
(

τθz +
∂τθz

∂z
dz

)(
r +

dr

2

)
dθdr − τθz

(
r +

dr

2

)
dθdr

+fB
θ

(
r +

dr

2

)
dθdrdz = 0

leading to

∂τθr

∂r
+

1
r

∂τθθ

∂θ
+

∂τθz

∂z
+

τθr

r
+

τrθ

r
+ fB

θ = 0. (4.71)

And for the direction z(
τzr +

∂τzr

∂r
dr

)
(r + dr)dθdz − τzrrdθdz

+
(

τzθ +
∂τzθ

∂θ
dθ

)
drdz − τzθdrdz

+
(

τzz +
∂τzz

∂z
dz

)(
r +

dr

2

)
dθdr − τzz

(
r +

dr

2

)
dθdr

+fB
z

(
r +

dr

2

)
dθdrdz = 0

which leads to

∂τzr

∂r
+

1
r

∂τzθ

∂θ
+

∂τzz

∂z
+

τzr

r
+ fB

z = 0. (4.72)

Summarizing, the equilibrium conditions in the cylindrical coordinate system
are

∂τrr

∂r
+

1
r

∂τrθ

∂θ
+

∂τrz

∂z
+

τrr − τθθ

r
+ fB

r = 0

∂τθr

∂r
+

1
r

∂τθθ

∂θ
+

∂τθz

∂z
+ 2

τθr

r
+ fB

θ = 0

∂τzr

∂r
+

1
r

∂τzθ

∂θ
+

∂τzz

∂z
+

τzr

r
+ fB

z = 0.

Let us now introduce axisymmetric conditions, i.e., we consider a solid of
revolution which is subjected to an axisymmetric load distribution. A typical
situation is presented in Figure 4.10. We note that under these conditions
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Fig. 4.10. A typical solid with an axisymmetric geometry and loading

fB
θ = 0

∂(·)
∂θ

= 0 for any stress component

τrθ = τzθ = 0

and the equilibrium conditions simplify to

∂τrr

∂r
+

∂τrz

∂z
+

τrr − τθθ

r
+ fB

r = 0 (4.73)

∂τzr

∂r
+

∂τzz

∂z
+

τzr

r
+ fB

z = 0 (4.74)

and, of course, equation (4.71) is identically satisfied.

Fig. 4.11. Displacement of a generic point under axisymmetric conditions

When we have axisymmetric conditions, the displacements, stresses and
strains are the same for any plane which contains the axis of symmetry.
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Therefore, the problem can be formulated in a plane and it is customary to
use a Cartesian coordinate system for that plane, as shown in Figure 4.11.
Here y is now the axis of symmetry. In the coordinate system of Figure 4.11,
the equilibrium equations (4.73) and (4.74) are

∂τxx

∂x
+

∂τxy

∂y
+

τxx − τzz

x
+ fB

x = 0 (4.75)

∂τxy

∂x
+

∂τyy

∂y
+

τxy

x
+ fB

y = 0. (4.76)

Note that these equilibrium equations are the plane stress and plane strain
equilibrium equations with τxx−τzz

x added in the first equation and τxy

x in the
second equation.

Strain compatibility

Due to the axisymmetric conditions, the displacements for material par-
ticles in the xy plane in Figure 4.11 are given by

u = u(x, y)

v = v(x, y)

w = 0

and the strains

εxx =
∂u

∂x

εyy =
∂v

∂y

γxy =
∂u

∂y
+

∂v

∂x

γxz = γyz = 0

Figure 4.11 also shows that a displacement u(x, y) actually means that a cir-
cumference of radius x of material points of the solid deforms into a circumfer-
ence of radius x+u as shown. Therefore, we can evaluate the circumferential
or hoop strain εzz by

εzz =
2π(x + u) − 2πx

2πx
=

u

x
.

Constitutive relations

It is convenient to define stress and strain column matrices without in-
cluding the zero stress and strain components, i.e.,



4.1 Plane elasticity 203

τ =

⎡⎢⎢⎢⎢⎢⎢⎣
τxx

τyy

τxy

τzz

⎤⎥⎥⎥⎥⎥⎥⎦ , ε =

⎡⎢⎢⎢⎢⎢⎢⎣
εxx

εyy

γxy

εzz

⎤⎥⎥⎥⎥⎥⎥⎦
The constitutive equation is given by τ = Cε with

C =
E(1 − ν)

(1 + ν)(1 − 2ν)

⎡⎢⎢⎢⎢⎢⎢⎣
1 ν

1−ν
0 ν

1−ν

ν
1−ν 1 0 ν

1−ν

0 0 1−2ν
2(1−ν) 0

ν
1−ν

ν
1−ν

0 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (4.77)

which is obtained from the C for 3-D conditions given by (3.113) .

Differential formulation

Let us consider a solid of revolution for which a generic cross-section A
is shown in Figure 4.12 subjected to axisymmetric loads and displacement
boundary conditions. The volume V of the solid corresponds to revolving A
about the y axis. Usually one radian is considered, see Section 5.2.4. On the
lateral surface Su, which corresponds to revolving the boundary line Lu, the
displacements are prescribed. On the lateral surface Sf , which corresponds
to revolving the boundary line Lf , surface tractions are applied. Body forces
fB are also present. Under these conditions the solution of the 3-D elasticity
problem can be formulated in the plane domain described in Figure 4.12.

Fig. 4.12. Domain representing a generic cross-section of the solid of revolution
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Differential formulation of the axisymmetric model

Given fB
x = fB

x (x, y) and fB
y = fB

y (x, y) defined in V , find u(x, y), v(x, y);
τxx = τxx(x, y), τyy = τyy(x, y), τxy = τxy(x, y) and τzz = τzz(x, y); εxx =
εxx(x, y), εyy = εyy(x, y), γxy = γxy(x, y) and εzz = εzz(x, y) such that

∂τxx

∂x
+

∂τxy

∂y
+

τxx − τzz

x
+ fB

x = 0

∂τxy

∂x
+

∂τyy

∂y
+

τxy

x
+ fB

y = 0

εxx =
∂u

∂x
, εyy =

∂v

∂y

γxy =
∂u

∂y
+

∂v

∂x
, εzz =

u

x

τ = Cε

for every point in V and for the C given in (4.77). The boundary conditions
are

fS
x = f̂S

x (x, y), fS
y = f̂S

y (x, y)

for every point in Sf and

u = û(x, y), v = v̂(x, y)

for every point in Su.

We note that this solution gives the exact solution of the 3-D problem
with

w = 0

and

τxz = τyz = 0

γxz = γyz = 0.
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Example 4.3

Consider a disc with a central circular hole. The disc is subjected to internal
pressure pi and external pressure pe. The problem description is given in
Figure 4.13. Determine the stress distribution and the displacements.

Fig. 4.13. Schematic description of disc problem

Solution

The disc is a solid of revolution subjected to axisymmetric loading. Consid-
ering the load given and that the disc is thin, plane stress conditions also
apply.

Therefore

τxy = 0, τyy = 0

and the equilibrium condition given in equation (4.75) simplifies to

dτxx

dx
+

τxx − τzz

x
= 0. (4.78)

Since there are no body forces, Equation (4.76) is identically satisfied. The
relevant strain components are

εxx =
du

dx
(4.79)
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and

εzz =
u

x
. (4.80)

The plane stress constitutive equation with the shear strain (stress) zero can
be directly used, i.e.

τxx =
E

1 − ν2
(εxx + νεzz) (4.81)

τzz =
E

1 − ν2
(εzz + νεxx) . (4.82)

Introducing (4.79) and (4.80) into (4.81) and (4.82) yields

τxx =
E

1 − ν2

(
du

dx
+ ν

u

x

)
(4.83)

τzz =
E

1 − ν2

(
u

x
+ ν

du

dx

)
(4.84)

and substituting (4.83) and (4.84) into the equilibrium equation (4.78) leads
to

d2u

dx2
+

1
x

du

dx
− u

x2
= 0.

The above ordinary differential equation has a general solution given by

u = C1x +
C2

x
(4.85)

where C1 and C2 are constants to be determined. The general expression
for the stresses can be obtained by introducing (4.85) into (4.83) and (4.84)
leading to

τxx =
E

1 − ν2

[
C1(1 + ν) − C2

(1 − ν)
x2

]
(4.86)

τzz =
E

1 − ν2

[
C1(1 + ν) + C2

(1 − ν)
x2

]
. (4.87)

We are now ready to impose the force boundary conditions. At the internal
surface of the disc we have

τxx|x=a = −pi (4.88)

and at the external surface

τxx|x=b = −pe. (4.89)

Equation (4.86) subjected to the conditions given by (4.88) and (4.89) leads
to
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C1 =
1 − ν

E

a2pi − b2pe

b2 − a2

C2 =
1 + ν

E

a2b2(pi − pe)
b2 − a2

.

Hence, the stresses are given by

τxx =
a2pi − b2pe

b2 − a2
− (pi − pe)a2b2

x2 (b2 − a2)

τzz =
a2pi − b2pe

b2 − a2
+

(pi − pe)a2b2

x2 (b2 − a2)
.

Note that

τxx + τzz = 2
(

a2pi − b2pe

b2 − a2

)
is a constant, i.e., independent of the point where it is evaluated. Therefore

εyy = −ν (τxx + τzz) (4.90)

is also a constant. Hence, the out-of-plane displacements v are independent
of x and any horizontal plane remains horizontal after deformation (this also
means that the distortion γxy is indeed zero and, of course, γyz = γxz = 0
due to the axisymmetric conditions). Hence, we conclude that we obtained
the exact 3-D solution and the assumptions of the plane stress model in this
case did not lead to an approximate solution.

We also note that, since horizontal planes remain horizontal after defor-
mation the derived solution is also valid for any thickness of the disc, i.e.,
it is valid not only for a thin disc but also for long cylinders, as long as the
out-of-plane displacements are not restricted. In case we prevent the out-of-
plane displacements, a plane strain condition develops and the solution can
be readily obtained by using the effective material constants, i.e., by replac-
ing E by E∗ and ν by ν∗ in the solution of the in-plane variables, that is,
τxx(x), τzz(x) and u(x). Note that εyy is not an in-plane variable for the plane
stress problem considered here and hence it is not obtained by replacing ν
by ν∗ in (4.90) . Of course, εyy = 0 for plane strain conditions.

To conclude this example solution the radial displacements can be eval-
uated by substituting the value of the constants C1 and C2 into equation
(4.85) leading to

u(x) =
1 − ν

E

a2pi − b2pe

b2 − a2
x +

1 + ν

E

a2b2(pi − pe)
(b2 − a2)x

�
Before we move to the next section and embark on the discussion of

the mathematical models of bars, it is timely to place such bar models and
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the forthcoming plate and shell models in the larger context of structural
mechanics mathematical modeling.

If we look at the developments presented in this section and compare, from
the hierarchical modeling perspective, the 2-D models with the 3-D elasticity
model − our highest order mathematical model in linear analysis − there is an
important point. As long as the geometric, loading and boundary condition
restrictions are satisfied, the plane strain and axisymmetric models lead to
the exact solution of the 3-D elasticity problem. Therefore, the modeling
considerations should only focus on judging whether the assumptions used
in the plane strain or, respectively the axisymmetric model, with respect to
the 3-D model are (sufficiently) satisfied in the actual physical problem.

Such situation contrasts with the plane stress model. In such model even
if the geometric, loading and boundary condition restrictions are exactly sat-
isfied , its solution is not, in general, the solution of the associated 3-D model,
i.e. that for which the plate is modeled as a 3-D solid. Hence, the plane stress
model is what we refer to be a structural model. In what follows we will be
formulating bars, plates and shell models which considering the interpreta-
tions given above are characterized also as structural models. We summarize
these observations in Figure 4.14.

4.2 Bar models

There are a number of bar models which are associated with different geo-
metric, loading and kinematic boundary conditions. Also, there are different
nomenclatures in the technical literature associated with bar models, and
hence we adopt a terminology which best fits the aim to use the models in
the hierarchical modeling process.

Generically, a bar can be understood to be a slender 3-D solid which has
one dimension much larger than the other two dimensions, which are of the
same order of magnitude. We could say that if a, b and c are characteristic
dimensions of a solid in three orthogonal directions, such solid can be assumed
to be a bar if a is of the order of b, i.e., 1

5 ≤ a
b ≤ 5 and c

max(a,b) ≥ 10. Then,
it is usual to characterize the bar’s geometry from the definition of a curve
called the bar axis. At any point of the bar axis, a plane region, orthogonal
to the bar axis, is defined. Such plane region is referred to as the transverse
cross-section of the bar at this point. The collection of these transverse cross-
sections characterize the bar’s geometry, where the bar axis is taken to pass
through the centers of gravity of the cross-sections. In Figure 4.15, a generic
bar is shown.

We can identify a number of different situations. For example, the bar
axis can be a three-dimensional curve, a planar curve or a straight line. The
cross-sections may have a constant or varying shape. Moreover, of course,
the bar can be loaded by various different external forces. Depending on the
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Fig. 4.14. Summary of mathematical modeling in solid and structural mechanics

Fig. 4.15. A generic bar geometry

combination of the geometric and loading characteristics of the problem, the
bar structural behavior may be different. Therefore, there are a number of
mathematical models for bars which are associated with specific geometric
and loading conditions.
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As a first approach to formulate bar models, we consider the bar as a
3-D solid and impose geometric and loading restrictions. Also, we introduce
assumptions for the stress and displacement fields. Then, the 3-D elasticity
equations are used to obtain the differential formulation of the bar model.

This is the approach that we followed to obtain the plane elasticity models
and which we now use to derive the bar models. The approach gives insight
into how well the bar solutions satisfy the 3-D equations.

4.2.1 Prismatic bar subjected to axial loading

The assumptions used for the mathematical model are (see also Figure 4.16):

• Geometry : The solid is a prismatic bar (a bar of constant cross-section and
straight axis).

• Kinematics: The cross-sections remain plane and displace only in the axial
direction (they do not rotate). The section displacements are given by
u = u(x).

• External loading and boundary conditions : The body forces per unit of
volume are given by fB = fB

x (x)ex.
At the section x = 0 either fS

x = fS
0 or u = u0, and fS

y = fS
z = 0.

At the section x = L either fS
x = fS

L or u = uL, and fS
y = fS

z = 0.
On the lateral surfaces of the bar fS = 0.

• Stresses: The normal stress τxx is the only nonzero stress component.

Fig. 4.16. Schematic representation of the model. Either displacement or force
boundary conditions should be specified at the end sections. Bar cross-sectional
area A

Now let us consider the 3-D elasticity equations.

Equilibrium
Considering the differential equilibrium equations (3.114), the first equa-

tion leads to
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∂τxx

∂x
+ fB

x = 0 (4.91)

and the remaining equations are identically satisfied.

Constitutive equations
Considering the generalized Hooke’s law given in (3.116), we obtain

εxx =
τxx

E
, εyy = − ν

E
τxx, εzz = − ν

E
τxx (4.92)

γxy = 0, γyz = 0, γzx = 0. (4.93)

Strain-displacement relations

Introducing (4.92) and (4.93) into (3.115) we obtain

∂u

∂x
=

τxx

E
(4.94)

∂v

∂y
= − ν

E
τxx (4.95)

∂w

∂z
= − ν

E
τxx (4.96)

∂u

∂y
+

∂v

∂x
= 0 (4.97)

∂v

∂z
+

∂w

∂y
= 0. (4.98)

∂u

∂z
+

∂w

∂x
= 0 (4.99)
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Boundary conditions

On the surface given by x = 0
either fS

0 = −τxx(0) or u(0) = u0

fS
y = −τyx = 0, fS

z = −τzx = 0 (identically satisfied).

On that given by x = L
either fS

L = τxx(L) or u(L) = uL

fS
y = τyx = 0, fS

z = τzx = 0 (identically satisfied).

On the lateral surface

Tn = 0

or

⎡⎢⎢⎢⎣
τxx 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

0

ny

nz

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

0

⎤⎥⎥⎥⎦
which is identically satisfied.

We can obtain a solution solving (4.91) for τxx and then (4.94) for u(x).
Note, however, that when fB

x (x) �= 0, we obtain τxx = τxx(x) and from (4.92)

εyy =
∂v

∂y
= − ν

E
τxx(x) (4.100)

εzz =
∂w

∂z
= − ν

E
τxx(x) (4.101)

which for varying x means a varying Poisson effect with x, unless ν = 0.
Since this induced extension/contraction of the fibers in the plane of the
section is different for neighboring sections, the sections have to warp to keep
the transverse shear strains (γyz = γxz = 0) equal to zero. Then, of course,
u = u(x) is violated, that is, the kinematic assumption “the cross-sections
remain plane and displace only in the axial direction (they do not rotate)”
is violated. However, in the bar model this effect is neglected and, hence,
using this model we in essence assume that the physical link between two
neighboring sections is given by rollers i.e. the contraction/extension of the
fibers in the section does not affect the deformation of neighboring sections.

More formally, integrating of (4.100) with respect to y leads to

v = − ν

E
τxx(x)y + F (x, z)
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where F (x, z) is a function of x and z only. This equation substituted into
(4.97) gives

∂u

∂y
=

ν

E

∂τxx

∂x
y − ∂F

∂x
(x, z)

which can not be satisfied if u = u(x) unless ν = 0. A similar conclusion
would arise if (4.101) and (4.99) were considered.

Now the 1-D bar model can be detailed.
Let τ = τxx and f = fB

x A be the distributed axial force per unit of length.
Also let N = τA be the axial force. Hence, the equilibrium equation (4.91)
can be re-written as

dN

dx
+ f = 0.

Defining ε = εxx, the strain compatibility relation is given by

ε =
du

dx

and the constitutive relation by

τ = Eε.

The boundary condition at x = 0 is either a displacement boundary condition

u(0) = u0

where u0 is the prescribed displacement, or a force boundary condition

N(0) = τ(0)A = −fS
0 A = −R0

where R0 is the prescribed concentrated force with positive sense given by
the x axis. Analogously, at x = L, we have either

u(L) = uL

where uL is the prescribed displacement at L, or

N(L) = τ(L)A = fS
LA = RL

where RL is the prescribed concentrated force at x = L with the same sense
convention as that adopted for R0. The differential formulation is summarized
below.
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Differential formulation of bar subjected to axial loading

Given the axial distributed loading f(x), find N (x), ε(x), u(x) such that

dN

dx
+ f = 0 (4.102)

ε =
du

dx
(4.103)

N = EAε (4.104)

for all x within the bar. At x = 0 we have either

u(0) = u0 or N(0) = −R0

and at x = L, either

u(L) = uL or N(L) = RL.

It is usual to write the differential formulation in terms of displacements
only, by introducing (4.103) and (4.104) into (4.102) and using that

N(0) = EAε(0) = EA
du

dx
(0)

and

N(L) = EAε(L) = EA
du

dx
(L).

Differential formulation of bar subjected to axial loading in terms of displace-
ments only

Given f(x), find u(x) such that

EA
d2u

dx2
+ f = 0 (4.105)

for all x within the bar. At x = 0, we have either

u(0) = u0 or
du

dx
(0) = − R0

EA
(4.106)

and at x = L, either
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u(L) = uL or
du

dx
(L) =

RL

EA
. (4.107)

Of course, when the problem is solved for u(x), we can obtain ε(x) and
N(x) using equations (4.103) and (4.104).

Once the 1-D differential formulation is solved, the solution for the 3-D
problem based on the 1-D solution can be obtained:

u = u(x)

τxx = τ, τyy = τzz = τxy = τxz = τyz = 0

εxx = ε =
du

dx
, εyy = − ν

E
τ, εzz = − ν

E
τ

γxy = γxz = γyz = 0

and the displacements associated with the extension/contraction of the fibers
in the cross-section can be evaluated using

v = − ν

E
τy (4.108)

w = − ν

E
τz (4.109)

which satisfies (4.95) , (4.96) , (4.98) and the condition that the bar axis has
no transverse displacements.

Note that when fB
x (x) = 0 or ν = 0 the 1-D model leads to the exact

solution of the 3-D problem.

Example 4.4

Consider a steel bar subjected to its own weight as shown in Figure 4.17.
The solution of the 3-D elasticity problem is given by

u =
ρg

2E
(2Lx − x2 − ν(y2 + z2))

v = −ν
ρg

E
(L − x)y

w = −ν
ρg

E
(L − x)z

(i) Find the solution for the bar using the 1-D model.
(ii) Compare the solution obtained in (i) with the exact solution.
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Fig. 4.17. Bar problem definition. Point P is fixed and the bar cannot rotate with
respect to P

Solution

(i) The differential formulation for the 1-D model in terms of displacements
is given by

EA
d2u

dx2
+ ρgA = 0

u(0) = 0

du

dx
(L) = 0.

Solving, we obtain

u(x) =
ρg

2E
(2Lx − x2) (4.110)

and the axial stress in given by
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τ = E
du

dx
= ρg(L − x)

using equations (4.108) and (4.109), we obtain

v = −ν
ρg

E
(L − x)y (4.111)

w = −ν
ρg

E
(L − x)z. (4.112)

(ii) Comparing the 1-D solution with the exact solution, we observe that the
predictions for v and w are exactly the same. The u displacements differ
by the warping of the cross-section. In fact, we can write

uexact = uone−dimensional + uwarp

where uone−dimensional is the solution of the 1-D bar model and

uwarp = −ν
ρg

2E
(y2 + z2)

is the warping displacement. Of course, when ν = 0 the solutions of both
models coincide. We note that for bar problems the warping displacements
are small when compared to those predicted by the 1-D model. For exam-
ple, considering the square cross-section for the bar in Figure 4.17, the ratio
between the maximum warping displacement and that of the 1-D model at
x = L is 6 × 10−5.

�

4.2.2 Prismatic bar subjected to transverse loading; the
Bernoulli-Euler beam model.

This model plays a fundamental role in the formulation and understanding of
mathematical models for structural analysis. The model serves as a reference
for many structural models.

The external loading and geometry are selected to lead to bending in one
plane only and to not induce torsion. The term beam is used to describe a
bar when there is transverse loading that is transferred to the supports by
bending.

The assumptions used for the mathematical model are (see also Figure
4.18):

• Geometry : The solid is a prismatic bar (a bar of constant cross-section and
straight axis). The plane xz is a plane of symmetry.
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• Kinematics: The cross-sections remain plane and orthogonal to the de-
formed bar axis. The bar axis goes through the centroid of the section,
remains in the xz plane and the in-plane deformation of the cross-sections
is neglected.

• External loading and boundary conditions: The load is transverse to the
bar, that is, in the z direction and we choose to model it as body forces
per unit of volume given by fB = fB

z (x)ez.
At the end sections either displacements or surface tractions are prescribed.
On the lateral surfaces of the bar fS = 0.

• Stresses: The normal stress τxx and the transverse shear stress τxz are the
only nonzero stress components.

We choose a bar of rectangular cross-section (see Figure 4.18) and consider
the 3-D elasticity equations.

Fig. 4.18. Bar subjected to transverse loading

Equilibrium
Considering the differential equilibrium equations (3.114), the first and

third equations lead to

∂τxx

∂x
+

∂τxz

∂z
= 0 (4.113)

∂τxz

∂x
+ fB

z (x) = 0 (4.114)

and the second equation is identically satisfied.

Constitutive equations
Considering the generalized Hooke’s law given in (3.116), we obtain
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εxx =
τxx

E
, εyy = − ν

E
τxx, εzz = − ν

E
τxx (4.115)

γxy = 0, γyz = 0, γzx =
τxz

G
(4.116)

Strain-displacement relations
Introducing (4.115) and (4.116) into (3.115) we obtain

∂u

∂x
=

τxx

E
(4.117)

∂v

∂y
= − ν

E
τxx (4.118)

∂w

∂z
= − ν

E
τxx (4.119)

∂u

∂y
+

∂v

∂x
= 0 (4.120)

∂v

∂z
+

∂w

∂y
= 0. (4.121)

∂u

∂z
+

∂w

∂x
=

τxz

G
(4.122)

Let us now consider the kinematic assumptions which are pictorially de-
scribed in Figure 4.19. Since we are assuming infinitesimally small displace-
ments and we neglect the in-plane deformation of the cross-sections

w = w (x) (4.123)

and from the hypothesis “the cross-sections remain plane and orthogonal to
the deformed bar axis”, we obtain

u = −z
dw

dx
(4.124)

where we have also used that the displacements are infinitesimally small.
Considering that “the bar axis remains in the xz plane” and again that “the
in-plane deformation of the cross-sections is neglected”
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Fig. 4.19. Kinematics of beam sections

v = 0.

Note that considering the kinematic assumptions, equations (4.118) , (4.119)
and (4.122) can not be exactly satisfied. In fact, the violation of (4.118) and
(4.119) means that we are neglecting the contraction/extension of the fibers
in the plane of the cross-section due to Poisson’s effect. And from (4.123) and
(4.124)

γxz =
∂u

∂z
+

∂w

∂x
= −dw

dx
+

dw

dx
= 0 (4.125)

which corresponds to a violation of (4.122) . This means that we are neglecting
the induced shear strain γxz due to the shear stress τxz.

We also note that the displacements are fully determined once w (x) is
known.

From (4.117) and (4.124) , we obtain

τxx = −zE
d2w

dx2
(4.126)

which substituted into (4.113) yields

−zE
d3w

dx3
+

∂τxz

∂z
= 0.

Integrating the above equation with respect to z, we obtain

τxz =
z2

2
E

d3w

dx3
+ f (x, y) (4.127)
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where f (x, y) is a function of x and y only. Since the top and bottom surfaces
of the bar are free of surface tractions, we have

τxz

(
x, y,

h

2

)
= 0 (4.128)

τxz

(
x, y, −h

2

)
= 0. (4.129)

Considering (4.128), that is, the condition at the top surface and (4.127),
we obtain

h2

8
E

d3w

dx3
+ f (x, y) = 0

which leads to

f (x, y) = g (x) = −h2

8
E

d3w

dx3

and with this f (x, y) = g (x) , (4.127) also satisfies (4.129) . Hence

τxz =
E

2
d3w

dx3

(
z2 −

(
h

2

)2
)

. (4.130)

Substituting (4.130) into (4.114) yields

E

2
d4w

dx4

(
z2 −

(
h

2

)2
)

+ fB
z (x) = 0

which can be satisfied pointwise only at z = 0, that is, at the bar axis. We can
integrate the above equation over the cross-section to impose that it should
be satisfied in average to obtain

d4w

dx4
=

fB
z (x)A

EI
(4.131)

where A = bh is the area of the cross-section and I = bh3

12 is the moment of
inertia of the cross-section with respect to the y axis. The boundary condi-
tions at the lateral surfaces

(
y = ± b

2

)
are satisfied since there are no surface

tractions applied and τyy = τyz = 0.
We still have to consider the boundary conditions at the end surfaces

given by x = 0 and x = L.
Since the only nonzero stress components are τxx and τxz, the surface

tractions at x = 0 are fS
x = −τxx, fS

y = 0, fS
z = −τxz and at x = L

fS
x = τxx, fS

y = 0, fS
z = τxz. Note that the stress components τxx and τxz are

given in (4.126) and (4.130), and they are fully determined when the values
of d2w

dx2 and d3w
dx3 have been obtained.
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Hence, the differential formulation of the Bernoulli-Euler beam model is
based on the solution of (4.131) for w(x) subject to boundary conditions at
x = 0 and x = L. Before we detail this differential formulation we define the
section stress resultants

M(x) =
∫

A

−τxxz dA (4.132)

V (x) =
∫

A

−τxz dA (4.133)

where, of course, M(x) is the bending moment and V (x) is the shear force.
Using (4.126) and (4.130), we obtain

M(x) = EI
d2w

dx2
(4.134)

V (x) = EI
d3w

dx3
(4.135)

and, hence,

dM

dx
= V.

Also, we can define the transverse loading per unit of length

p(x) = fB
z (x)A

which using (4.131) and (4.134) yields

d2M

dx2
= p.

We summarize below the differential formulation of the beam mathemat-
ical model.

Differential formulation of the Bernoulli-Euler beam model in terms of dis-
placement only

Given the transverse distributed loading p(x), find w = w(x) such that

d4w

dx4
=

p(x)
EI

(4.136)

for all x within the bar. At x = 0, we have either

w(0) = w0 or EI
d3w

dx3
(0) = Q0 (4.137)
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and either

dw

dx
(0) = ϕ0 or EI

d2w

dx2
(0) = M0. (4.138)

At x = L, we have either

w(L) = wL or EI
d3w

dx3
(L) = −QL (4.139)

and either

dw

dx
(L) = ϕL or EI

d2w

dx2
(L) = −ML. (4.140)

where M0 and ML are externally applied moments measured positive as
moments about the y-axis, and Q0 and QL are externally applied forces
measured positive into the z-direction.

We note that

M0ey =
(∫

A

fS
x (0, y, z) z dA

)
ey

that is, M0ey is the moment which is equivalent to the surface tractions
fS

x (0, y, z) . Note the since fS
x (0, y, z) = −τxx (0, y, z)

M0 =
∫

A

−τxx (0, y, z) z dA = M (0) = EI
d2w

dx2
(0)

which gives the second equation of (4.138) .
Also

Q0ez =
(∫

A

fS
z (0, y, z) dA

)
ez

that is, Q0ez is the force which is equivalent to the surface tractions
fS

z (0, y, z) . Note that since fS
z (0, y, z) = −τxz (0, y, z)

Q0 =
∫

A

−τxz (0, y, z) dA = V (0) = EI
d3w

dx3
(0)

which is the second equation of (4.137) . Analogous interpretations hold for
x = L. In summary, at the bar end sections we should prescribe either a
displacement or a force and either a rotation or a moment.

Note that once the differential formulation is solved and w (x) determined,
we can obtain the 3-D predictions of the bar mathematical model using
(4.124), (4.126), (4.130) and the assumptions w (x, y, z) = w (x), v (x, y, z) =
0, τyy = τzz = τxy = τyz = 0. If the in-plane extension/contraction of



224 4. Mathematical models used in engineering structural analysis

the fibers are of interest, we can improve the predictions for w (x, y, z) and
v (x, y, z) substituting τxx given by (4.126) into (4.118), (4.119) and consid-
ering (4.121).

The approach we used to derive the 1-D differential formulation for the
Bernoulli-Euler beam model, and also for the bar subjected to axial loading
only, in which we considered the 3-D elasticity equations, permits to clearly
identify what the model assumptions are and how they affect the satisfac-
tion of the 3-D equations. However, as we consider more complex structural
mathematical models such as curved beam, plate and shell models this ap-
proach becomes difficult to follow and we consider for the formulation of the
remaining models a classical approach.

In this classical approach we also start with a 3-D solid and consider
geometric, kinematic and mechanical assumptions. Then, we enforce equilib-
rium, constitutive and compatibility conditions. These conditions are related
to the analogous 3-D elasticity conditions but are not exactly those. For ex-
ample, equilibrium is imposed in terms of stress resultants and constitutive
and compatibility conditions are selectively enforced. We exemplify the use
of this classical approach with the Bernoulli-Euler model considered already.

We start from the same geometric and kinematic assumptions given above
and consider a load p (x) per unit longitudinal length acting into the z direc-
tion. Then, we use (4.124) and (4.117) which implicitly consider the compat-
ibility relation

εxx =
∂u

∂x
(4.141)

and the constitutive relation

εxx =
τxx

E

to obtain (4.126) . Note that in using the above constitutive relation, we
implicitly assumed that τyy = τzz = 0.

Then we consider equilibrium in terms of the stress resultants of a differ-
ential element as summarized in Figure 4.203.

We note that to represent the actions of the rest of the beam on the
end cross-sections of this differential element we have introduced the bending
moment M(x) and the shear force V (x) which are necessary to equilibrate
the transverse load as detailed below.

Equilibrium of the differential element in the z direction yields

V − (V + dV ) + p(x)dx = 0

dV

dx
= p(x) (4.142)

3 Note that this sign convention for the transverse shear V for the beam models
(see also Section 4.2.8) is quite common but is opposite to the convention used
for plates and shells
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Fig. 4.20. Equilibrium of a generic differential element

and moment equilibrium, which is enforced about point A for instance, gives

−(V + dV )dx + p(x)dx
dx

2
− M + (M + dM) = 0.

Neglecting infinitesimals of higher order, we obtain

dM

dx
= V. (4.143)

Equations (4.142) and (4.143) are the bar equilibrium conditions. Of course,
equilibrium in the axial direction is trivially satisfied since we are considering
transverse loading only and the axial forces are zero.

Taking derivatives of (4.143) with respect to x and substituting the result
in (4.142) yields

d2M

dx2
= p(x). (4.144)

Using (4.126) and (4.132) , we obtain (4.134) which substituted in (4.144)
yields (4.136) . Now we could write the same differential formulation obtained
above and given in (4.136) to (4.140) . Hence, both approaches lead to the
same differential formulation.

We state below some classical equations and definitions for the beam
model. From (4.126) and (4.134), we obtain

τxx = −M

I
z (4.145)

which gives the linear normal stress distribution at the beam cross-section.
We note that, since z is measured from the bar axis going through the centroid
of the section,∫

A

τxx dA = 0.

Indeed, we want this property and have chosen the location of the bar axis
correspondingly. We also define
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κ =
d2w

dx2
(4.146)

where κ gives the curvature of the bar axis since we are considering infinites-
imally small displacements. Then, (4.134) gives

κ =
M

EI
(4.147)

which leads to the important physical interpretation that the bending mo-
ment M(x) induces curvature of the beam axis. The product EI is called the
bending rigidity of the section (or of the beam, when the beam has a con-
stant cross-section). It gives the stiffness of the section for bending induced
curvature.

We can rewrite the differential formulation given in (4.136) to (4.140),
now considering (4.144), (4.146) and (4.147) to obtain:
Differential formulation of the Bernoulli-Euler beam model

Given the transverse distributed loading p(x), find M(x), κ(x), w(x) such
that

d2M

dx2
= p(x) (4.148)

κ(x) =
d2w

dx2
(4.149)

κ(x) =
M(x)
EI

(4.150)

for all x within the bar. At x = 0 we have

w(0) = w0 or
dM

dx
(0) = Q0 (4.151)

and

dw

dx
(0) = ϕ0 or M(0) = M0. (4.152)

At x = L

w(L) = wL or
dM

dx
(L) = −QL (4.153)

and

dw

dx
(L) = ϕL or M(L) = −ML. (4.154)
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Of course, the solution of both differential formulations leads to the same
transverse displacements and, hence, the same model predictions. We note
that the differential formulation given by (4.148)—(4.154) explicitly shows
the conditions of equilibrium, compatibility and constitutive behavior. In
fact, (4.148) is the equilibrium equation, (4.149) the compatibility relation
and (4.150) the constitutive equation.

Considering the variables in the formulation of this bar model and the
variables of the bar under axial loading model, we recognize that some of
these variables are quite different from those of the 2-D and 3-D elasticity
models. For example, in the bending bar model we have stress resultants
and curvature variables. This is usually the case for structural mathematical
models.

In order to give a unified framework for the presentation of the structural
mathematical models, let us make some definitions. There are always kine-
matic variables which fully characterize the kinematics of the model. The
kinematic variable for this model is w = w(x). Note that all displacement
components for any point in the bar can be obtained from w(x). In fact,

u(x, y, z) = −z
dw

dx

v(x, y, z) = 0

w(x, y, z) = w(x).

There are strain type variables which are linked to the straining of the
beam fibers. They are referred to as generalized strain variables. The curva-
ture κ(x) is the generalized strain variable for this model.

There are variables which are linked to the internal actions and are re-
ferred to as generalized internal force variables or generalized stress variables.
The moment M(x) is such variable for the beam model.

We note that there is a correspondence between the above defined gener-
alized strain and the usual strains of the 2-D and 3-D elasticity models. Both
are obtained from the kinematic variables and are related to the straining of
the material fibers.

The correspondence also holds for the generalized internal force or gen-
eralized stress in the beam model and the stresses for the 2-D and 3-D elas-
ticity models since both reflect the internal transfer of forces. Finally, the
generalized strain and internal force are related by a generalized constitutive
equation (see equation (4.150)).

The kinematic, the generalized strain and the generalized stress variables
are called primary variables of the model since they completely characterize
the model and its mathematical formulation can be fully stated considering
these variables. Also, the primary variables are used to express the conditions
of equilibrium, compatibility and constitutive behavior.
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Note that the shear force does not enter directly in the differential formu-
lation of the problem and can be obtained by equation (4.143) after M(x)
has been found. It is termed an auxiliary variable.

Example 4.5

Obtain the transverse shear stress distribution at a generic cross-section of a
beam.

Solution

Due to the kinematic assumptions of the Bernoulli-Euler beam model the
transverse shear strain γxz is zero, see (4.125). Therefore, the constitutive
relation would lead to τxz = τzx = 0. However, considering the equilibrium
condition (4.143) a nonzero shear force V is in general required. Of course,
the shear force is the stress resultant associated with the distribution of τxz.
At a given cross-section

V =
∫

A

(−τzx) dA (4.155)

where the minus sign is a result of the sign convention. Equation (4.155) shows
that τzx can not be zero throughout the cross-section when V is different from
zero. This apparent inconsistency is resolved when we recognize that in the
Bernoulli-Euler model the shear deformations which would be induced by τzx

are neglected. This assumption is increasingly appropriate as h/L becomes
smaller, because for slender beams this shear deformation contributes very
little to the overall beam deformation. However, the contribution of τzx for
equilibrium can not be neglected.

Fig. 4.21. Transverse shear stresses in beams
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In order to evaluate an approximate distribution of τzx (approximate when
compared to the 3-D elasticity solution), consider the part of the beam shown
in Figure 4.21a which is obtained by cutting the beam at two cross-sections
dx apart. In Figure 4.21b, the equilibrium in the x direction of the highlighted
part of Figure 4.21a is shown. Of course

F =
∫

A∗
τxx dA =

∫
A∗

−M

I
z dA = −M

I

∫
A∗

z dA. (4.156)

Note that a constant distribution of τzx is assumed at the horizontal plane
defined by the cut. Recalling a result for shear stresses acting on orthogonal
planes, we note that the shear stress acting on this horizontal plane defines
the shear stress acting on the beam cross-section as schematically shown in
Figure 4.21c. Considering Figure 4.21b the equilibrium in the x direction
leads to

dF = τxzbdx

or

τxz =
1
b

dF

dx
. (4.157)

Let us define

My =
∫

A∗
z dA (4.158)

which is the static moment of the area A∗ with respect to the y axis. From
equations (4.143), (4.156), (4.157) and (4.158) we obtain

τxz = τzx = −My

bI

dM

dx
= −V My

bI
. (4.159)

In order to obtain insight into the shear stress distribution, consider a beam
of rectangular cross-section. Referring to Figure 4.22a, we can write

My =
∫

A∗
z dA =

∫ h/2

z∗

∫ b/2

−b/2

z dydz = b

∫ h/2

z∗
z dz = b

z2

2

∣∣∣∣h/2

z∗

=
b

2

(
h2

4
− (z∗)2

)
where z∗ is the z coordinate associated with the cutting horizontal plane as
shown in Figure 4.22a. Then, from (4.159) we obtain

τxz = − V

2I

(
h2

4
− (z∗)2

)
= −3

2
V

bh

(
1 −

(
z∗

h/2

)2
)

(4.160)
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Fig. 4.22. a) Geometric definitions; b) Transverse shear stress distribution for a
rectangular cross-section

where we used that I = bh3/12. Of course, we note the agreement between
(4.130) and (4.160) .

As summarized in Figure 4.22b, the shear stress distribution for a rect-
angular cross-section is parabolic with the maximum value at the centroid
given by 3/2 times the average shear stress V/A. Note that the condition of
zero shear stresses at the top and bottom surfaces of the beam is satisfied.

�
Demonstrative solutions

We give below some example solutions. These examples, besides giving
some insight into the use and behavior of the beam model, present solutions
in a convenient form to introduce the matrix method of analysis for frames.

Example 4.6

Find the solution of the beam problem described in Figure 4.23.

Fig. 4.23. Built-in beam subjected to constant transverse load
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Solution

We use the differential formulation

d4w

dx4
=

p0

EI
(4.161)

with the following boundary conditions

w(0) =
dw

dx
(0) = w(L) =

dw

dx
(L) = 0

to enforce the kinematic restraints to displacements and rotations at both
ends. Integrating equation (4.161) with respect to x yields

w(x) =
p0x

4

24EI
+ C1x

3 + C2x
2 + C3x + C4 (4.162)

where C1, C2, C3 and C4 are constants to be determined. Imposing the
boundary conditions gives

w(x) = − p0x
4

24EI
+

p0L

12EI
x3 − p0L

2

24EI
x2. (4.163)

The end-forces and moments are obtained by using (4.134) and (4.135)

M(0) = M(L) = −p0L
2

12
, V (0) = −V (L) =

p0L

2
.

�

Example 4.7

Find the solution to the beam problem subjected to an imposed end-
displacement as summarized in Figure 4.24.

Fig. 4.24. Built-in beam subjected to imposed end transverse displacement
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Solution

We use

d4w

dx4
= 0 (4.164)

with the following boundary conditions

w(0) = δ,
dw

dx
(0) = w(L) =

dw

dx
(L) = 0. (4.165)

Integrating (4.164) leads to

w(x) = C1x
3 + C2x

2 + C3x + C4. (4.166)

The constants can be determined by imposing the boundary conditions given
in (4.165) leading to

w(x) =
(

2x3

L3
− 3x2

L2
+ 1

)
δ (4.167)

= h2(x)δ

where

h2(x) =
2x3

L3
− 3x2

L2
+ 1.

The function h2(x) gives the transverse displacement of the beam axis
when a unit transverse displacement is imposed at the left end and the re-
maining end-displacement and rotations are fixed. The corresponding end-
forces and moments are

M(0) = −M(L) = −6EI

L2
, V (0) = V (L) =

12EI

L3
.

�
Proceeding as in Example 4.7, we can derive the solutions of the beam

model for other unit end displacement/rotation conditions as summarized in
Table 4.1. The hi functions are referred to as the beam Hermitian functions.
These solutions are very useful since they can be used to find solutions to
arbitrarily chosen end displacement/rotation conditions. In fact, let us con-
sider the beam without transverse loading but with imposed end displace-
ment/rotation conditions given by

w(0) = w0, w(L) = wL,
dw

dx
(0) = w′

0 and
dw

dx
(L) = w′

L. (4.168)

The solution to this problem is given by
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Table 4.1. Exact solution for unit end displacement/rotation conditions

Problem description Bar end-forces and solution for w(x)

w(0) = 1; w(L) = 0; dw(0)
dx

= 0; dw(L)
dx

= 0 h2(x) = 2x3

L3 − 3x2

L2 + 1

w(0) = 0; w(L) = 0; dw(0)
dx

= 1; dw(L)
dx

= 0 h3(x) = x3

L2 − 2x2

L
+ x

w(0) = 0; w(L) = 1; dw(0)
dx

= 0; dw(L)
dx

= 0 h5(x) = − 2x3

L3 + 3x2

L2

w(0) = 0; w(L) = 0; dw(0)
dx

= 0; dw(L)
dx

= 1 h6(x) = x3

L2 − x2

L

w(x) = h2(x)w0 + h3(x)w′
0 + h5(x)wL + h6(x)w′

L. (4.169)

The w(x) defined in (4.169) satisfies (4.136) for p(x) = 0 since h2(x),
h3(x), h5(x) and h6(x) also verify (4.136) for p(x) = 0, and the w(x) satisfies
the boundary conditions given in (4.168) since the hi(x), dhi(x)

dx assume the
value of 1 for the corresponding end displacement/rotation conditions (see
Table 4.1) and the value of zero for the other end conditions. The solution in
(4.169) represents of course an application of the principle of superposition
(See Section 2.3.6).

Example 4.8

Assume that the end conditions for the problem in Figure 4.23 are those
stated in (4.168). Find the solution of the problem.
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Solution

Denoting by w1(x) the solution for the transverse load with zero end dis-
placements/rotations derived in Example 4.6 given by (4.163) and by w2(x)
the solution for the specified displacement/rotation end conditions with no
transverse load given by (4.169), the function

w(x) = w1(x) + w2(x)

is the solution sought. In fact

d4w

dx4
=

d4

dx4
(w1(x) + w2(x)) =

d4w1

dx4
+

d4w2

dx4
=

d4w1

dx4
=

p(x)
EI

and since w1(x) corresponds to the zero end conditions (it is the solution to
the problem of Example 4.6) w(x) satisfies the given boundary conditions.

�
Note that we can obtain the solution to the problem of a beam subjected

to a transverse load p(x) and imposed end displacements/rotations by solv-
ing a beam clamped at both ends subjected to the p(x) (see Example 4.6)
and adding to this solution the response due to the imposed end displace-
ments/rotations (see (4.169)).

In the next example, we examine a situation in which at one end we have
a prescribed displacement and no restriction on the section rotation.

Example 4.9

Solve the problem described in Figure 4.25. We note that there is no restric-

Fig. 4.25. Beam subjected to imposed end transverse displacement. Section rota-
tion at right end is left free

tion on the rotation at the end x = L.
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Solution

Although we do not have a prescribed rotation at the end x = L, we can still
take advantage of the general solution for p(x) = 0 which is given by (4.169).
Of course w0 = w′

0 = 0, wL = −δ and w′
L is to be determined. The condition

of leaving the section rotation at x = L free is represented by imposing that
the bending moment at that section is zero. Hence the solution can be written
as

w(x) = h5(x)(−δ) + h6(x)w′
L

with M(L) = 0. This condition corresponds to

M(L) = EI
d2w

dx2
(L) = 0

and hence

d2w

dx2
(L) =

d2h5(x)
dx2

∣∣∣∣
L

(−δ) +
d2h6(x)

dx2

∣∣∣∣
L

w′
L = 0

to give

w′
L = − 3δ

2L
.

Therefore the final solution is

w(x) = −
(

h5(x) +
3

2L
h6(x)

)
δ.

�

The principle of superposition used in the above solutions is employed
abundantly, and we choose to detail it further in the next example.

Example 4.10

Consider the problem described in Figure 4.26a. Show how the principle of
superposition can be used to solve this problem.

Solution

In Figure 4.26b we show four simpler problems whose solutions superimposed
give the solution to the original problem.

We note that for each problem the restraints are those of the original prob-
lem and an external action − either a part of the total loading or a support
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settlement/rotation − is introduced. Of course, when considered together,
the external actions in the simpler problems should represent all external
actions on the original structure.

The validity of the principle of superposition rests on the linearity of the
differential formulation of the problem. Referring to the differential formu-
lation of the Bernoulli-Euler beam model, we summarize in Table 4.2 the
differential formulation of each simple problem. Due to the linearity of the
differential formulation

w(x) = w1(x) + w2(x) + w3(x) + w4(x)

is the solution of the original problem.

Fig. 4.26. a) Original problem; b) Simpler problems used for the superposition

In fact,

d4w

dx4
=

d4w1

dx4
+

d4w2

dx4
+

d4w3

dx4
+

d4w4

dx4
=

p1(x)
EI

+
p2(x)
EI

=
p(x)
EI

w(0) = w1(0) + w2(0) + w3(0) + w4(0) = 0
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Table 4.2. Differential formulations of simpler problems

(1)
d4w1
dx4 = p1(x)

EI

w1(0) = 0, w1(L) = 0
dw1
dx

(0) = 0, EI d2w1
dx2 (L) = 0

(2)
d4w2
dx4 = p2(x)

EI

w2(0) = 0, w2(L) = 0
dw2
dx

(0) = 0, EI d2w2
dx2 (L) = 0

(3)
d4w3
dx4 = 0

w3(0) = 0, w3(L) = 0
dw3
dx

(0) = ϕ, EI d2w3
dx2 (L) = 0

(4)
d4w4
dx4 = 0

w4(0) = 0, w4(L) = −δ
dw4
dx

(0) = 0, EI d2w4
dx2 (L) = 0

dw

dx
(0) =

dw1

dx
(0) +

dw2

dx
(0) +

dw3

dx
(0) +

dw4

dx
(0) = ϕ

w(L) = w1(L) + w2(L) + w3(L) + w4(L) = −δ

EI
d2w

dx2
(L) = EI

d2w1

dx2
(L) + EI

d2w2

dx2
(L) + EI

d2w3

dx2
(L) + EI

d2w4

dx2
(L) = 0

which show that w(x) satisfies all field and boundary conditions of the original
problem. The solution of the seemingly complex problem has therefore been
reduced to the solution of the four simpler problems.

�

Bars subjected to axial and transverse loading

In Section 4.1 we examined the solution of bars subjected to axial loading
only and in this section we obtained the solution of bars subjected to trans-
verse loading only. In the linear analysis considered, the axial loading does
not induce any rotations of the bar sections and the transverse loading does
not induce any axial displacement at the bar axis. Therefore, in the context
of infinitesimally small displacements, the solution of a bar subjected to the
simultaneous actions of axial and transverse loadings can be obtained by the
superposition of the solutions to the axial and bending problems.

Example 4.11

Find the solution of a bar of length L and cross-sectional area A subjected
to imposed axial end displacements u0 at x = 0 and uL at x = L.
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Solution

Considering the differential formulation of the bar problem subjected to axial
loading given by (4.105) to (4.107), we have

EA
d2u

dx2
= 0

where E is Young’s modulus. Hence,

u(x) = C2x + C1

and imposing u(0) = u0 and u(L) = uL, we obtain

u(x) = u0

(
1 − x

L

)
+ uL

x

L

or

u(x) = h1(x)u0 + h4(x)uL.

We note that h1(x) gives the solution for an imposed unit axial displace-
ment at x = 0 with the other end fixed. Analogously, the function h4(x) gives
the solution for an imposed axial unit displacement at x = L with the end
x = 0 fixed.

�
Let us consider a generic bar and number the end degrees of freedom as

schematically shown in Figure 4.27.

Fig. 4.27. Numbering of end section degrees of freedom. Young’s modulus E, the
moment of inertia I and the cross-sectional area A are all constant

Consider that these end displacements are imposed and that there is no
distributed axial and transverse loading. Using Examples 4.7 and 4.11, the
solution can be written as4

u(x) = h1(x)u1 + h4(x)u4 (4.170)

4 Note that u(x) in (4.170) represents a uniform section displacement (independent
of z used in (4.124)) and w(x) in (4.171) results in an additional u-displacement
as given in (4.124)
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and

w(x) = h2(x)u2 + h3(x)u3 + h5(x)u5 + h6(x)u6 (4.171)

and the numbering used for the functions hi is now obvious. If in addition
a transverse or axial loading is applied, the solutions can be obtained by
superposition (see Example 4.10).

4.2.3 Bar models obtained by an assemblage of bars

We have studied so far bar models of only one bar. When bar models are
used in structural engineering to model real structures, the resulting models
almost always involve an assemblage of bars.

In Chapter 2, we studied truss structures made of several bars. The truss
models are simpler than those we consider next since in truss structures each
bar only carries an axial force due to pin end conditions. However, the same
concepts can be used to analyze structures made of an assemblage of bars
carrying bending and axial forces.

Consider the structure in Figure 4.28a. The structure is clearly properly
supported since, due to the clamped condition at section A, the structure can
not undergo any motion when considered rigid.

Fig. 4.28. a) Three-bar structure model. Bars AB, BC and CD have constant EI
and EA; b) External actions on the structure with reactions included

This structure is statically determinate since the suppression of any of its
restraints would yield a structure that is no longer properly supported.

Associated with each restraint, a reaction force is introduced as schemat-
ically shown in Figure 4.28b. Since the structure is statically determinate the
reactions can be determined using the global equilibrium conditions below∑

FX = 0 ⇒ XA = −P∑
FY = 0 ⇒ YA = P
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MA − P · 2a = 0 ⇒ MA = 2Pa.

Fig. 4.29. Definition of section E

Let us discuss how to determine the internal forces and moment at any
section by examining the section E shown in Figure 4.29. The structure
is conceptually cut at this section and we introduce the section forces and
moments acting onto the two resulting parts as shown in Figure 4.30.

Fig. 4.30. Internal forces at section E

Of course, the internal forces and moments at section E can be evaluated
by enforcing equilibrium of either part (I) or (II). Since in part (II) we
have only known external actions, its equilibrium directly gives these internal
forces and moments. We obtain

N = P

V = P

M = −3Pa

2
.
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In this way, we can determine N , V and M for any section and obtain
the axial, shear and moment diagrams which are shown in Figure 4.31. For
a generic point on the bar axis, the magnitude shown orthogonal to the
axis indicates the value of the particular internal force/moment at that bar
section. For the axial and shear force diagrams the sign convention is indicated
next to the diagrams. For the bending moment, the convention is to draw
the diagram on the side where the fibers are tensioned due to the action of
the bending moment.

Fig. 4.31. Axial, shear and bending moment diagrams

To illustrate how displacements can be evaluated for an assemblage of
bars, we consider the example below.

Example 4.12

Calculate the section displacement indicated in Figure 4.32.

Solution

We need to consider the contributions due to the axial force and the bending
moment. Note that the displacement δC depends not only on the deforma-
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Fig. 4.32. Section displacement to be evaluated

tion of bar BC but also on that of bar AB. Since we know the displace-
ments/rotation at A and the internal forces of bar AB, we can evaluate the
displacements/rotation at point B by solving the applicable differential equa-
tions for bar AB.

For every bar we adopt a local coordinate system such that the x axis is
always axial as described in Figure 4.33a.

The differential formulation for the bending problem of bar AB reads

d2w

dx2
=

M(x)
EI

=
1

EI
(Px − 2Pa) (4.172)

w(0) = 0; w′(0) = 0

and for the axial problem

du

dx
=

N(x)
EA

=
P

EA
(4.173)

u(0) = 0.

Solving equations (4.172) and (4.173), we obtain for section B

uB =
Pa

EA

wB = −5Pa3

6EI

w′
B = −3Pa2

2EI
.

For bar BC, we have

d2w

dx2
=

M(x)
EI

= −Pa

EI

w(0) = uB =
Pa

EA
; w′(0) = w′

B = −3Pa2

2EI

and
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Fig. 4.33. a) Choices of local axes; b) Magnified deformed shape

du

dx
=

N(x)
EA

=
P

EA

u(0) = −wB =
5Pa3

6EI
.

Of course, the end conditions at x = 0 for bar BC have been obtained from
the displacements and the rotation at section B considered as the end section
of bar AB.

Solving the above equations, we obtain

uC =
Pa

EA
+

5Pa3

6EI
=

5Pa3

6EI

(
1 +

6I

5Aa2

)
and

wC = −2Pa3

EI
+

Pa

EA
= −2Pa3

EI

(
1 − I

2Aa2

)
.

Therefore

δC = −wC =
2Pa3

EI

(
1 − I

2Aa2

)
. (4.174)

A magnified deformed shape of the structure is shown in Figure 4.33b.
We compare the relative contribution of the axial and bending defor-

mations to the calculated displacement. Assuming that the bars are of a
rectangular cross-section of height h, expression (4.174) becomes

δC =
2Pa3

EI

(
1 − 1

24

(
h

a

)2
)
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and we see that for a usual range of values for h and a the contribution of
the axial deformation is negligible when compared to that of the bending
deformation.

�
Although the methodology used in the above example to find displace-

ments/rotations for an assemblage of bars provides insight into the kinematics
of the deformation, it is not efficient for a structure of many bars. Moreover,
the solution would become even more cumbersome for statically indetermi-
nate structures. Consider, for example, the structure described in Figure 4.34
which was obtained by adding a support at point C to the structure of Figure
4.28.

Fig. 4.34. Modified three-bar structure

Fig. 4.35. Superposition for three-bar structure

Before we can solve for the displacements we need to find the reaction
at C. For that purpose we can use the superposition of effects as shown in
Figure 4.35 and impose the compatibility relation

δCI
+ δCII

= 0.

If we define δ1
CII

as δCII
for X = 1 then
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X = − δCI

δ1
CII

.

Of course, δCI
is the δC evaluated above and δ1

CII
can be calculated in a

similar way.
The discussion above reinforces the need for a systematic approach to

solve engineering structures made of many bars and provides the motivation
for the next section.

4.2.4 Matrix displacement method for frames

In this section we introduce a systematic approach to solve structures made
of several bars. The methods described in the previous section, which are
very useful to obtain insight into the behavior of simple bar structures, are
not adequate for solving structures made of several bars.

Analogous to the developments for truss structures, presented in Chapter
2, the matrix method provides a very efficient approach to analyze frame
structures of arbitrary complexity.

The main ingredients of the matrix method have already been presented
in Section 2.3 and using Table 4.1 we can now directly assemble the bar
element stiffness matrix including bending effects.

Stiffness matrix for a bar in a local system

The stiffness matrix of a bar in the local system of axes and corresponding
to the nodal degrees of freedom shown in Figure 4.36 is given by the equation

Fig. 4.36. Bar local axes and degrees of freedom

k̃ũ = f̃ (4.175)

where
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ũ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ũ1

ũ2

ũ3

ũ4

ũ5

ũ6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, f̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̃1

f̃2

f̃3

f̃4

f̃5

f̃6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA
L

0 0 −EA
L

0 0

0 12EI
L3

6EI
L2 0 − 12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 − 6EI

L2
2EI
L

−EA
L 0 0 EA

L 0 0

0 −12EI
L3 −6EI

L2 0 12EI
L3 − 6EI

L2

0 6EI
L2

2EI
L

0 − 6EI
L2

4EI
L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.176)

The elements in the matrix k̃ corresponding to bending are, of course, the
forces and moments listed in Table 4.1. To illustrate this observation, consider
that we impose ũ2 = 1 and ũ1 = ũ3 = ũ4 = ũ5 = ũ6 = 0. The solution to
this problem is given in Table 4.1. and is summarized in Figure 4.37.

Fig. 4.37. Solution that leads to the second column of k̃

Of course, from (4.175), we obtain

f̃ =
[
k̃i2

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
12EI
L3

6EI
L2

0

−12EI
L3

6EI
L2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
exemplifying how the second column of k̃ is obtained.
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Stiffness matrix of bar in the global system

The stiffness matrix of an arbitrarily inclined bar is now obtained in the
global system as for a truss element in Chapter 2. Using the nodal displace-
ment/rotation and force/moment conventions in Figure 4.38, we obtain

u3 = ũ3, u6 = ũ6, f3 = f̃3, f6 = f̃6.

Fig. 4.38. Local and global degrees of freedom of an arbitrarily oriented bar ele-
ment

We have

f = ku

with

k = TT k̃T
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f =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f1

f2

f3

f4

f5

f6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, u =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

u5

u6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

ũ = Tu, f̃ = Tf

where

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos α sin α 0 0 0 0

− sin α cos α 0 0 0 0

0 0 1 0 0 0

0 0 0 cos α sinα 0

0 0 0 − sinα cos α 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.177)

Formulation of the matrix method for frames and a demonstrative
example

From this point onwards, the formulation of the matrix method is as in
the analysis of truss structures. In other words, we can define F(m), U(m) and
K(m) in an analogous manner considering that for the frame bar we have six
degrees of freedom per element. Then equilibrium at all degrees of freedom
is enforced by

R =
ne∑

m=1

F(m)

where ne = number of elements in the structure. Element equilibrium, com-
patibility, the stress strain behavior, and the nodal compatibility are enforced
by using

F(m) = K(m)U.

Hence, we arrive at

KU = R
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with

K =
ne∑

m=1

K(m).

The assemblage process is implemented using the LM(m) array which, for
this case, has six entries instead of four. In the next example we explore the
definitions above.

Example 4.13

Consider the bar structure defined in Figure 4.39. Find the nodal displace-
ments, the reactions and draw the internal force diagrams for the structure.

Fig. 4.39. Problem description. E ≡ Young’s modulus, A ≡ cross-sectional area
and I ≡ moment of inertia. The δ is a vertical settlement and ϕ is an imposed
support rotation

Solution

The matrix method will be used and, since the objective of this example is
to illustrate this method, the solution is presented in detail.

Step 1 − Number nodes and bars. Also number degrees of freedom,
numbering first the free ones. Establish bar orientations.

The result of this step is summarized in Figure 4.40.
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Fig. 4.40. Numbering definitions for the structure and bar orientations

Step 2 − Evaluate k̃ and T for every bar.
Note that the k̃ matrix has always the form given in (4.176). The only

changes from bar to bar are due to different geometric and material properties
of the bars, i.e., E, A and L.

The matrix T is defined by (4.177) and for each bar the angle α has to
be introduced. The bar orientation is used to arrive at the correct α where
the first bar node defines the origin of the x̃ axis. We obtain

k̃(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

480000 0 0 −480000 0 0

0 6912 17280 0 −6912 17280

0 17280 57600 0 −17280 28800

−480000 0 0 480000 0 0

0 −6912 −17280 0 6912 −17280

0 17280 28800 0 −17280 57600

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

T(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8 0.6 0 0 0 0

−0.6 0.8 0 0 0 0

0 0 1 0 0 0

0 0 0 0.8 0.6 0

0 0 0 −0.6 0.8 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where we have used α1 = arctg(3/4). For bar 2
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k̃(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

600000 0 0 −600000 0 0

0 13500 27000 0 −13500 27000

0 27000 72000 0 −27000 36000

−600000 0 0 600000 0 0

0 −13500 −27000 0 13500 −27000

0 27000 36000 0 −27000 72000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

T(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where we have used α1 = 0. T(2) is the identity matrix, since the global and
local axes are coincident for this bar.

Step 3 − Evaluate k for each bar using k = TT k̃T.
We obtain

k(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

309688 227082 −10368 −309688 −227082 −10368

227082 177224 13824 −227082 −177224 13824

−10368 13824 57600 10368 −13824 28800

−309688 −227082 10368 309688 227082 10368

−227082 −177224 −13824 227082 177224 −13824

−10368 13824 28800 10368 −13824 57600

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

600000 0 0 −600000 0 0

0 13500 27000 0 −13500 27000

0 27000 72000 0 −27000 36000

−600000 0 0 600000 0 0

0 −13500 −27000 0 13500 −27000

0 27000 36000 0 −27000 72000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Step 4 − Construct the LM array for each bar.
Referring to Figure 4.40

LM(1) =
[

7 8 9 1 2 3
]

LM(2) =
[

1 2 3 5 6 4
]

Step 5 − Assemble the structure stiffness matrix K, given below.
From the element stiffness matrices, k(m), we obtain K using the LM(m)

arrays as discussed in Chapter 2. We construct explicitly only the upper part
of the matrix and take advantage of symmetry to obtain the lower part.

We note that since there is no direct physical connection between nodes
2 and 3, i.e., no bar linking nodes 2 and 3, the stiffness terms coupling the
degrees of freedom of node 2 (4, 5, 6) and node 3 (7, 8, 9) should be zero, as
obtained. The solid lines shown in the matrix below identify the partitions
associated with the free and restrained degrees of freedom. Since we have
first numbered all free degrees of freedom, there is no need to exchange rows
to arrive at Kaa, Kab, Kba and Kbb.

Step 6 − Construct the load column matrix for the free degrees of free-
dom Ra.

Considering the load given, we obtain

Ra =

⎡⎢⎢⎢⎢⎢⎢⎣
R1

R2

R3

R4

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0

−50

0

−100

⎤⎥⎥⎥⎥⎥⎥⎦

Step 7 − Construct the displacement column matrix for the restrained
degrees of freedom Ub.

Ub =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U5

U6

U7

U8

U9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−0.005

0

0

0.001

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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K
=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣9
0
9
6
8
8

2
2
7
0
8
2

1
0
3
6
8

0
−6

0
0
0
0
0

0
−3

0
9
6
8
8

−2
2
7
0
8
2

1
0
3
6
8

2
2
7
0
8
2

1
9
0
7
2
4

1
3
1
7
6

2
7
0
0
0

0
−1

3
5
0
0

−2
2
7
0
8
2

−1
7
7
2
2
4

−1
3
8
2
4

1
0
3
6
8

1
3
1
7
6

1
2
9
6
0
0

3
6
0
0
0

0
−2

7
0
0
0

−1
0
3
6
8

1
3
8
2
4

2
8
8
0
0

0
2
7
0
0
0

3
6
0
0
0

7
2
0
0
0

0
−2

7
0
0
0

0
0

0

−6
0
0
0
0
0

0
0

0
6
0
0
0
0
0

0
0

0
0

0
−1

3
5
0
0

−2
7
0
0
0

−2
7
0
0
0

0
1
3
5
0
0

0
0

0

−3
0
9
6
8
8

−2
2
7
0
8
2

−1
0
3
6
8

0
0

0
3
0
9
6
8
8

2
2
7
0
8
2

−1
0
3
6
8

−2
2
7
0
8
2

−1
7
7
2
2
4

1
3
8
2
4

0
0

0
2
2
7
0
8
2

1
7
7
2
2
4

1
3
8
2
4

1
0
3
6
8

−1
3
8
2
4

2
8
8
0
0

0
0

0
−1

0
3
6
8

1
3
8
2
4

5
7
6
0
0

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦.
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Step 8 − Construct and solve the linear system of algebraic equations
given by

KaaUa = Ra − KabUb⎡⎢⎢⎢⎢⎢⎢⎣
909688 227082 10368 0

227082 190724 13176 27000

10368 13176 129600 36000

0 27000 36000 72000

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
U1

U2

U3

U4

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0

−50

0

−100

⎤⎥⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎢⎣
−600000 0 −309688 −227082 10368

0 −13500 −227082 −177224 −13824

0 −27000 −10368 13824 28800

0 −27000 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−0.005

0

0

0.001

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Ua =

⎡⎢⎢⎢⎢⎢⎢⎣
U1

U2

U3

U4

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
2.192 × 10−5

−1.144 × 10−4

−4.172 × 10−4

−3.012 × 10−3

⎤⎥⎥⎥⎥⎥⎥⎦
Step 9 − Evaluate the reactions given by Rb using

Rb = KbaUa + KbbUb⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R5

R6

R7

R8

R9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−600000 0 0 0

0 −13500 −27000 −27000

−309688 −227082 −10368 0

−227082 −177224 13824 0

10368 −13824 28800 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
U1

U2

U3

U4

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

600000 0 0 0 0

0 13500 0 0 0

0 0 309688 227082 −10368

0 0 227082 177224 13824

0 0 −10368 13824 57600

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−0.005

0

0

0.001

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Rb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−13.15

26.64

13.15

23.36

47.39

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Step 10 − Evaluate the nodal forces in each bar.
From the nodal displacements of the structure, we extract, for each bar,

the bar nodal displacements. This can be systematically accomplished using
the LM arrays. In fact, for bar 1

u1 = U7, u2 = U8, u3 = U9

u4 = U1, u5 = U2, u6 = U3.

Therefore, with u(1) determined, we can evaluate f (1) using f (1) = k(1)u(1)

which yields

f (1)T

=
[

13.15 23.36 47.39 −13.15 −23.36 6.58
]
.

For bar 2, using LM(2) we directly write

u(2)T

=
[

2.192 × 10−5 −1.144 × 10−4 −4.172 × 10−4 0 −5 × 10−3 −3.012 × 10−3
]

and considering f (2) = k(2)u(2) we arrive at

f (2)T

=
[

13.15 −26.64 −6.58 −13.15 26.64 −100
]
.

Step 11 − Evaluate bar nodal forces in the bar’s local system.
Although we could find the internal force diagrams from the bar nodal

forces in the global system, they are more easily determined from the bar
nodal forces in the local system.

We have

f̃ (1) = T(1)f (1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

24.54

10.79

47.39

−24.54

−10.79

6.58

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Analogously

f̃ (2) = T(2)f (2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

13.15

−26.64

−6.58

−13.15

26.64

−100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Step 12 − Construct the internal force diagrams.
These diagrams can be constructed bar by bar using f̃ (m) and they are

shown in Figure 4.41. Only as a verification, we can check that the equilibrium

Fig. 4.41. Internal force diagrams

of node 1 holds. Figure 4.42 summarizes this situation.
Regarding the units, although we did not show these explicitly, all ob-

tained displacements are in meters, rotations in radians, forces in kN and
moments in kN · m. These units are those used in the physical problem, see
Figure 4.39, and were used throughout the solution.
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Fig. 4.42. Equilibrium of node 1. a) bar end forces in the global system acting
onto node; b) Internal forces at “node” sections

�

External loads applied to the bars

So far, the matrix method was formulated considering external loads ap-
plied only to the nodes. However, in practice we frequently find structures in
which loads are not applied to the nodes. Therefore, we need to extend our
formulation to consider loads applied to the bars.

The central idea behind the procedure to be presented is to take advantage
of the superposition of effects and construct a solution strategy based on the
formulation of the matrix method which considers loads applied to the nodes
only.

For that consider that the solution will be obtained by superimposing the
solutions for two problems: (I) and (II). Problem (I) is defined considering the
external loads which are applied directly onto the bars (i.e. not to the nodes)
and restraining all degrees of freedom to have zero displacements/rotations.
The external reactions which should be introduced to guarantee that all dis-
placements/rotations are zero when we consider the loads applied directly
onto the bars are given by R0 with R0,a being the partition associated with
the degrees of freedom that are free in the original structure and R0,b with
those that are restrained.

Since the loads given by R0 do not exist in the original structure, they
are introduced in problem (II) with the reversed sense, i.e., −R0. In problem
(II), we consider in addition the external loads of the original structure which
are applied directly to the nodes.

We note that problem (II) can be solved in the usual way since the external
loads are applied to the nodes only. The nodal displacement/rotation solution
for problem (II) is already the solution for the original structure since for
structure (I) all degrees of freedom were fixed.

Now the solution strategy is apparent. The solution of problem (II) will
lead to the displacements/rotations and reactions of the original problem.
The matrix equation for problem (II) can be written as
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⎡⎣ Kaa Kab

Kba Kbb

⎤⎦⎡⎣ Ua

Ub

⎤⎦ =

⎡⎣ Ra − R0,a

Rb − R0,b

⎤⎦ .

The first set of equations

KaaUa = Ra − R0,a − KabUb (4.178)

can be solved for Ua and the second set leads to the reactions, i.e.,

Rb = R0,b + KbaUa + KbbUb. (4.179)

We emphasize that

UT =
[

Ua Ub

]
is the solution for the original problem. Note that, if there are imposed nodal
displacements/rotations they should be introduced in problem (II) only and
the above equations are already taking into account this possibility. We also
assumed that no external concentrated forces and moments are applied at the
restraint degrees of freedom. These concentrated forces/moments would have
to be added (with appropriate senses) to the reactions calculated in (4.179).

Regarding the calculation of the bar nodal forces, we need to be partic-
ularly careful. We note that, although there are no nodal displacements for
problem (I), in general, the bar nodal forces are not zero since the external
loads applied to the bars should be equilibrated by these bar nodal forces. Let
us denote by f̃ (m)

0 the bar (m) nodal forces in the local system for problem
(I). Therefore, the bar nodal forces for bar (m) for the original problem are
given by

f̃ (m) = f̃ (m)
0 + k̃(m)ũ(m).

Fig. 4.43. Generic situation to evaluate f̃0

Let us show how to obtain R0 from the bar nodal forces f̃ (m)
0 of the

structure. We first note that f̃ (m)
0 can be obtained by considering bar (m)

clamped at both ends subjected to the external load applied to bar (m). A
generic situation is shown in Figure 4.43. In the bar global system these forces
are given by
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f (m)
0 = T(m)T

f̃ (m)
0 . (4.180)

Now we define F(m)
0 as the N × 1 column matrix, N being the total

number of degrees of freedom of the structure, which is obtained from f (m)
0

in the same way as F(m) is obtained from f (m), i.e., using the correspondence
between the local and global numbering. Then we can enforce equilibrium of
every node of problem (I) by

R0 =
ne∑

m=1

F(m)
0 (4.181)

which shows how to obtain R0 from F(m)
0 . Of course, since F(m)

0 has many
zero entries, the summation given in (4.181) is efficiently performed directly
from the nodal force column matrices f̃(m)

0 using the LM(m) arrays.
Typical examples of f̃ (m)

0 are given in Figure 4.44 and Figure 4.45 for
which

f̃ (i)T

0 =
[

0 P
2

Pa
8 0 P

2 −Pa
8

]
and

f̃ (j)T

0 =
[

0 pa
2

pa2

12 0 pa
2 −pa2

12

]
.

Fig. 4.44. Evaluation of f̃
(i)
0

Fig. 4.45. Evaluation of f̃
(j)
0
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Example 4.14

Consider the structure defined in Figure 4.39 with the addition of the loads
applied to the bars as summarized in Figure 4.46. Find the nodal displace-
ments, the reactions and draw the internal force diagrams for the structure.

Fig. 4.46. Problem description with the added load. The data given in Figure 4.39
remains unchanged and p = 60 kN/m

Solution

We need to evaluate R0 and use the superposition detailed in this section.
We keep the same definitions of Example 4.13.

Using the solutions summarized in Figures 4.44 and 4.45, we can write

f̃ (1)T

0 =
[

0 150 125 0 150 −125
]

f̃ (2)T

0 =
[

0 50 50 0 50 −50
]

and using (4.180)

f (1)T

0 =
[

−90 120 125 −90 120 −125
]

f (2)T

0 =
[

0 50 50 0 50 −50
]
.

Taking advantage of the LM arrays already defined in Example 4.13, we
write
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RT
0,a =

[
−90 170 −75 −50

]
RT

0,b =
[

0 50 −90 120 125
]
.

Now Ua can be evaluated using (4.178) which is written as

⎡⎢⎢⎢⎢⎢⎢⎣
909688 227082 10368 0

227082 190724 13176 27000

10368 13176 129600 36000

0 27000 36000 72000

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
U1

U2

U3

U4

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0

−50

0

−100

⎤⎥⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎢⎣
−90

170

−75

−50

⎤⎥⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎢⎣
−600000 0 −309688 −227082 10368

0 −13500 −227082 −177224 −13824

0 −27000 −10368 13824 28800

0 −27000 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−0.005

0

0

0.001

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(4.182)

Of course, the stiffness matrices are the same as for Example 4.13. Solving
(4.182) , we obtain

UT
a =

[
5.396 × 10−4 −1.810 × 10−3 −2.222 × 10−5 −1.880 × 10−3

]
.

The reactions Rb can be obtained using (4.179)
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Rb =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

50

−90

120

125

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−600000 0 0 0

0 −13500 −27000 −27000

−309688 −227082 −10368 0

−227082 −177224 13824 0

10368 −13824 28800 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
U1

U2

U3

U4

⎤⎥⎥⎥⎥⎥⎥⎦ +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

600000 0 0 0 0

0 13500 0 0 0

0 0 309688 227082 −10368

0 0 227082 177224 13824

0 0 −10368 13824 57600

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−0.005

0

0

0.001

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
leading to

RT
b =

[
−323.72 58.28 143.72 331.72 212.57

]
.

From U we obtain the bar nodal displacements u(1) and u(2), and in the local
system they are given by

ũ(1) = T(1)u(1) = T(1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0.001

5.396 × 10−4

−1.810 × 10−3

−2.222 × 10−5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0.001

−6.542 × 10−4

−1.771 × 10−3

−2.222 × 10−5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

ũ(2) = u(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5.396 × 10−4

−1.810 × 10−3

−2.222 × 10−5

0

−0.005

−1.880 × 10−3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
since T(2) = I.
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The bar nodal forces in the local system can be evaluated by

f̃ (1) = f̃ (1)
0 + k̃(1)ũ(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

314

179.14

212.57

−314

120.86

−66.87

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

f̃ (2) = f̃ (2)
0 + k̃(2)ũ(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

323.72

41.72

66.87

−323.72

58.28

−100

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The internal force diagrams are shown in Figure 4.47.

�

Additional bar end conditions

In the frame structures considered so far, continuity of rotations was implied
for the bar sections and, in particular, at the nodes. Referring to Figures 4.39
and 4.40, as an example, we can see that the rotation of node 1 (taken as a
typical node) is the same as the end section rotation of bar 1 and that of the
initial section of bar 2. This continuity is taken into account in the matrix
formulation through the compatibility condition

U3 = u
(1)
6 = u

(2)
3 .

The stiffness matrix given in (4.176) has been derived to model such situ-
ations since it provides stiffness with respect to the bar end section rotations
which, by compatibility, correspond to the nodal rotations.

In engineering structural analysis we frequently also have an internal ro-
tational hinge (pin type connection) as in Figure 4.48. In this case the bar
element sections connected to the hinge no longer have to undergo the same
rotation (while the section displacements have to be the same). Hence, the
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Fig. 4.47. Internal force diagrams

Fig. 4.48. Frame structure with a pin connection

compatibility condition for the rotation no longer exists and there is no mo-
ment transferred between the sections connected to the hinge.

There is no unique way to model the rotational hinge. For example, in
Figure 4.49a we choose a node to represent each section connected to the
hinge and enforce that the section translations are the same, that is, U4 = U7

and U5 = U8. This could be efficiently accomplished by choosing as degrees
of freedom the translations of the hinge plus the rotations of the sections
connected to the hinge, as shown in Figure 4.49b.

An efficient modeling alternative that keeps the number of degrees of
freedom per node at three is shown in Figure 4.50. In Figure 4.50a, node 2
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Fig. 4.49. Modeling the rotational hinge

is considered attached to bar 2, i.e., the rotation of node 2 is the same as
the rotation of the end section of bar 2. Therefore, the degree of freedom 6
corresponds to the rotation of the end section of bar 2. The translations of
node 2, i.e., degrees of freedom 4 and 5, still correspond to the translations of
the sections of bars 2 and 3 which connect at node 2. The stiffness matrix of
bar 3 has to be modified, as detailed shortly, and the rotation of the section
of bar 3 at node 2 will no longer be a direct outcome of the solution of the
matrix equations.

Fig. 4.50. Two modeling choices for the rotational hinge
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In Figure 4.50b, node 2 is chosen to be attached to bar 3, and the degree
of freedom 6 is now equal to the section rotation of bar 3 and the stiffness
matrix of bar 2 should be modified.

Consider the bar described in Figure 4.51. The rotation of node 2 of the

Fig. 4.51. Bar with built-in condition at local node one and pin condition at local
node 2

bar is free; that is, there is no bending moment at the end section of the bar.
We can construct this stiffness matrix column by column imposing unit end
displacements/rotations. Columns 1 and 4 are obtained as for the stiffness
matrix given in (4.176).

We detail the derivation of the fifth column which is obtained by imposing
u5 = 1, u1 = u2 = u3 = u4 = 0. We should take into account that M(L) = 0.
The axial displacements are trivially zero as given by equation (4.170), i.e.,

u(x̃) = 0 → N(x̃) = 0.

For the transverse displacements, we refer to the solution derived in Example
4.9 which gives the solution sought when we take δ = −1 leading to

w(x̃) = h5(x̃) +
3

2L
h6(x̃) = − x̃3

2L3
+

3x̃2

2L2
.

Therefore

M(x̃) = EIw′′(x̃) =
EI

L3
(3L − 3x̃)

M(0) =
3EI

L2
, M(L) = 0

V (x̃) = EIw′′′(x̃) = −3EI

L3
.

The results are summarized in Figure 4.52. In analogous manner the re-
maining columns are obtained and we summarize the results in Figure 4.53.
Therefore, the stiffness matrix is given by
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Fig. 4.52. Solution that leads to the fifth column of k

Fig. 4.53. Bar end forces for unit end displacements

k̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA
L 0 0 −EA

L 0 0

0 3EI
L3

3EI
L2 0 −3EI

L3 0

0 3EI
L2

3EI
L

0 −3EI
L2 0

−EA
L 0 0 EA

L 0 0

0 − 3EI
L3 −3EI

L2 0 3EI
L3 0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.183)

Note that the degree of freedom 6 no longer exists for the beam element; hence
column six has all zero entries. Of course, there is an explicit understanding
that when such a bar is used in an assemblage, the rotational stiffness of node
2 must come from other bars.

When the local node 1 is pinned as shown in Figure 4.54 the stiffness
matrix can be obtained analogously and is given by
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k̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA
L

0 0 −EA
L

0 0

0 3EI
L3 0 0 −3EI

L3
3EI
L2

0 0 0 0 0 0

−EA
L

0 0 EA
L

0 0

0 −3EI
L3 0 0 3EI

L3 − 3EI
L2

0 3EI
L2 0 0 −3EI

L2
3EI
L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.184)

Fig. 4.54. Bar with pin condition at local node 1 and built-in condition at local
node 2

Example 4.15

Consider again the structure defined in Figure 4.39, with the additional loads
introduced in Example 4.14, but now with a pin connection as shown in Figure
4.55. Obtain the displacements of the free degrees of freedom.

Fig. 4.55. Problem description having a pin connection.

Considering the numbering choices given in Figure 4.40 evaluate the nodal
displacements. The rotation of the section of the inclined bar adjacent to the
pin is to be predicted.
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Solution

The modeling choices are shown in Figure 4.56. Note that the rotation of

Fig. 4.56. Model definitions

node 1 given by U3 is the rotation of the section of the inclined bar adjacent
to the pin.

There are two modifications that should be introduced. The end con-
ditions of bar 2 should be pinned − built-in (see Figure 4.54) and can be
obtained using (4.184)

k̃(2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

600000 0 0 −600000 0 0

0 3375 0 0 −3375 13500

0 0 0 0 0 0

−600000 0 0 600000 0 0

0 −3375 0 0 3375 −13500

0 13500 0 0 −13500 54000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The other modification refers to the evaluation of f̃ (2)
0 . Since, in the superpo-

sition, the pin has to be taken into account. The condition that leads to f̃ (2)
0

is shown in Figure 4.57 and therefore

f̃ (2)T

0 =
[

0 10P
16

0 0 22P
16

− 6Pa
16

]
.

Introducing the modifications above and following the same solution steps
which have been used, we obtain

UT
a =

[
4.481 × 10−4 −1.501 × 10−3 1.229 × 10−3 −1.338 × 10−3

]
.

�
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Fig. 4.57. Solution required for evaluation of f̃
(2)
0

4.2.5 Bars subjected to 3-D actions

In this section we study the behavior of a straight prismatic bar subjected to
arbitrary transverse and axial loads. The objective is to derive the stiffness
matrix of the bar for these conditions.

Bending and axial actions

In Section 4.2.2 we introduced the Bernoulli-Euler beam model for planar
conditions, i.e., we assumed that the bar has a vertical plane of symmetry,
that the transversely distributed load was acting in the plane of symmetry
and that the bar axis remains in the plane of symmetry.

Now consider the situation summarized in Figure 4.58. The x axis is taken
along the section centroid5 and since there are no section symmetries, the y
and z axes are arbitrarily chosen. The transverse load is decomposed into
py and pz acting along directions y and z respectively. The axial loading is
denoted by fx. The stress resultants are shown in Figure 4.58 for a generic
section with outward normal given by ex. Actually, there are many ways in
which these stress resultants may be defined. In order to obtain analogous
differential equilibrium equations to those of the planar beam problem, we
choose the conventions of Figure 4.58.

The differential equilibrium equations are

dN

dx
+ fx = 0 (4.185)

dVy

dx
= py,

dVz

dx
= pz (4.186)

dMy

dx
= Vz,

dMz

dx
= Vy. (4.187)

The strain compatibility relations can be obtained considering the rota-
tions of fibers on the cross-section which are aligned with the y and z axes
as shown in Figure 4.59.

Note that
5 We assume that either the shear center coincides with the centroid or it is close

enough to the centroid that the induced warping displacements can be neglected
(see Section 4.2.6 for the definition of the shear center)
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Fig. 4.58. Loading and stress resultant definitions

Fig. 4.59. Rotation of fibers aligned with axes y and z

v(x, y, z) = v(x) (4.188)

w(x, y, z) = w(x). (4.189)

The kinematics summarized in Figure 4.59 leads to

u(x, y, z) = u0(x) − y
dv

dx
− z

dw

dx
(4.190)

where u0(x) is the displacement in the x direction of points on the bar axis.
Note that for a given cross-section u0, dv

dx and dw
dx are constant values and

equations (4.188), (4.189) and (4.190) show, as assumed, that the cross-
section remains plane. Orthogonality to the deformed axis, corresponding
to the Bernoulli-Euler hypothesis, can be directly inferred from Figure 4.59.
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The longitudinal strain is given by

εxx =
∂u

∂x
=

du0

dx
− y

d2v

dx2
− z

d2w

dx2

and Hooke’s law leads to

τxx = E

(
du0

dx
− y

d2v

dx2
− z

d2w

dx2

)
.

The stress resultants can be evaluated by integration of the stresses over the
cross-sections. The axial force is given by

N(x) =
∫

A

τxx dA = EA
du0

dx
(4.191)

since the x axis passes through the centroid.
The moment My is given by

My =
∫

A

τxx (−z) dA = −E
du0

dx

∫
A

z dA+E
d2v

dx2

∫
A

yz dA+E
d2w

dx2

∫
A

z2 dA.

(4.192)

We can define

Iy =
∫

A

z2 dA, Iyz =
∫

A

yz dA (4.193)

where Iy is the moment of inertia of the section with respect to y and Iyz is
the product of inertia of the section with respect to y and z.

Introducing (4.193) into (4.192) we obtain

My = EIy
d2w

dx2
+ EIyz

d2v

dx2
. (4.194)

The moment Mz is given by

Mz =
∫

A

τxx (−y) dA = E
du0

dx

∫
A

y dA+E
d2v

dx2

∫
A

y2 dA+E
d2w

dx2

∫
A

yz dA

which upon the definition of the moment of inertia with respect to z as

Iz =
∫

A

y2 dA

leads to

Mz = EIz
d2v

dx2
+ EIyz

d2w

dx2
. (4.195)
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We note that the equilibrium equations (4.185) to (4.187) and equations
(4.191), (4.194) and (4.195) which represent the compatibility and constitu-
tive relations give all the required conditions for the model and can be used
to find solutions when appropriate boundary conditions are specified.

Equations (4.194) and (4.195) can be placed in a simpler form if a par-
ticular set of axes is chosen. It is possible to show that we can always find
a position for the y and z axes by rotating them about the centroid of the
section such that the product of inertia vanishes, that is

Iyz = 0. (4.196)

The axes y and z for which (4.196) holds are the principal axes of inertia of
the cross-section. For these axes, equations (4.194) and (4.195) become

My = EIy
d2w

dx2
, Mz = EIz

d2v

dx2
.

Comparing the above equations with equation (4.147) which is applicable for
planar situations, we can see that the solution for 3-D bars in bending can be
obtained as the superposition of two planar bending problems, as detailed in
Section 4.4.2, which should be defined for the planes xy and xz with y and z
being the principal axes of the cross-section.

Torsional actions

In Section 3.6 we studied the torsion problem of a prismatic bar. The
formulation led to the exact 3-D elasticity solution as long as the torsional
actions are introduced at the end sections as a specific field of shear surface
forces which is mechanically equivalent to a torsional moment only. Addi-
tionally, the cross-sections should be free to warp.

These conditions are frequently violated in practical problems. For exam-
ple, the bar is not free to warp at the bar ends where it is either connected to
other bars or its section is restrained. However, as long as the cross-sections
are not thin walled, these end perturbations affect the solution only in a small
region close to the bar ends (see Timoshenko and Goodier, 1970) and we can
assume that the bar section rotations are governed by

dθx

dx
=

Mx

EIt
(4.197)

where, referring to Figure 4.58, the end section torsional moments are given
by M = Mxex and −M, θx is the section rotation about the x axis and It is
the torsional moment of inertia of the cross-section (see Section 3.6).

Matrix formulation for a 3-D bar

We can obtain the stiffness matrix of a bar subjected to 3-D actions in an
analogous manner to the 2-D bar solving the applicable differential equations
for unit end displacements.
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Fig. 4.60. Degrees of freedom for a 3-D bar

In Figure 4.60 the end section degrees of freedom are summarized. The
local reference system is chosen such that x̃ is taken along the section centroid
and ỹ and z̃ are the principal axes of the bar cross-section.

We do not detail the evaluation of the stiffness coefficients since the bend-
ing solutions in planes x̃z̃ and ỹz̃ are identical to that of the planar beam.
The axial solution is the same and for the torsion, we use (4.197) with unit
end rotations. Therefore, the stiffness matrix is given on the next page.

We note that we can solve 3-D bar structures of arbitrary complexity
with the matrix formulation. Of course, all the matrix procedures that were
detailed for truss structures and for planar frames are directly applicable for
3-D bar structures.

4.2.6 Thin walled bars

Thin walled bars are used widely in engineering practice due to their efficient
load carrying capabilities. In this section, we discuss some basic behaviors
which are important for the modeling of thin walled bar structures. These
behaviors, besides being essential for the modeling of thin walled bars, can
be used to establish low-order models of complex structures. For example,
the gross structural behavior of some buildings can be represented by an
equivalent thin walled bar.

Bending behavior

A thin walled bar may be naturally obtained as a result of modifying the
distribution of material over the cross-section to improve the bar stiffness
with respect to bending. In Figure 4.61a, we show a highlighted region of
a rectangular cross-section for which the normal stresses due to bending are
significantly smaller than in the outer regions (refer to equation (4.145) for the
linear normal stress distribution in bending) and, hence, in the highlighted
region the material is not being used as effectively as in the outer regions.
In Figure 4.61b, we show an I section whose area is the same as that of the
rectangular section of Figure 4.61a. Let Ia and Ib be the moments of inertia
of the rectangular and of the I section, respectively, and let us compare the
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⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦

displacements and stresses obtained for the choices of cross-sections of Figure
4.61 due to bending in the plane of symmetry. Referring to equation (4.136),
the ratio between the induced maximum displacements is
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(wmax)b

(wmax)a

=
Ia

Ib
= 0.0634 (4.198)

and due to equation (4.145) the ratio between the maximum normal stresses
is

(τn,max)b

(τn,max)a

=
Ia

Ib

hb

ha
= 0.176 (4.199)

where ha = w and hb = h+tf . Although these evaluations are very basic, the
values given in (4.198) and (4.199) quantify the effectiveness of the I section
to resist bending when compared to the rectangular section.

Fig. 4.61. Rectangular and I section of same area whose geometric data is given by
a = 6.615 in, w = 13.229 in, b = 16.655 in, h = 35.06 in, tw = 0.945 in, tf = 1.680
in

The shear stress distribution due to bending for the I beam and, in fact,
for any open thin walled section can be evaluated as detailed in Example 4.5.
However, the “plane sectioning”(refer to Figure 4.21) should be taken orthog-
onal to the midlines of the flange/web and the shear stresses are assumed to
be constant at these sections. We exemplify the sectioning in Figure 4.62a,
and in Figure 4.62b we show the distribution of shear stresses where

τf =
bhV

4I
, τw1 =

bhtfV

2Itw
, τw2 =

(
btf
tw

+
h

4

)
V h

2I
.
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Of course, I is the moment of inertia and V the shear force. For every point

Fig. 4.62. a) Typical sectioning planes; b) Distribution of shear stresses

of the midline of the flange/web we define the shear flow as

fs = τst

where τs is the magnitude of the shear stress and t is the thickness of the
flange/web.

Shear center

An important concept associated with the distribution of shear stresses
due to bending in a thin walled bar is the shear center. Consider a bar with
the cross-section described in Figure 4.63a subjected to bending induced by
a transverse vertical force distribution. The distribution of shear stresses is
shown in Figure 4.63b where

τf =
bhV

4I
, τw1 =

bhtfV

2Itw
, τw2 =

(
btf
tw

+
h

4

)
V h

2I
.

The resultants at the web and at the flanges can be evaluated by integra-
tion of the shear stresses and are shown in Figure 4.64a.

If we reduce these forces to a generic point D on the horizontal axis of
symmetry, we obtain the vertical force Rw which is equal to the shear force
V and a moment given by

MD = Rwd − Rfh.
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Fig. 4.63. a) Cross-section definition; b) Shear stress distribution

Fig. 4.64. a) Shear resultants; b) Location of the shear center

There is a position of point D for which MD = 0, i.e.,

d = e =
Rfh

Rw
.

The value e determines the position of point D referred to as S − the shear
center of the section.

Note that the shear center gives the position through which the resultant
force − associated with all external loading to the section − should pass in
order for there to be no twisting; that is, the resulting shear stress distribution
is induced by bending alone. In Figure 4.63b, we summarize the situation for
which only shear stresses induced by bending are developed.

Hence, if the resultant associated with all external loading does not pass
through the shear center, shear stresses associated with torsion are induced.

We also note that, in general, the shear center and the center of gravity
do not coincide. They coincide when there is a vertical plane of symmetry
for the section.
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Torsional behavior

The modeling of the torsional behavior of thin walled bars can be quite del-
icate. This behavior is drastically different depending on whether the cross-
section is open or closed. Also, for open sections the restrained warping may
affect the stress distribution in the whole bar. We first discuss the Saint
Venant approach for open and closed sections and then introduce the mod-
eling of restrained warping.

Open sections

The membrane analogy discussed in Section 3.6 is extremely useful to
determine the shear stress distribution at an open6 thin walled section which
is free to warp.

Consider, for example, the C section (“C” for channel) discussed above.
In Figure 4.65, we show schematically the deformed shape of the membrane
for this section. Except for the end regions and the corners, the membrane
deforms as for the thin rectangular section studied in Example 3.9 and we
obtain

It = 2If
t + Iw

t = 2
bt3f
3

+
ht3w
3

and the maximum shear stress at the flange and web are given respectively
by

τf
max =

3Mt

bt2f

If
t

It
, τw

max =
3Mt

bt2w

Iw
t

It
.

In Figure 4.65b, we show schematically the shear stress distribution. We
note that the methodology above can be applied for a thin walled section of
n segments of length bi and width ti. In such a case

It =
n∑

i=1

bit
3
i

3
(4.200)

and the maximum shear stress for segment i

τ i
max =

Mt

Ii
t

ti
Ii
t

It
=

Mt

It
ti. (4.201)

6 When the midline of a thin walled section is a closed curve we say that the
section is closed, otherwise the section is open
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Fig. 4.65. a) Deformed shape of membrane; b) Distribution of shear stresses

Closed sections

We recall that in Section 3.6 we studied the uniform torsion of bars of
arbitrary cross-sections. However, we made the implicit assumption that there
were no holes in the cross-sections, i.e., the cross-sectional region is simply
connected.

The uniform torsion theory can be extended to be applicable to the more
general cross-sections having holes. An interesting approach is to use the
membrane analogy placing a rigid plate to cover each hole7. For example,
consider the elliptical section with an elliptical hole as shown in Figure 4.66a
where the elliptical hole is highlighted to emphasize that a rigid plate is placed
there and in Figure 4.66b we show a side view. For thin walled sections we
can assume that a section of the deformed shape of the membrane between
the outer boundary and the rigid plate is a straight line.

Fig. 4.66. a) Elliptical cross section with hole; b) Deformed membrane

7 In the general case, additional conditions should also be enforced to use the
membrane analogy. However, it suffices to introduce the rigid plate for the thin
walled closed sections (see Timoshenko and Gere, 1961)
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The distribution of shear stresses can be directly inferred from the prop-
erties discussed in Section 3.6. In Figure 4.67a, a generic level curve of the
membrane is shown and therefore the shear stresses are tangent to this curve
and of constant magnitude (see equation (3.152)) and it is easily shown (see
Timoshenko and Goodier, 1970) that

τs =
Mt

2Amt
(4.202)

where Am is the area enclosed by the midline of the wall as shown in Figure
4.67b. It can be shown that

It =
Mt

Gθ′
=

4 (Am)2 t

Lm
. (4.203)

where Lm is the length of the midline.

Fig. 4.67. a) Distribution of shear stresses; b) Geometric definitions

It is very interesting to compare the behavior of closed and open thin
walled sections with respect to torsion. For that, we choose the simplest
closed section − a thin walled circular tube. The open section is obtained by
cutting the wall as shown in Figure 4.68b. For a given moment Mt, we can
evaluate the It and the τmax for both situations. Using (4.200) we obtain for
the open section

Io
t =

2πrt3

3

and (4.203) gives for the closed section

Ic
t =

4
(
πr2

)2
t

2πr
=

4π2r4t

2πr
= 2πr3t.
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Therefore, the ratio between the torsional moments of inertia is

Ic
t

Io
t

= 3
(r

t

)2

.

This ratio is very large for usual sections. For example, considering a tubular

Fig. 4.68. Thin walled circular tubes: a) “closed” and b) “open”

section of r = 12.375 in and t = 0.375 in we obtain a ratio of 3267. Therefore
the torsional stiffness of the closed section is much larger than that of the
open section. This result could have been anticipated using the membrane
analogy since It is proportional to the volume under the deformed membrane.

The maximum shear stress for the open section is given by (4.201)

τo
max =

Mt

It
t

and for the closed section by (4.202)

τ c
max =

Mt

2πr2t

leading to

τ c
max

τo
max

=
1
3

t

r

which is a small ratio. For the tubular section described above we obtain for
this ratio 0.01.

In Figure 4.69 we summarize the distribution of shear stresses for both
cases. Note that the closed section resists torsion very efficiently, because
the shear flow has a lever arm of r for the resisting moment. On the other
hand, for the open section, the shear flow is interrupted as the cutting plane
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Fig. 4.69. a) Shear stresses for closed section; b) Shear stresses for open section.
The magnitude of τs is not shown to scale

partially separates the section, and the shear flow has only a lever arm of the
order of the wall thickness.

The differences in behavior with respect to torsion of closed and open
sections were examined above for a particular case. However, they are rep-
resentative of the qualitative behavior of general closed and open sections.
Hence, for structural problems where torsion is an issue, closed sections are
very efficient. For example, in bridges for which both bending and torsion are
relevant, box sections are effective.

Warping effects

The modeling of torsion discussed so far is based on Saint Venant’s uni-
form torsion model introduced in Section 3.6. In this theory it is assumed that
the cross-sections are free to warp, i.e., there are no kinematic restrictions
preventing the out-of-plane displacements.

Fig. 4.70. a) Built-in bar of elliptical cross section subjected to torsion; b) Isolines
of warping displacements predicted by Saint Venant’s theory
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Consider, for example, the case of a bar of elliptical cross-section subjected
to a torsional moment at one end and built-in at the other, as summarized in
Figure 4.70a. In Figure 4.70b, we show the isolines of warping displacements
derived in Section 3.6 based on Saint Venant’s theory. Of course, at the built-
in end the warping displacements are kinematically prevented giving rise to
a field of normal stresses with zero resultant. It can be shown (Timoshenko
and Goodier, 1970) that for the elliptical section these normal stresses result
in a perturbation of the Saint Venant solution which rapidly diminishes in
magnitude as we move away from the built-in end. This is the case for solid
and thin walled closed cross-sections, but not for thin walled open sections.

In order to obtain insight into the behavior of open sections consider the
situation summarized in Figure 4.71. A top view of the deformation of the
bar predicted by Saint Venant’s theory is shown in Figure 4.71b. Of course,
such deformation is incompatible with the built-in end. In Figure 4.72a we
show qualitatively the distribution of normal stresses at the built-in section.

Fig. 4.71. a) Built-in bar of I section subjected to torsion; b) Top view of the
deformation predicted by Saint Venant’s theory

Although the overall resultant of this stress distribution at the cross-
section is null, the stresses give rise to bending moments of intensity M
acting on the upper and lower flanges as summarized in Figure 4.72b. In
fact, these bending moments acting at the rectangular cross-sections of the
flanges induce the required deformation to counter, at the built-in end, the
warping of the Saint Venant solution shown in Figure 4.71b. The quantity

B = Mh

is called the bimoment. To illustrate the interaction between the bimoment
and the part of the torsional moment acting at a section we show in Figure
4.73 the equilibrium of an element of infinitesimally small length extracted
from the I beam. We note that shear forces V are induced in the flanges
associated with the variation of M . Of course,
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Fig. 4.72. a) Distribution of normal stresses at flange at built-in section; b) Moment
resultant at flanges

Fig. 4.73. Stress resultants at flanges

V =
dM

dx
.

Note that the shear forces acting at a section are equivalent to a torsional
moment

(Mt)w = V h = h
dM

dx
=

d (Mh)
dx

=
dB

dx

i.e., the variation of the bimoment induces a twisting moment distribution
(Mt)w referred to as warping torsional moment since it is associated with
restrained warping. The total torsional moment at a section can be written
as

Mt = (Mt)w + (Mt)s

where (Mt)s is the moment of the Saint Venant part of the solution.
The complete formulation of the torsion problem of open sections with

restrained warping is out of the scope of this book. For that, we refer the
reader to Murray, 1985.
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Our objective was to give some insight into the effect of restraining the
warping for bars of open sections and how it influences the overall solution.
This insight can be important when solving models and when establishing
higher-order 3-D models.

4.2.7 Curved bar model

In this section we present the curved bar model and discuss basic behaviors of
curved structures. The fundamental concepts introduced serve as a reference
for many curved structural forms such as shell structures.

Basic facts

Referring to the straight bar model, transverse loads, such as those shown
in Figure 4.74, are transferred to the supports by the beam through bending.

Fig. 4.74. Sample transverse loads applied to straight bars

Bending is not an efficient way of transferring load. We recall that the
normal stress distribution due to bending at a bar cross-section is linear with
the extreme values occurring at the outer fibers. Since the stress magnitude
that can be supported by a given material is limited, in the case of bending
this limit value is attained first at the outer fibers and there is a significant
portion of the cross-section, around the centroid, for which the stresses are
much lower than the limit values.

In contrast, when we have an axial load on the bar, the stress distribution
is constant over the cross-section and all fibers simultaneously attain the
stress limit value.

Suppose we consider the supports and the load of Figure 4.74a and that
we would like to transfer such load to the supports without bending. We
could try to do so with a cable, since cables can not sustain any bending.
Although everyone has an intuitive understanding of what a cable is, in our
context a cable can be understood as a very slender bar which is so flexible
that it can not sustain any bending. If we place a cable linking the supports
of Figure 4.74a we can not find an equilibrated position since as the section of
the cable under the load starts moving downwards the right support moves
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left horizontally. However, if we modify the right support to be fixed, the
cable will find an equilibrated position as shown in Figure 4.75a and the
axial forces in the cable can be evaluated by equilibrium. In fact equilibrium
in the horizontal direction leads to

T1 cos α = T2 cos β = H

and in the vertical to

P = T1 sin α + T2 sin β

and we obtain

T1 =
P

(sinα + tanβ cos α)
, T2 =

P

(sinβ + tanα cos β)
.

Of course, to find the value of h (or α or β) we need to consider the section

Fig. 4.75. Cable equilibrated configuration for a transverse concentrated load

properties and the material of the cable8.
An important observation which is always valid is that, to be able to equi-

librate a vertical load with axial forces only, a horizontal reactive component
at the supports is required which is called the thrust, in Figure 4.75b given
by H. The equilibrated shape of the cable is called a funicular shape and h,
the largest vertical displacement, is referred to as the sag. Let us find the
funicular shape for the cable subjected to a uniformly distributed transverse
load, see Figure 4.74b. Taking advantage of symmetry, an equilibrated con-
figuration is shown in Figure 4.76. Of course, if this shape is funicular the
bending moment at a generic section has to be zero. Hence,

M(x) = − (px)
x

2
+

pL

2
x − Hy(x) = 0

8 The value of h may be relatively large compared with the span for a rubber like
cable and also for a steel cable when it is loose before the application of the load,
that is, its length is greater than the span
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Fig. 4.76. Cable equilibrated configuration for a uniformly distributed load

which leads to

y(x) =
p

2H

(
xL − x2

)
. (4.204)

Therefore the funicular shape of a cable subjected to a uniformly dis-
tributed pressure is parabolic. We note that the sag is related to the value of
the thrust. In fact, from equation (4.204)

h = y

(
L

2

)
=

p

2H

(
L2

2
− L2

4

)
=

pL2

8H

or

H =
pL2

8h
.

Consider the funicular shape developed by the cable either in Figure 4.75b
or 4.76. Instead of the very small cross-section of the cable, let us consider
bars with a much larger cross-section whose axes coincide in its initial con-
figuration with the funicular shape considered. Of course, in this case the
cross-section is assumed to be large enough such that the displacements are
small and, therefore, equilibrium is imposed in the undeformed configuration.

Now suppose we turn these bar structures over with respect to a horizontal
line at the support level. In Figure 4.77 we summarize the resulting structures
which are now referred to as arch structures. The structure of Figure 4.77a
is called a polygonal arch since it consists of straight bars. The structure
of Figure 4.77b is simply referred to as an arch; it is actually a curved bar
structure.

The fundamental change that occurs when we turn the structures of Fig-
ure 4.75 over is that the axial forces developed in the bars go from tension to
compression. This is a crucial distinction since structural materials behave
differently in tension than in compression, especially with respect to their
ultimate strength. In fact, historically, arches have had a tremendous impor-
tance in constructions since, for centuries, many construction materials have
had a very low strength in tension.

The shape that leads to compression only in arch structures is referred to
as “the line of pressure”. We note that the line of pressure is load dependent.
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Fig. 4.77. Arch structures

For example, if we change the position of the concentrated load acting onto
the arch of Figure 4.77a, bending is induced. Similarly, if a concentrated
load acts onto the arch of Figure 4.77b bending is also induced. Here, cable
structures behave differently, since when the load changes the cable changes
its shape in such a way that the funicular shape for this new loading is always
reached.

Consider the arch of Figure 4.77b whose bar axis is the line of pressure
for the uniformly distributed load and is given by equation (4.204) . A con-
centrated load is now applied as shown in Figure 4.78a. Of course, the axis of

Fig. 4.78. Arches subjected to a concentrated load

this arch does not correspond to the pressure line for the concentrated load,
since for this load the line of pressure is given by a polygonal arch defined by
two straight bars from the point of load application to the supports.

We realize that we cannot solve this arch problem directly and find the
internal forces since the structure is statically indeterminate. Therefore, to
solve this problem we need to first discuss the formulation of the curved bar
model which is addressed later in this section.

Let us for now transform the arch of Figure 4.78a into a statically deter-
minate arch by introducing a pin type joint or hinge as shown in Figure 4.78b.
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This kind of arch is called a three hinged arch and represents an important
structural arrangement with wide engineering applications. We discuss the
three hinged arch below, since insight into the behavior of arch structures is
gained by means of this simple statically determinate structure.

Fig. 4.79. a) Three hinged arch; b) Straight beam

Although we analyse the particular structure shown in Figure 4.78b, the
solution procedure used applies for three hinged arches in general. In Fig-
ure 4.79a, we introduce the reactions taking into consideration that, as the
external load is vertical, the horizontal reactions at the supports need to be
self-equilibrated. To obtain insight into how the loads are transferred by an
arch when compared to a straight beam, we consider the straight beam of
Figure 4.79b.

To evaluate the vertical reactions for the arch we use equilibrium in the
vertical direction∑

Fy = 0 ⇒ YA + YB − P = 0

and moment equilibrium about A∑
MA = 0 ⇒ YB · L − P

L

2
= 0.

These equations are the same that lead to reactions of the straight bar of
Figure 4.79b. Therefore, in general,

YA = Y0A

YB = Y0B .

The additional condition to be considered is

MC = 0
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which is given by

MC = M0C − Hh = 0

where M0C is the moment at the section of the straight beam corresponding
to the hinge, that is, M0C = YB.L

2
. Therefore,

H =
M0C

h
.

The moment at a generic section of the arch is written as

M(x) = M0(x) − Hy(x) (4.205)

where M0(x) gives the moment distribution for the straight beam. Therefore,
the moment for the arch is diminished with respect to that of the straight
beam by the amount Hy(x). In Figure 4.80a we graphically show the super-
position given by equation (4.205) and in Figure 4.80b the moment diagram
of the straight beam. The decrease in moment magnitudes in the arch with
respect to the straight beam is clearly seen.

Fig. 4.80. Moment diagrams for arch and straight beam

Before we close this section, we would like to highlight some important
facts. Due to the curved bar axis, it is possible to transfer certain transverse
loads to the supports by developing axial forces only.

It is essential that the supports provide horizontal reactions which are
called thrusts. Otherwise bending is developed.

We also note that even when the geometry of the arch does not correspond
to the pressure line for a given load, the bending moment developed in the
arch can be significantly lower than that of a straight bar of same span.

Differential formulation of a curved planar bar

Consider the curved bar problem described in Figure 4.81. The bar has
a plane of symmetry and the bar axis is a curve in this plane. The bar axis
is going through the centroid of the cross-section of the bar. The externally
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applied distributed loads are applied at the bar axis in the plane of symme-
try and can be decomposed into a normal component pz and a tangential
component px. For every point along the axis, we define a local coordinate
system xz, x being tangential to the axis and z orthogonal. At the bar ends
either prescribed displacements/rotations or force boundary conditions are
applied.

Fig. 4.81. Some definitions for curved bar problem; the axis goes through the
centroid of the cross-section

Except for considering now a curved bar, the remaining definitions are
analogous to those used for a straight bar. The basic kinematic hypothesis of
the Bernoulli-Euler beam theory that sections initially orthogonal to the bar
axis remain undeformed and orthogonal to this axis during deformations is
also adopted.

Before we present the formulation, let us recall some basic facts for a
planar curve. Consider a generic planar curve as shown in Figure 4.82. Let s
be the arc-length coordinate along the curve. For any point on the curve, say
point P , we can define a circle centered at point C located on a straight line
defined by the normal to the curve at P . The radius of the circle and, hence,
point C are defined to make the circle coincide with the curve at and in the
vicinity of point P . A typical situation is summarized in Figure 4.82.

The radius r of the circle is called the radius of curvature of the curve at
point P and the point C the center of curvature, and we have

ds = rdθ. (4.206)

The curvature κ at point P is given by

κ =
dθ

ds
=

1
r
. (4.207)

Kinematics

Consider a differential element of the bar, see Figure 4.83a. Since (4.206)
holds we also have
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Fig. 4.82. Radius of curvature definitions for point P

Fig. 4.83. Deformed and undeformed configurations for a differential element

dsz = (r + z)dϕ (4.208)

where dsz is the differential arc length at a distance z from the axis.
The deformed configuration of the differential element of Figure 4.83a is

shown in Figure 4.83b. We note that the Bernoulli-Euler hypothesis is used
to characterize the deformed configuration and a prime indicates that the
quantities are associated with the deformed configuration.
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The strain in the tangential direction at the bar axis is given by

εxx0 =
ds′ − ds

ds
(4.209)

and as a function of z by

εxx =
ds′z − dsz

dsz
. (4.210)

Using equations (4.206) and (4.208), we obtain

dsz =
(
1 +

z

r

)
ds. (4.211)

In an analogous manner, we can write for the deformed configuration

ds′z =
(
1 +

z

r′
)

ds′. (4.212)

Taking into account that relation (4.209) can be re-written as

ds′ = (1 + εxx0)ds

and substituting (4.211) and (4.212) into (4.210) yields

εxx =

(
1 + z

r′
)
(1 + εxx0) − (

1 + z
r

)(
1 + z

r

)
which can be re-written as

εxx =
εxx0(
1 + z

r

) +
z(

1 + z
r

) (
(1 + εxx0)

1
r′

− 1
r

)
. (4.213)

We now want to focus on situations where the thickness of the bar is small
compared with the ratio of curvature of the bar axis, that is, h/r << 1.0 and
also where we can neglect the stretching of the axis on the change of curvature
9 (see Timoshenko and Woinowsky-Krieger, 1959). Then expression (4.213)
simplifies to

εxx = εxx0 + z

(
1
r′

− 1
r

)
. (4.214)

Let χ be the change in curvature due to deformations, i.e.,

χ =
1
r′

− 1
r
. (4.215)

9 The exact linearized expression for the change in curvature actually includes the
stretching of the axis and is given in Chapelle and Bathe, 2010a
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Introducing (4.215) into (4.214) yields

εxx = εxx0 + zχ. (4.216)

Therefore, we see that the tangential strain can be interpreted as the axial
strain plus a term which is proportional to the distance of the longitudinal
fiber to the axis times the change in curvature.

Let us introduce the kinematic variables u and w which give the dis-
placements of points of the axis along x and z, i.e., along the tangential and
normal directions, and use small strain conditions. We would like to obtain
the strain εxx as a function of these kinematic variables. Refering to Figure
4.84, the contributions for εxx0 are given by

εxx0 =
du + (w + r)dϕ − rdϕ

rdϕ
=

du

ds
+

w

r
. (4.217)

Fig. 4.84. Displacements and displacement increments for a generic differential
arc length increment on the axis

To evaluate the change in curvature, we introduce an additional variable
which we will eliminate later, namely the section rotation β(s), see Figure
4.85. We also use the assumptions that lead to (4.214) and of small deforma-
tions and strains.
Then we have at a section the displacements

uϕ(ϕ, r, z) = u(ϕ) − zβ(ϕ) (4.218)

and of course

ur(ϕ, r, z) = w(ϕ).
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Fig. 4.85. Deformations of the beam

Fig. 4.86. Shear component due to displacement u

The normal strain is then given by (see Section 4.1.3)

εxx(ϕ, r, z) =
w

rz
+

1
rz

∂uϕ

∂ϕ

where we recognize the first term to be straining due to the radial displace-
ment, and the second term to be the usual normal strain.

Since rz = r + z, and using (4.218), we obtain

εxx =
1

1 + z/r

(
w(ϕ)

r
+

1
r

∂u(ϕ)
∂ϕ

− z

r

∂β(ϕ)
∂ϕ

)
Assuming that h/r << 1.0, we thus have

εxx =
w

r
+

1
r

∂u

∂ϕ
− z

r

∂β

∂ϕ
.

However, our assumption is that of Bernoulli-Euler theory, that the shear
strain is zero (that is, originally straight fibers normal to the axis remain
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normal to the axis during deformations). This requires that the shear given
by

γ =
1

r + z

∂w

∂ϕ
+

∂uϕ

∂z
− uϕ

r + z

be zero. Here the first two terms correspond to the usual shear strain com-
ponents in a Cartesian coordinate system (see Section 3.2.5). The last term
corresponds to the fact that the s-axis changes direction.

Assuming again h/r << 1.0, we obtain

γ =
1
r

∂w

∂ϕ
+

∂uϕ

∂z
− u

r

where we use u instead of uϕ in the last term, resulting into a constant shear
strain at a section. We give an interpretation of the u/r term in Figure 4.86.
Substituting from (4.218) and using the condition that γ be zero, we obtain

β =
1
r

∂w

∂ϕ
− u

r
(4.219)

and hence

εxx =
w

r
+

1
r

du

dϕ
− z

r

d

dϕ

(
1
r

dw

dϕ
− u

r

)
(4.220)

where u and w, measured at the axis of the beam, are only a function of ϕ.
This strain relationship corresponds to (4.216) with10

εxx0 =
w

r
+

du

ds

χ = −1
r

d

dϕ

(
1
r

dw

dϕ
− u

r

)
(4.221)

and εxx0 was already given in (4.217).
We note that, both, the tangential and normal displacements contribute

to the strain along the axis (z = 0) and to the change in curvature. This fact
contrasts with the situation for the straight bar where the strain along the
axis depends only on the tangential displacement and the curvature change
depends only on the transverse displacement (analogous to the normal dis-
placement in the curved bar). As a consequence curved structures − and in
particular shell structures − are much more difficult to analyze than straight
or flat structures (straight beams and plates).
10 Note that, regarding the sign convention, the w-dependent term corresponds to

a decrease in the original curvature (corresponding to a positive moment M).
For a straight bar, a positive moment M causes an increase in curvature, but
from zero curvature (see (4.134)); hence the sign convention is consistent, and
we use the same convention for plates and shells
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Constitutive relation and stress resultants

Hooke’s law applies for the tangential direction, i.e.,

τxx = Eεxx (4.222)

and using (4.216) we obtain

τxx = E (εxx0 + zχ) = Eεxx0 + zEχ. (4.223)

The axial force N is given by

N =
∫

A

τxx dA = EAεxx0 (4.224)

and the bending moment by

M =
∫

A

−τxxz dA = −EIχ. (4.225)

We note that the linear distribution of normal stress given in equation
(4.223) is only valid when the section height of the beam is small compared
with the radius of curvature of the axis (see the derivation from (4.218) to
(4.221)). If the height of the beam is not small with respect to the radius of
curvature the distribution of normal stress will no longer be linear. Actually
we would obtain a hyperbolic distribution of normal stress along the beam
height. However, the difference in stress predictions is only significant for
situations where the ratio h/r is large. For example, when we consider the
bending of a rectangular cross-section with h/r = 1/4, the difference in stress
predictions at the extreme fibers is only about 8%.

Equilibrium

We consider the equilibrium of a differential element as shown in Figure
4.87. Equilibrium in the tangential and normal directions can be written as

−N + (N + dN) − V dθ + pxds = 0

V − (V + dV ) − Ndθ + pzds = 0

which leads to
dN

ds
− V

r
= −px (4.226)

dV

ds
+

N

r
= pz (4.227)

and moment equilibrium about point Q can be written as

−M + (M + dM) − V ds = 0
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Fig. 4.87. Equilibrium of a differential element

leading to

dM

ds
= V. (4.228)

We note that due to the curved axis, equilibrium leads to coupled equa-
tions for the internal forces in contrast to the conditions for a straight bar
for which the equilibrium of the axial forces is independent of that of the
moment and shear forces.

Summarizing, equation (4.220) represents the strain compatibility condi-
tions, equations (4.224) and (4.225) the constitutive relations, and equations
(4.226) to (4.228) the equilibrium conditions. Therefore, when the boundary
conditions at the end sections are introduced we have the complete formula-
tion since all the requirements have been taken into account.

Of course, we could derive the stiffness matrix for a given curved bar solv-
ing the above differential formulation for unit end displacements/rotations as
for the straight bar.

Our motivation to present the formulation of the curved bar problem was
mainly to gain insight into how to tackle the analysis of curved bars including
the basic assumptions used. Therefore we will not elaborate on the solution of
the formulation, except for presenting the solution of a very simple problem
as an illustration. Note that when the kinematic boundary conditions make
the curved bar structure statically determinate, we can directly determine the
internal forces and the solution becomes much simpler. In fact, substituting
(4.217) and (4.221) into (4.224) and (4.225) respectively, we obtain

du

ds
+

w

r
=

N

EA
(4.229)

d2w

ds2
− d

ds

(u

r

)
=

M

EI
(4.230)
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with M and N known functions.

Example 4.16
Determine the displacement w for the circular cantilever beam shown in

Figure 4.88.

Fig. 4.88. Circular cantilever beam problem

Solution
We first determine the axial force and bending moment along the bar.

Referring to Figure 4.89

Fig. 4.89. Generic section of curved cantilever

N = −P sin θ (4.231)

M = −Pr sin θ. (4.232)

Since the radius of curvature is constant, we have that

s = θr

d (·)
ds

=
d (·)
dθ

dθ

ds
=

1
r

d (·)
dθ

. (4.233)

Hence, using (4.233) and substituting (4.229) into (4.230) yields
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d2w

dθ2
+ w = r2 M

EI
+ r

N

EA

and introducing (4.231) and (4.232), we obtain

d2w

dθ2
+ w = −Pr

E

(
r2

I
+

1
A

)
sin θ. (4.234)

A particular solution of equation (4.234) is given by

wp = −k

2
θ cos θ

where k = −Pr
E

(
r2

I + 1
A

)
. The general solution of (4.234) can be written as

w = C0 sin θ + C1 cos θ − k

2
θ cos θ

where C0 and C1 are constants to be determined. The two kinematic bound-
ary conditions at θ = π/2 are

w
(π

2

)
= 0,

dw

ds

(π

2

)
= 0

leading to

C0 = 0 and C1 =
πk

4

and finally

w = −k

2
cos θ

(
θ − π

2

)
=

Pr

2E

(
r2

I
+

1
A

)
cos θ

(
θ − π

2

)
.

Of course, we could now use the solution for w and equation (4.229) to
evaluate u by a simple integration considering that u(π/2) = 0.

�

4.2.8 The Timoshenko beam model

We recall that the Bernoulli-Euler beam model was used to describe the
behavior of bars subjected to transverse loading. The model considers the
change of curvature of the beam axis induced by the bending moment. This
deformation dominates the overall bar deformation as long as the bar is slen-
der. As the height of the bar section h increases with respect to the char-
acteristic bar length L the deformation induced by shear becomes no longer
negligible and when h/L is about 1

10 shear deformations need frequently to
be included.
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The Timoshenko beam model considers shear deformations. Its fundamen-
tal hypothesis is that the bar cross-sections which are initially orthogonal to
the bar axis remain plane but not necessarily orthogonal to the deformed bar
axis.

The loading and geometrical definitions used for the Bernoulli-Euler beam
model are adopted here. The kinematic hypothesis is shown in Figure 4.9011.

Fig. 4.90. Kinematics of beam sections for the Timoshenko beam model

We note that in addition to w(x), which gives the transverse displacement of
the beam axis, a new kinematic variable β(x) which gives the section rotation
with respect to the vertical direction is defined. Hence, we can write

u = −zβ(x).

Hooke’s law is also adopted for the longitudinal fibers leading to

τxx = Eεxx = −Ez
dβ

dx
.

We can evaluate the transverse shear strain

γxz =
∂u

∂z
+

∂w

∂x
=

dw

dx
− β

and, therefore,

τxz = Gγxz = G

(
dw

dx
− β

)
.

According to these hypotheses the shear stresses are constant over the
cross-section. However, the shear stresses must be zero at the top and bottom
of the section, and we recall that, by static considerations alone, the Bernoulli-
Euler model predicts a parabolic distribution of the transverse shear stresses
for a rectangular cross-section.
11 This same kinematic description was used in Figure 4.85
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In order to retain the simple nature of the model while accounting for
the deformations due to transverse shear strains, the value of γxz above is
interpreted as a constant shear strain over a shear area As, where

k =
As

A

and A is the actual cross-sectional area. Then the shear force is given by

V =
∫

As

−τxz dA = −kGA

(
dw

dx
− β

)
. (4.235)

The value of k depends on the stress/strain distributions over the cross-
section and therefore depends on the cross-sectional shape. There are different
procedures to evaluate k and we refer to Cowper, 1966 for a review of different
methods12. In Bathe, 1996 a simple procedure is applied to obtain k = 5/6
for a rectangular cross-section.

The bending moment is given by

M =
∫

A

−Ez
dβ

dx
(−z) dA = EI

dβ

dx
(4.236)

and the axial force is zero.
Considering the equilibrium in the transverse direction, we obtain

dV

dx
= p

and from (4.235)

−kGA
d

dx

(
dw

dx
− β

)
= p.

Moment equilibrium leads to

dM

dx
= V. (4.237)

Using equation (4.235), (4.236)and (4.237), we arrive at

EI
d2β

dx2
= −kGA

(
dw

dx
− β

)
.

Introducing the boundary conditions, we can summarize the Timoshenko
beam model formulation.

12 A value obtained, which depends on the Poisson ratio, is k = 10+10ν
12+11ν
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Differential formulation of the Timoshenko beam model

Given the transversely distributed loading p(x), find β(x), w(x) such that

−kGA
d

dx

(
dw

dx
− β

)
= p(x) (4.238)

EI
d2β

dx2
= −kGA

(
dw

dx
− β

)
(4.239)

for all x. At x = 0

β(0) = β0 or M(0) = −M0

w(0) = w0 or V (0) = Q0

and at x = L

β(L) = βL or M(L) = ML

w(L) = wL or V (L) = −QL

where β0, βL are imposed rotations, w0, wL imposed transverse displace-
ments, M0, ML prescribed moments and Q0, QL prescribed transverse
forces13.

Example 4.17

Consider a bar with length L modeled as a Timoshenko beam. There is
no transverse load and the following end displacements and rotations are
imposed

w0 = δ, wL = 0, β0 = 0, βL = 0

Solution

Since p(x) is zero, equation (4.238) becomes

dw

dx
− β = C1 (4.240)

13 The conventions for prescribed moments and forces are the same as those used
for the Bernoulli-Euler beam model, see equations (4.136) to (4.140)
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where C1 is an integration constant. Substituting (4.240) into (4.239), we
obtain

d2β

dx2
= −kGA

EI
C1. (4.241)

Integrating (4.241) twice and imposing β(0) = 0, we arrive at

β(x) = −kGA

2EI
C1x

2 + C2x (4.242)

where C2 is also an integration constant. Now, substituting (4.242) into
(4.240), integrating the resulting equation once and imposing the boundary
condition w(0) = δ, we obtain

w(x) = −kGA

6EI
C1x

3 +
C2

2
x2 + C1x + δ. (4.243)

Considering the two remaining boundary conditions, β(L) = 0 and w(L) = 0,
we obtain from (4.242) and (4.243)

−kGAL2

2EI
C1 + LC2 = 0

and(
−kGAL3

6EI
+ L

)
C1 +

L2

2
C2 = −δ

which can be solved for C1 and C2 which substituted into (4.242) and (4.243)
leads to the solution

w(x) =
(

2x3

L3 (1 + 2g)
− 3x2

L2 (1 + 2g)
− 2xg

L (1 + 2g)
+ 1

)
δ

β(x) =
(

6x2

L3 (1 + 2g)
− 6x

L2 (1 + 2g)

)
δ

where g = 6EI
kGAL2 . In Example 4.7, this same problem was solved for the

Bernoulli-Euler beam model. Comparing the solution for w(x) given above
with that of the Bernoulli-Euler beam model given in equation (4.167), we
conclude that these solutions are consistent since when the shear rigidity
given by GA is made large compared to the bending rigidity, given by EI, the
solution based on Timoshenko beam theory approaches the solution based on
Bernoulli-Euler beam theory and in the limit case, GA → ∞, both solutions
are the same.

�
As before, we can impose unit end displacements to derive a stiffness

matrix for the Timoshenko beam. Using the bar nodal degrees of freedom
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convention of Figure 4.27, we can directly obtain the second column of the
stiffness matrix from the solution of Example 4.7 imposing δ = 1 and evalu-
ating the end forces. In fact

M(0) = EI
dβ

dx
(0) = − 6EI

L2 (1 + 2g)

M(L) = EI
dβ

dx
(L) =

6EI

L2 (1 + 2g)

V (0) = −kGA

(
dw

dx
− β

)∣∣∣∣
x=0

=
12EI

L3 (1 + 2g)
= V (L).

Therefore

k̃i2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
12EI

L3(1+2g)

6EI
L2(1+2g)

0

− 12EI
L3(1+2g)

6EI
L2(1+2g)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If we proceed in an analogous manner, imposing unit end displacements/rotations
for the remaining degrees of freedom and evaluating bar end forces and mo-
ments, we can construct the stiffness matrix for the Timoshenko beam

k̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA
L

0 0 −EA
L

0 0

0 12EI
L3(1+2g)

6EI
L2(1+2g) 0 − 12EI

L3(1+2g)
6EI

L2(1+2g)

0 6EI
L2(1+2g)

2EI(2+g)
L(1+2g) 0 − 6EI

L2(1+2g)
2EI(1−g)
L(1+2g)

−EA
L

0 0 EA
L

0 0

0 − 12EI
L3(1+2g) − 6EI

L2(1+2g) 0 12EI
L3(1+2g) − 6EI

L2(1+2g)

0 6EI
L2(1+2g)

2EI(1−g)
L(1+2g) 0 − 6EI

L2(1+2g)
2EI(2+g)
L(1+2g)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Of course, the axial displacements are considered in the stiffness matrix
above. We note that we can superpose the solution of the bar model under
axial loading with either the Bernoulli-Euler or Timoshenko models since the
sections do not rotate due to the axial loading.

Regarding comparisons in predictions obtained with the Bernoulli-Euler
and Timoshenko models, we refer the reader to the modeling presented in
Section 7.1.
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4.3 Plates in bending

We first recall the plane stress model discussed in Section 4.1.2. The model
was characterized geometrically as a thin plate and the mechanical loading
had to act in the midsurface of the plate. These definitions were summarized
in Figure 4.5.

The plate models we address in this section have the same geometries,
however, the loading is acting transversely, i.e., orthogonal to the midsur-
face of the plate, which induces bending, leading to a completely different
structural behavior. While in the plane stress model the stresses are constant
through the thickness, for the plate bending models, the stresses vary linearly
through the thickness of the plate.

There is an interesting analogy between the behavior of bars and plates.
The analogue of the bar subjected to axial loading is the plane stress model
and that of the bar subjected to transverse loading is the plate bending model.

Insight into the behavior of a plate resisting transverse loading can be
gained by interpreting the plate to act “like” beams in orthogonal directions
as schematically shown in Figure 4.91. Of course, only the gross behavior is
captured by this interpretation. We will return to this interpretation of the
plate behavior later on in this section.

Fig. 4.91. Interpretation of bending behavior by beam action

The presentation of plate models is organized as follows. In the next
section we discuss the Kirchhoff plate model which is the analogue of the
Bernoulli-Euler beam model due to the similar kinematic hypothesis adopted.
The emphasis is on model assumptions and on basic requirements. We de-
rive the differential formulation of the model and, although solutions of the
governing equations are not our primary objective, one classical solution is
presented for illustrative purposes. A section is then dedicated to plate be-
havior. We end the presentation by briefly introducing the Reissner-Mindlin
plate model which is the analogue of the Timoshenko beam model.

4.3.1 The Kirchhoff plate bending model

We restrict our discussion to the linear model. Therefore the displacements
are assumed infinitesimally small and equilibrium is enforced in the unde-
formed configuration. The plate is supposed to be thin, i.e., h, the thickness,
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is small compared to a characteristic geometric dimension L of the midsur-
face of the plate. Typically, Kirchhoff theory gives good predictions when
h/L < 1/20.

Kinematics

The fundamental kinematic hypothesis of the model is that straight ma-
terial lines which are initially orthogonal to the midsurface of the plate are
also straight and orthogonal to the deformed midsurface. Additionally, the
displacements in the transverse direction do not vary along the thickness of
the plate.

We consider a generic plate described in Figure 4.92. Let P be a generic
point on the midsurface and let Pz be a point on a straight line from P
orthogonal to the midsurface. The coordinates of P are (x, y, 0) and of Pz are
(x, y, z). Suppose that the plate deforms under the action of the transversely
distributed load p(x, y) which is given per unit of midsurface area. In Figure
4.93a and 4.93b we show the deformed and undeformed configurations of the
plate in the xz and yz planes, respectively.

Fig. 4.92. Generic representation of a plate

Considering these definitions, the kinematic hypothesis translates into

w = w(x, y) (4.244)

u = −z
∂w

∂x
(4.245)

v = −z
∂w

∂y
(4.246)

where we considered that the displacements are infinitesimally small.
Using the compatibility relations we obtain the strains
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Fig. 4.93. Selected intersections of deformed and undeformed configurations of the
plate with a vertical plane

εxx =
∂u

∂x
= −z

∂2w

∂x2

εyy =
∂v

∂y
= −z

∂2w

∂y2

γxy =
∂u

∂y
+

∂v

∂x
= −2z

∂2w

∂x∂y

and the remaining strain components are zero. We note that since we are con-
sidering infinitesimally small displacements the curvatures of the deformed
midsurface are given by

κx =
∂2w

∂x2

κy =
∂2w

∂y2

κxy =
∂2w

∂x∂y

κyx = κxy.
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Constitutive equation

The theory assumes that the plate is composed of a stack of laminae, as
schematically shown in Figure 4.94 for a part of the plate, and that each
lamina is in a state of plane stress. Therefore

τxx =
E

(1 − ν2)
(εxx + νεyy) = − Ez

(1 − ν2)

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
(4.247)

τyy =
E

(1 − ν2)
(εyy + νεxx) = − Ez

(1 − ν2)

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
(4.248)

τxy =
E

2 (1 + ν)
γxy = − Ez

(1 + ν)
∂2w

∂x∂y
. (4.249)

Equations (4.247) to (4.249) show that the stresses vary linearly in the
thickness direction.

Fig. 4.94. Plate interpreted as a stack of laminae

Stress resultants

We extract a differential element from the plate and show in Figure 4.95a
the stress distributions given by equations (4.247) to (4.249) when ∂2w

∂x2 > 0,
∂2w
∂y2 > 0 and ∂2w

∂x∂y
> 0.

The moment resultant Mx per unit of length associated with the stress
component τxx is

Mx =
∫ +h/2

−h/2

τxx (−z) dz

where we use the same convention as for the beam: a positive value for the
moment is associated with tension of the lower fibers, i.e., below the midsur-
face of the plate. Using equation (4.247)
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Fig. 4.95. Stress and stress resultant definitions; Mx, My and Myx are positive
whereas Mxy is negative for stresses shown

Mx =
Eh3

12 (1 − ν2)

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
(4.250)

and defining

D =
Eh3

12 (1 − ν2)
(4.251)

relation (4.250) becomes

Mx = D

(
∂2w

∂x2
+ ν

∂2w

∂y2

)
. (4.252)

Analogously, let My be the moment resultant per unit of length associated
with τyy defined by

My =
∫ +h/2

−h/2

τyy (−z) dz = D

(
∂2w

∂y2
+ ν

∂2w

∂x2

)
. (4.253)
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Of course, both Mx and My are bending moments. Now let

Myx =
∫ +h/2

−h/2

τyx (−z) dz = D (1 − ν)
∂2w

∂x∂y
. (4.254)

We note that Myx is a torsional moment per unit of length. This moment is
also referred to as a twisting moment, and a positive value corresponds to
the moment vector pointing out of the plate section on which the moment is
acting. We also define

Mxy =
∫ +h/2

−h/2

τxyz dz = −D (1 − ν)
∂2w

∂x∂y
(4.255)

where since τxy = τyx, we obtain

Myx = −Mxy. (4.256)

In Figure 4.95b we show the moments associated with the stress resultants
defined above.

Equilibrium

The last requirement to be considered to complete the differential formulation
is equilibrium. In Figure 4.96 we show the resultant forces and moments
acting on a differential plate element which is shown twice in this figure
merely for ease of visualization. We note that the shear resultants per unit
of length, Qx and Qy, which are associated with the transverse shear stress
components τxz and τyz respectively have been introduced. As for the shear
force in the Bernoulli-Euler beam model, these shear forces do not enter
the formulation through the constitutive relations since by the kinematic
assumption the transverse shear strains are zero. However, they are required
for equilibrium.

Imposing force equilibrium14 in the z direction, we obtain

−Qxdy +
(

Qx +
∂Qx

∂x
dx

)
dy − Qydx +

(
Qy +

∂Qy

∂y
dy

)
dx + pdxdy = 0.

Simplifying the equation above, we arrive at

∂Qx

∂x
+

∂Qy

∂y
= −p. (4.257)

14 Note that the sign convention for the transverse shear force of plates and shells is
here opposite to the convention used for beams. This sign convention for plates
and shells is more natural considering the usual 3-D definition of strains, see
Section 4.3.2
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Fig. 4.96. Forces acting on a differential plate element.

Neglecting infinitesimals of higher-order, moment equilibrium about the x
axis leads to

(Qydx) dy−Mydx+
(

My +
∂My

∂y
dy

)
dx−Myxdy+

(
Myx +

∂Myx

∂x
dx

)
dy = 0

which upon simplification gives

∂My

∂y
+

∂Myx

∂x
= −Qy. (4.258)

Finally, moment equilibrium in the y direction yields

− (Qxdy) dx+Mxdy−
(

Mx +
∂Mx

∂x
dx

)
dy−Mxydx+

(
Mxy +

∂Mxy

∂y
dy

)
dx = 0

∂Mx

∂x
− ∂Mxy

∂y
= −Qx. (4.259)

Differential formulation

Summarizing, all requirements have been imposed, namely, compatibility
(equations (4.244) to (4.246)), constitutive relations (equations (4.247) to
(4.249)) and equilibrium (equations (4.257) to (4.259)). Therefore the differ-
ential equations of the Kirchhoff plate bending model were obtained.

It is usual to cast the complete formulation in terms of the transverse
displacement w(x, y) which is the only independent kinematic variable. For
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that we take derivatives of equation (4.258) with respect to y and of (4.259)
with respect to x, sum them and use equation (4.257) to obtain

∂2Mx

∂x2
− 2

∂2Mxy

∂x∂y
+

∂2My

∂y2
= p. (4.260)

We have also used that Mxy = −Myx to arrive at equation (4.260). Substi-
tuting (4.253), (4.254) and (4.255) into (4.260), we obtain

∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+

∂4w

∂y4
=

p

D
(4.261)

which is known as the Lagrange equation for the plate bending problem.
We note that the interpretation of D as the flexural rigidity of the plate

is now obvious. We also remark that when equation (4.261) subjected to
the appropriate boundary conditions is solved, i.e., w(x, y) is determined,
the complete solution is known since we can obtain the stresses, strains and
resultant forces from the transverse displacement field as shown in the equa-
tions above. Even the transverse shear forces which are not obtained from the
constitutive relations can be calculated from the transverse displacements (as
for the Bernoulli-Euler beam model). Namely, substituting the expressions
for the moments in terms of the transverse displacements (equations (4.250),
(4.252) and (4.254) into equations (4.258) and (4.259)), we obtain

Qx = −D
∂

∂x

(
∂2w

∂x2
+

∂2w

∂y2

)
(4.262)

and

Qy = −D
∂

∂y

(
∂2w

∂x2
+

∂2w

∂y2

)
. (4.263)

Boundary conditions

Let us examine very briefly the boundary conditions for the Kirchhoff model.
Consider an edge, parallel to the y axis and therefore given by x = a.

The clamped or built-in condition corresponds to imposing that the trans-
verse displacements and the rotations about the y axis of material lines, such
as AB shown in Figure 4.97, are zero. Therefore, the boundary conditions
are given by

w|x=a = 0 and
∂w

∂x

∣∣∣∣
x=a

= 0.
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Fig. 4.97. Some definitions for a rectangular plate

Note that the condition on the rotation is imposed taking into account the
kinematic assumption of the model.

Considering the simply supported condition, the transverse displacement
should be restrained. For additional conditions, we observe that there are no
kinematic restraints affecting the rotation about the y axis of material lines
such as AB (see Figure 4.97), and there are no normal stresses τxx acting on
the plate end section defined at x = a. Hence Mx = 0 at x = a. Summarizing,
the two boundary conditions that represent the simply supported edge are

w|x=a = 0 (4.264)

and

Mx|x=a = 0. (4.265)

The last condition can also be expressed in terms of displacements when we
consider equation (4.250) leading to

∂2w

∂x2
+ ν

∂2w

∂y2

∣∣∣∣
x=a

= 0

and because of (4.264) ∂2w
∂y2

∣∣∣
x=a

= 0, condition (4.265) becomes

∂2w

∂x2

∣∣∣∣
x=a

= 0.

The last boundary condition to consider is the free edge condition. Since
there are no kinematic restraints in this case, there are no stresses acting on
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the plate end section defined by x = a. The stress components which could
possibly act on this edge section are τxx, τyx and τzx. These components are
associated with the stress resultants Mx, Myx and Qx. If we would enforce
the condition that these stress resultants are zero, we would obtain three
boundary conditions instead of the two obtained in the case of the clamped
and the simply supported edges. Historically, this apparent inconsistency
was object of much controversy. Mathematically, considering the order of the
differential equation (4.261), only two conditions are required per edge. It was
shown that one condition is given by Mx|x=a = 0 and the second involves
a combination of the stress resultants Myx and Qx. Kelvin and Tait (see
Timoshenko and Woinowsky-Krieger, 1959) gave a mechanical interpretation
of this second condition that we discuss below.

Consider two generic differential elements of the edge section shown in
Figure 4.97a. In Figure 4.97b, the twisting moment resultant acting on these
two differential elements are shown. Each of these moments are represented in
Figure 4.97c by a mechanically equivalent force couple. Therefore, we can see
that the twisting moment distribution acting at the edge can be represented
by a mechanically equivalent distribution of shear forces given by

Q′
x =

Myx −
(
Myx + ∂Myx

∂y dy
)

dy

∣∣∣∣∣∣
x=a

= − ∂Myx

∂y

∣∣∣∣
x=a

.

The net shear force distribution Vx considering both Qx and Q′
x is then given

by

Vx = Qx|x=a + Q′
x =

(
Qx − ∂Myx

∂y

)∣∣∣∣
x=a

and the boundary condition for the free edge which combines both effects of
Qx and Myx is

Vx =
(

Qx − ∂Myx

∂y

)∣∣∣∣
x=a

= 0.

This condition can be expressed in terms of displacements. Using relations
(4.254) and (4.262), we obtain(

∂3w

∂x3

)
+ (2 − ν)

(
∂3w

∂x∂y2

)∣∣∣∣
x=a

= 0. (4.266)

Below we show a sample solution of a classical plate bending problem.

Example 4.18

Find the solution for the rectangular plate problem of Figure 4.97a when the
plate is simply supported at the four edges and subjected to a distributed
pressure p = p(x, y). Particularize the solution for p(x, y) = p0.
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Solution

The boundary conditions can be derived generalizing those for the simply
supported edge studied above when we consider the four plate edges. Then,
we obtain

w|x=0 = 0,
∂2w

∂x2

∣∣∣∣
x=0

= 0 (4.267)

w|y=0 = 0,
∂2w

∂y2

∣∣∣∣
y=0

= 0 (4.268)

w|x=a = 0,
∂2w

∂x2

∣∣∣∣
x=a

= 0 (4.269)

w|y=b = 0,
∂2w

∂y2

∣∣∣∣
y=b

= 0. (4.270)

We use a classical approach to derive solutions for plate bending problems
which is to use a Fourier series to construct solutions.

Assume

w(x, y) =
∞∑

m=1

∞∑
n=1

wmn sin
mπx

a
sin

nπy

b
. (4.271)

We can write (4.271) since it is a mathematical fact that every smooth
function defined on a 2-D domain can be expanded in a Fourier series as
above. The fundamental property is that given this particular functional form
for w(x, y), there exist constant coefficients wmn such that if the double sum
is performed up to m and n high enough, such sum will be arbitrarily close15

to w(x, y).
Hence, our task is to determine the coefficients wmn such that the sum

given in (4.271) satisfies equation (4.261) and the boundary conditions given
in equations (4.267) to (4.270) . In fact, the Fourier series given in (4.271)
was constructed such that it satisfies the boundary conditions independently
of the values of wmn. This property can be easily verified by checking that
w(x, y) written in the form of (4.271) satisfies conditions (4.267) to (4.270).
In order to determine specific coefficients wmn the load p(x, y) should be
characterized.

Given a smooth load distribution p(x, y), it can also be expanded in a
Fourier series as

p(x, y) =
∞∑

m=1

∞∑
n=1

pmn sin
mπx

a
sin

nπy

b
(4.272)

15 Of course, what we mean by arbitrarily close can be made mathematically pre-
cise, see Chapelle and Bathe, 2010a. However, for our present purposes the in-
tuitive idea of this concept suffices
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where

pmn =
4
ab

∫ a

0

∫ b

0

p(x, y) sin
mπx

a
sin

nπy

b
dxdy. (4.273)

Substituting (4.271) and (4.272) into (4.261), and, of course, performing the
derivatives involved, we obtain

∞∑
m=1

∞∑
n=1

(
m4

a4
+

2m2n2

a2b2
+

n4

b4

)
π4wmn sin

mπx

a
sin

nπy

b

=
1
D

∞∑
m=1

∞∑
n=1

pmn sin
mπx

a
sin

nπy

b
.

Since the coefficients of the series on the left- and right-hand sides of the
above equation should be the same, we obtain

wmn =
pmn

π4D
(

m4

a4 + 2m2n2

a2b2
+ n4

b4

)
and hence

w(x, y) =
1

π4D

∞∑
m=1

∞∑
n=1

pmn(
m2

a2 + n2

b2

)2 sin
mπx

a
sin

nπy

b
. (4.274)

When the load is uniform, i.e., p(x, y) = p0, we obtain from equation (4.273)

pmn =
16p0

π2mn
m,n = 1, 3, 5, ...

and pmn = 0 for m or n an even number. Hence, from (4.274) we can write
the solution as

w(x, y) =
16p0

π6D

∞∑
m=1

∞∑
n=1

sin mπx
a sin nπy

b

mn
(

m2

a2 + n2

b2

)2

where m = 1, 3, 5, ... and n = 1, 3, 5, ...
As a historical remark, we note that it was Navier who first proposed

this Fourier series solution for plate bending problems (see Timoshenko and
Woinowsky-Krieger, 1959).

Of course, having evaluated w(x, y) all stresses and stress resultants can
be obtained.

�
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Plate bending behavior

In the introductory part of this section we interpreted the gross behavior
of a rectangular plate as being captured by orthogonal bars in bending (see
Figure 4.91). Our objective here is to obtain further insight into the plate
resisting mechanisms.

Consider a rectangular simply supported plate. Let us examine the be-
havior of the plate when modeled by bars of rectangular cross-sections as
those shown in Figure 4.9. Considering a bar with axis parallel to the global
x axis, we see that besides the moment Mx and the shear force Qx which are
directly associated with the bending of this beam (refer to equations (4.147)
and (4.142)), torsional moments Mxy and the shear forces Qy acting on the
lateral faces of this beam contribute to its equilibrium.

To obtain insight into how these effects stiffen the plate when equilibrium
and compatibility are imposed, we consider the structure of Figure 4.98a
subjected to a uniform transverse load.

Fig. 4.98. Qualitative behavior of a rectangular plate based on a grid analogy
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In Figure 4.98b, we show the actions onto bar AB. Besides the transverse
load p, there are two additional contributions. The loads Q are a result of
the compatibility of transverse displacements and represent the effect of the
orthogonal beams working in bending. The moments Mt are a result of the
compatibility of rotations. Namely, the section rotations of beam AB due to
the transverse load induce rotations and torsion in the bars EG and FH. The
sense of Mt indicated in Figure 4.98b reflects the fact that the bars EG and
FH oppose the rotations due to the transverse load on the bar AB. Finally,
in Figure 4.98c, we show, qualitatively, the transverse displacements induced
by each load including the stiffening effect due to the Mt and Q effects.

Consider the rectangular plate in Figure 4.97. Let us examine the behavior
of the plate as the relative size of the edges changes, i.e., the relation a/b
varies. Supposing that a/b is large, say a/b > 5, we show qualitatively in
Figure 4.99 the deformations of two orthogonal slices of the midsurface. If we
examine the contribution due to bending to equilibrate the transverse load,
we conclude that the longer beam carries almost no loading, since for a simply
supported beam the transverse stiffness is inversely proportional to L3 where
L is the beam length. Therefore, for a large portion of the plate, i.e., the
central part, away from the shorter edges, the resisting behavior corresponds
to the bending along the short span and the plate behaves as a beam of large
width. We note that the contribution of torsion for this part is also very
small since ∂2w

∂x∂y
is close to zero and, hence, from equation (4.254), Mxy is

very small. In fact, if we consider a plate infinitely long in the x direction,
the deformation of the midsurface will be cylindrical (the end effects are at
infinity), and w = w(y). Hence ∂4w

∂x4 = 0 and ∂4w
∂x2∂y2 = 0, and equation (4.261)

becomes

d4w

dy4
=

p

D

where, in essence, a beam of unit width is considered (see (4.136)). However,
we use D = E∗I with E∗ = E/

(
1 − ν2

)
. Hence, a planar beam under plane

strain conditions (refer to equation (4.58)) is solved (since anticlastic curva-
ture is not allowed, see Figure 3.62). From a design perspective, it is relevant
to note that for a/b = 2 the error incurred in assuming a large width beam
behavior of the plate is of the order of 6.5%. Of course, this error decreases
as a/b increases.

4.3.2 The Reissner-Mindlin plate bending model

As we mentioned, the Reissner-Mindlin plate model is the analogue of the
Timoshenko beam model. This analogy is based on the kinematic hypoth-
esis which includes modeling of transverse shear deformations. Hence, the
Reissner-Mindlin model is adequate to model not only thin plates but also
those which are moderately thick. All the assumptions used in the Kirchhoff
model concerning linear analysis are also adopted here.
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Fig. 4.99. Deformation of simply supported plate under uniform pressure for large
a/b

Kinematics

The fundamental kinematic hypothesis of the model is that straight material
lines which are initially orthogonal to the midsurface of the plate remain
straight but not necessarily orthogonal to the deformed midsurface. Of course,
we use the geometric and loading characterization of Figure 4.92, and Figure
4.100 is analogous to 4.93, but considering the kinematics of the Reissner-
Mindlin model.

Note that βx(x, y) and βy(x, y) characterize the rotation of the material
lines which are initially orthogonal to the midsurface. Again, we assume

w = w(x, y)

and referring to Figure 4.100, we can write

u = −zβx(x, y)

v = −zβy(x, y).

Therefore w(x, y), βx(x, y) and βy(x, y) − all referred to the midsurface −
are the three independent degrees of freedom of the model and completely
characterize the displacement field.

Considering the strain compatibility relations, we can write
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Fig. 4.100. Selected intersections of deformed and undeformed configurations of
plate with a vertical plane. Reissner-Mindlin model

εxx =
∂u

∂x
= −z

∂βx

∂x

εyy =
∂v

∂y
= −z

∂βy

∂y

γxy =
∂u

∂y
+

∂v

∂x
= −z

(
∂βx

∂y
+

∂βy

∂x

)
γxz =

∂u

∂z
+

∂w

∂x
=

∂w

∂x
− βx

γyz =
∂v

∂z
+

∂w

∂y
=

∂w

∂y
− βy

and εzz = 0.

Constitutive equation

The mechanical hypothesis of the Kirchhoff model assuming a plane stress
condition of each lamina is used. Therefore
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τxx =
E

(1 − ν2)
(εxx + νεyy) = − Ez

(1 − ν2)

(
∂βx

∂x
+ ν

∂βy

∂y

)

τyy =
E

(1 − ν2)
(εyy + νεxx) = − Ez

(1 − ν2)

(
∂βy

∂y
+ ν

∂βx

∂x

)

τxy =
E

2 (1 + ν)
γxy = − Ez

2 (1 + ν)

(
∂βx

∂y
+

∂βy

∂x

)
.

Additionally, we have the transverse shear relations which using the general-
ized Hooke’s law can be written as

τxz = Gγxz = G

(
∂w

∂x
− βx

)
=

E

2 (1 + ν)

(
∂w

∂x
− βx

)

τyz = Gγyz = G

(
∂w

∂y
− βy

)
=

E

2 (1 + ν)

(
∂w

∂y
− βy

)
.

Stress resultants

The stress resultants are the same as those of the Kirchhoff model and the
relations between the stress resultants and the kinematic variables are

Mx = D

(
∂βx

∂x
+ ν

∂βy

∂y

)

My = D

(
∂βy

∂y
+ ν

∂βx

∂x

)

Myx = −Mxy = D
(1 − ν)

2

(
∂βx

∂y
+

∂βy

∂x

)

Qx = kGA

(
∂w

∂x
− βx

)

Qy = kGA

(
∂w

∂y
− βy

)
where we have introduced the shear correction factor k which was defined for
the Timoshenko beam model, see (4.235). Note that in the Reissner-Mindlin
model the shear forces are obtained through the constitutive relations.

Equilibrium

The equilibrium conditions are those of the Kirchhoff model and are given
by (4.257) to (4.259).
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Boundary conditions

We note that due to the more general kinematic description in the Reissner-
Mindlin model, we have three conditions to specify. As in the Kirchhoff model,
let us examine the boundary conditions for an edge parallel to the y axis, i.e.,
given by x = a.

For the clamped or built-in edge, we need to prevent the transverse dis-
placements w and the rotation about the y axis of material lines such as AB
of Figure 4.97. Therefore

w|x=a = 0 and βx|x=a = 0.

Depending on the physical situation, these material lines such as AB may
also be prevented to rotate about the x axis. Therefore, we either impose

βy|x=a = 0 (4.275)

or

Myx|x=a = 0. (4.276)

If we prevent the rotation βy we have the “hard” condition and if we impose
Myx to be zero we have the “soft” condition.

For the simply supported edge, we would have

w|x=a = 0 and Mx|x=a = 0.

The third condition is also given by (4.275) and (4.276). Again (4.275) is
called the “hard” condition while (4.276) is called the “soft” condition.

Finally, for the free edge, we have

Mx|x=a = 0 and Qx|x=a = 0.

and either (4.275) or (4.276). Of course, if for our physical situation the
plate section given by x = a is stress free, then Myx = 0 is the appropriate
condition.

We note that, as we now have three independent kinematic variables,
the free edge condition can be imposed in a more natural way than in the
Kirchhoff model.

The differential formulation of the Reissner-Mindlin model is now com-
plete since the compatibility, constitutive behavior, equilibrium and bound-
ary conditions have been considered. Of course, the governing equations can
be algebraically manipulated to arrive at a set of equations which are more
convenient for the derivation of closed form solutions, but this is not our
objective here.

The Reissner-Mindlin model is a hierarchically higher-order model when
compared to the Kirchhoff model. One of the reasons is that it predicts trans-
verse shear deformations. A less obvious improvement, which requires a more
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detailed study of the Reissner-Mindlin model (see Häggblad and Bathe, 1990),
is given by the nature of the solution close to the boundaries. There is a re-
gion near the boundary – referred to as the boundary layer region – where
the solution for the stress resultants may vary significantly.

In order to obtain more insight into this boundary layer behavior, while
examining a situation of engineering interest, let us study the shear force
at an edge of a simply supported plate subjected to a constant uniform
pressure. Considering the Kirchhoff model, there are two contributions: the
force Qx and that due to the rate of change of the twisting moment, i.e.,
Q′

x = − ∂Myx

∂y

∣∣∣
x=a

as discussed above. The actual values along the edges

can be obtained from the solution w(x, y), discussed in Example 4.18, using
relations (4.254) and (4.262). In Figure 4.101a, we show these shear force
contributions.

Fig. 4.101. Shear related quantities at edge of simply supported plate

If we refer to Figure 4.97 and, in particular, to Figure 4.97c we see that
the shear force contribution given by Q′

x = − ∂Myx

∂y

∣∣∣
x=a

is due to the balance
of forces of two neighboring differential elements, not at a corner of the plate.
That is, if we consider the differential element at the corner, such balance is no
longer valid. In Figure 4.101b, we show the corner region. Here a concentrated
reactive transverse force R is required for equilibrium

R = (Myx − Mxy)|x=a,y=b = 2Myx|x=a,y=b = 2D (1 − ν)
∂2w

∂x∂y

∣∣∣∣
x=a,y=b

.

In Figure 4.101a these reactions are shown for both corners. We note that
these reactions and also the shear forces are those compatible with p(x, y) =
−p0, i.e., with a constant distributed load of intensity p0 acting downwards. A
physical interpretation of the concentrated corner reaction is that the simply
supported plate subjected to p(x, y) = −p0, unless held down, would lift up
at its corners.
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Now, considering the Reissner-Mindlin model, we need first to decide if we
impose hard or soft conditions. If we admit that the kinematic restraints are
such that the material lines orthogonal to the midsurface along the edge given
by x = a can not rotate around the x axis, i.e., βy = 0 (hard condition), then
we would obtain a distribution of reactive twisting moments Myx which is
equivalent to that of Kirchhoff theory. Also, the Qx would be that of Kirchhoff
theory and there would be no reactions at the corner (R = 0).

If we impose soft conditions, Myx|x=a = 0, we obtain the distribution of
shear forces Qx shown in Figure 4.102. We can see that the distribution of
shear forces near the center tends to that of Kirchhoff theory which includes
the effect of the torsional moment. As we approach a corner, the Reissner-
Mindlin shear force inverts sense. There is no concentrated force at the corner

Fig. 4.102. Shear forces along simply supported edge for Kirchhoff and Reissner-
Mindlin models

for the Reissner-Mindlin model and that shown in Figure 4.102 is from the
Kirchhoff model.

Only from equilibrium considerations, we can conclude that Vx and R
from the Kirchhoff model and Qx from the Reissner-Mindlin model lead to
the same resultant since they should equilibrate the same externally applied
load. In other words, the corner concentrated reaction R of the Kirchhoff
model is distributed along some distance from the corner as part of Qx of
the Reissner-Mindlin model. The magnitude of this distance depends on h/L.
The situation shown in Figure 4.102 corresponds to a ratio h/L of the order
of 1/10. The quantity �b represents the length of the boundary layer. As
the ratio h/L decreases �b also decreases and when h/L tends to zero, we
approach the concentrated force situation predicted by the Kirchhoff model.
We can clearly see, from the discussion above, that the Reissner-Mindlin
model is a hierarchically higher-order model with respect to the Kirchhoff
model regarding also the shear force predictions. Additional results regarding
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boundary layers in Reissner-Mindlin plates can be found in Häggblad and
Bathe, 1990 and Arnold and Falk, 1990.

4.4 Shells

Shell structures comprise a very broad subject. On the one hand, there is a
wealth of nature and man made shells. The reader may easily list a number of
shell structures. Examples are many, covering a wide range of length scales.
We could mention microscopic living cells, sea shells, egg shells, human skulls,
biomedical devices, ship hulls, aircraft fuselages, car bodies, roofs, among
many others. On the other hand, there is a vast literature on this subject
ranging from shell structural behavior to the analysis and design of shells.
Therefore, we first would like to mention our objectives in this section.

Our aim is to present an introductory discussion of shell structures focused
on basic structural behavior. We would like to help the reader to acquire some
elementary understanding of the issues in shell models and to gain insight
into expected shell behavior. This knowledge is very valuable when modeling
shells. Of course, we suppose that the shell model solutions will be obtained
by using finite element methods. Therefore, no emphasis is given to obtaining
analytical solutions to shell mathematical models. The very few solutions that
will be presented are given to obtain some basic understanding.

A shell structure is geometrically characterized by a thin solid whose
domain is defined by a curved midsurface and a thickness h. The shell is acted
upon by surface tractions and body forces and is kinematically supported,
usually along part or all of its periphery. A generic shell is schematically
described in Figure 4.103.

Fig. 4.103. A typical shell structure

The thickness h is supposed to be small. However, not too small that it
would prevent the shell to sustain some level of compression and bending. In
other words, we are not considering a membrane.
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Below we discuss some basic geometrical facts required to introduce shell
models. Next, we present an introductory discussion on shell mathematical
models and on the formulation of the membrane-bending model. This for-
mulation is then detailed for a class of problems – shells of revolution loaded
axisymmetrically – and a few illustrative problems are solved.

4.4.1 Geometrical preliminaries

Let us consider a generic surface S. Let P be a point on the surface and
n be the unit normal to S at P . Let π be a plane which contains n. The
intersection of this plane with the surface gives a curve Cπ. These definitions
are shown in Figure 4.104.

Fig. 4.104. Generic intersecting curve of surface S at point P

Considering the plane π, the curvature κπ and the radius of curvature rπ

at point P are well defined. We can also determine the center of curvature
Oπ for the curve Cπ. Of course, there are infinitely many planes that contain
the normal n and for each of these planes we can characterize the intersecting
curve and the associated curvature definitions.

It is always possible to determine the maximum and minimum values for
the curvatures and radii of curvatures at a point, κ1, r1 and κ2, r2 which
are called the principal curvatures and principal radii of curvatures. The
planes associated with these extreme values are orthogonal to each other (see
Chapelle and Bathe, 2010a).

An important geometrical quantity is the Gaussian curvature κG defined
at a point by

κG = κ1κ2.

There are important geometric properties associated with the algebraic value
of κG. When κG > 0 all the centers of curvatures of the intersecting curves
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are located on the same side of the tangent plane at that point, and the shell
surface is called an elliptic surface. A dome like surface has this property for
all points (see Figure 4.105).

Fig. 4.105. Intersecting curves and centers of curvatures of the midsurface of a
dome like structure; elliptic surface

When κG < 0 there are intersecting curves with centers of curvatures
on opposite sides of the tangent plane at P , and the shell surface is called
a hyperbolic surface. A saddle like surface is such an example as shown in
Figure 4.106.

Fig. 4.106. Intersecting curves and centers of curvature for a saddle like surface;
hyperbolic surface

Finally, κG = 0 corresponds to a surface with at least one curvature equal
to zero (like for a cylinder or plate), and the shell surface is called a parabolic
surface.
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Therefore the algebraic value of κG helps to locally characterize a surface.
Besides that, the algebraic value of κG of shell midsurfaces is one of the factors
that greatly influences shell structural behavior.

4.4.2 Shell mathematical models

The particular choice of kinematic and mechanical hypotheses characterizes
a given shell mathematical model. We adopt here the terminology used in
Chapelle and Bathe, 2010a for the definitions of the mathematical models.
There are two basic hypotheses which pertain to most shell mathematical
models.

Kinematic hypothesis: Straight fibers initially orthogonal to the midsurface
remain straight and unstretched during deformation. This kinematic assump-
tion is called the Reissner-Mindlin kinematic assumption.

Mechanical hypothesis: The stress in the direction normal to the midsurface
is zero.

The model characterized by these two assumptions is termed the basic
shell model. While the displacement and rotation variables are referred to the
shell midsurface, the strains and stresses of the basic shell model are given
as for the 3-D continuum. When additional assumptions allow the analytical
integration through the shell thickness, in a similar way as detailed for plates,
the model is called the shear-membrane-bending shell model since these three
behaviors can potentially arise.

When the kinematic hypothesis is stronger and it is further assumed that
the straight lines initially orthogonal to the midsurface remain orthogonal to
the midsurface after deformation, we have the membrane-bending shell model
since transverse shear deformations are precluded. This kinematic hypothesis
is known as the Kirchhoff-Love kinematic assumption, Love, 1934. We discuss
below the membrane-bending shell model.

The membrane-bending shell model

Historically, this is an early shell model proposed; it is referred to as
a classical shell model. There are many contributions associated with this
model. Our presentation is closely based on the classical book of Timoshenko
and Woinowsky-Krieger, 1959.

Stress resultants

Let us consider a generic point O on the midsurface of the shell. We choose
a local Cartesian coordinate system such that z has the same direction as the
normal at O and x and y are defined such that xz and yz are the planes
associated with the principal curvatures at O. Let rx and ry be the principal
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Fig. 4.107. A part extracted from the shell; rx and ry are radii of principal cur-
vatures

radii of curvatures at O corresponding to the planes xz and yz respectively. In
Figure 4.107, we show a differential element of the shell. The stress resultants
per unit of length of coordinates along the midsurface acting on planes xz
and yz are

Nx =
∫ +h/2

−h/2

τxx

(
1 +

z

ry

)
dz (4.277)

Ny =
∫ +h/2

−h/2

τyy

(
1 +

z

rx

)
dz (4.278)

Nxy =
∫ +h/2

−h/2

τxy

(
1 +

z

rx

)
dz (4.279)

Nyx =
∫ +h/2

−h/2

τyx

(
1 +

z

ry

)
dz (4.280)

Qx =
∫ +h/2

−h/2

τzx

(
1 +

z

ry

)
dz (4.281)

Qy =
∫ +h/2

−h/2

τzy

(
1 +

z

rx

)
dz (4.282)

Mx =
∫ +h/2

−h/2

τxx(−z)
(

1 +
z

ry

)
dz (4.283)
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My =
∫ +h/2

−h/2

τyy(−z)
(

1 +
z

rx

)
dz (4.284)

Mxy =
∫ +h/2

−h/2

τxyz

(
1 +

z

rx

)
dz (4.285)

Myx =
∫ +h/2

−h/2

τyx(−z)
(

1 +
z

ry

)
dz. (4.286)

In the resultant moment definitions the same sense conventions as for
plates are used. Note that the stress resultants defined in equations (4.277) to
(4.286) are the exact resultants associated with a given stress field. Since our
presentation is restricted to thin shells, from now onwards we will neglect
z
rx

and z
ry

with respect to 1, which implies obvious simplifications in the
definitions of the stress resultants.

Kinematics

We adopt the Kirchhoff-Love kinematic assumption enunciated above and
refer to Figure 4.83 where the deformation of a differential curved bar element
was characterized. This same kinematics is used to describe the deformation
of the shell sections ABCD and EFCD due to the analogous kinematic
assumptions. In fact, Figure 4.83a can be used to characterize the undeformed
configuration of either section ABCD or EFCD by considering instead of
r, rx or ry respectively. The deformed configurations of these sections are
given, in essence, by Figure 4.83b. Therefore, referring to equations (4.208)
to (4.214), the shell strains are

εxx = εxx0 + z

(
1
r′x

− 1
rx

)
(4.287)

εyy = εyy0 + z

(
1
r′y

− 1
ry

)
(4.288)

where εxx0 and εyy0 are the strains at the midsurface. The approximations
used for curved bars are employed here, i.e., we are neglecting z

rx
, z

ry
, εxx0 and

εyy0 with respect to 1. Note the complete analogy between (4.287), (4.288)
and (4.214).

It is usual to define the changes of curvatures by

χx =
1
r′x

− 1
rx

χy =
1
r′y

− 1
ry

.
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Therefore equations (4.287) and (4.288) can be rewritten as

εxx = εxx0 + zχx

εyy = εyy0 + zχy.

In addition to these deformations of the shell, we still need to consider
the deformations which induce shear strains in “planes” parallel to the mid-
surface. Consider that line AB rotates with respect to CD about the x axis.
Let χxy give this rotation per unit of length. This quantity is actually the
twist of the deformed midsurface and the induced shear strain is given by

γxy = γxy0 + 2zχxy

where γxy0 is the shear strain at the midsurface.

Constitutive relations

Using the plane stress constitutive assumption we have

τxx =
E

1 − ν2
[εxx0 + νεyy0 + z (χx + νχy)] (4.289)

τyy =
E

1 − ν2
[εyy0 + νεxx0 + z (χy + νχx)] (4.290)

τxy =
E

2 (1 + ν)
[γxy0 + 2zχxy] . (4.291)

Substituting relations (4.289) to (4.291) into (4.277) to (4.286) and per-
forming the integration through the thickness, we obtain

Nx =
Eh

1 − ν2
(εxx0 + νεyy0)

Ny =
Eh

1 − ν2
(εyy0 + νεxx0)

Nxy = Nyx =
Ehγxy0

2 (1 + ν)

Mx = −D (χx + νχy) (4.292)

My = −D (χy + νχx) (4.293)

Mxy = −Myx = D (1 − ν)χxy

where D gives the flexural rigidity of the shell, and is given by (4.251), as for
the plate.

If we were to follow the approach used to formulate the previous struc-
tural models, the next step would be to impose equilibrium to obtain the
differential formulation of the model. Then, to solve problems, the specific
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shell midsurface geometry would need to be considered. We do not follow this
approach due to the limited scope of our presentation. Instead, we present
the formulation for a limited class of problems – shells of revolution loaded
axisymmetrically.

Shell structures resist the external loads through membrane and bending
internal actions. A special case is that of flat shells, that is, plates for which
the transverse loads are resisted by bending while the in-plane loads are re-
sisted by membrane internal actions. For curved midsurfaces this decoupling
does not hold, see Section 4.2.7, and the loads are resisted by both membrane
and bending actions. But, depending on the geometry of the midsurface, the
boundary conditions and the loads, one of these internal actions – membrane
or bending – may dominate.

Membrane actions dominate for example in shells of elliptic surfaces (for
an example see Figure 4.105) when the loading can be resisted by mem-
brane forces only and the restraints are applied all around the boundary and
correspond to these internal membrane forces. In case the supports induce
bending, these actions are local in the support regions. We discuss such a
case below. However, if, for example, the elliptic shell is not supported all
around the boundary and the external loading is inadmissible, then complex
membrane and bending actions occur, see Bathe, Chapelle and Lee, 2003.

Considering hyperbolic surfaces (like the surface shown in Figure 4.106,
which corresponds to half of a cooling tower), the boundary conditions and
loading determine whether bending or membrane actions dominate. The same
holds also for parabolic surfaces like cylinders. For a detailed discussion of
the various cases that can arise, we refer to Chapelle and Bathe, 2010a and
for numerical results see also Bathe and Lee, 2011, and Lee and Bathe, 2002.

Indeed, there are many different cases as to how a shell carries the ex-
ternally applied loads – through bending, membrane or mixed stress state,
varying over the shell surface, with possible boundary layers and internal lay-
ers of high stress gradients. Because of these various conditions that can arise,
even just in linear analysis, the analysis of general shells considering linear
and nonlinear behavior is a very challenging field in mechanics. We consider
a relatively simple but practical and illustrative case of shell analyses below.

Cleary, from a structural design perspective resisting the loads primarily
through membrane actions is most desirable and effective. Let us discuss one
class of problems where this actually happens, namely, shells of revolution
loaded axisymmetrically and supported on the whole boundary such that
bending actions are small and mostly confined to the boundary only. This
is a very special case of shell problems, but the discussion will illustrate
some important general issues encountered in the analysis of shells. In our
discussion we closely follow the work of Timoshenko and Woinowsky-Krieger,
1959.
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4.4.3 Shells of revolution loaded axisymmetrically

In order to obtain insight into how transverse loads can be resisted by mem-
brane actions in a shell of revolution loaded axisymmetrically consider a dome
subjected to its own weight and to some surface loading as schematically de-
scribed in Figure 4.108.

Fig. 4.108. A dome like structure

We compare the internal actions developed in an arch with those of a
dome. In Figure 4.109a, we show a generic arch represented by its axis and in
Figure 4.109c we describe a dome represented by its midsurface. This surface
is obtained by revolving the curved axis of the arch around the vertical axis
shown in Figure 4.109a.

The arch is acted on by the distributed load shown and since we assume
that the arch axis does not correspond to the line of pressure for this load,
bending will be developed in the arch as discussed in Section 4.2.7. The
moment distribution is shown schematically in Figure 4.109b.

Consider now the distributed load acting on the shell, which is defined
per unit of surface area, as schematically shown in Figure 4.109c. The spatial
distribution of this load could be generated, for example, by revolving the
load defined on the arch. We also show a force distribution at the lower shell
boundary which equilibrates the applied load and whose evaluation is dealt
with later on.

As we discuss in the sequel, as long as the applied distributed loading has
a smooth variation, the shell “may” develop only internal forces tangential
to its midsurface, that is, only membrane forces.

Let us examine two “slices” of the shell which are highlighted in Figure
4.109d. One is defined by the intersection of the shell with two meridian planes
− planes which contain the vertical axis. The other is given by the intersection
of the shell with two parallel planes − planes which are orthogonal to the
vertical axis.

Assume now that the reactions on the periphery are such that only mem-
brane forces develop in the shell, and consider the internal actions at the
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Fig. 4.109. Arch and shell actions

intersection of these two slices in Figure 4.109d. Then, an interesting inter-
pretation for the shell resisting the load is as follows. The meridian slice
behaves like an arch and the membrane forces on this slice due to the action
of the parallel slices are such that the net loading − external loading super-
posed onto the membrane forces from the parallel slices − has as its line of
pressure the line defined by the geometry of the meridian slice. Of course,
under these conditions there will be no bending developed in the shell.

We can appreciate that a shell resisting loads through membrane forces
only is a very efficient structure and such state is that one ideally sought by
the structural designer. However, these conditions are very difficult to meet
in practice and therefore some bending is generally induced even in this type
of shell.

Membrane theory

We assume from the onset that there is no bending and torsion, i.e.,

Mx = My = Mxy = 0.

Therefore, we seek a field of membrane stress resultants, i.e., Nx, Ny, Nxy

which equilibrates the applied loading and which leads to deformations that
are compatible with the kinematic boundary conditions.

A shell is called a shell of revolution when its midsurface is a surface of
revolution, i.e., it is obtained by revolving a planar curve around an axis,
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which lies in the plane of the curve, called the axis of revolution. The curve is
called a meridian and this plane is referred to as a meridian plane. The load
is axisymmetric when its distribution in all meridian planes is the same and
it acts in these planes. We are considering surface tractions and body forces,
but do not allow concentrated loads.

Under these geometrical and loading conditions the stress resultants and
displacements also have an axial symmetry, i.e., they are identical for each
meridian plane. Further, if we cut the shell through a generic meridian plane
there is no tendency of one part to slide with respect to the other and, hence,
there are no shear stresses acting on any meridian plane.

Consider a differential element extracted from the shell as shown in Figure
4.110a and impose equilibrium. At the midsurface, the differential element

Fig. 4.110. Definitions for a shell of revolution
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can be obtained by considering at point P a pair of meridian and a pair of
parallel planes which are infinitesimally small distances apart.

It is possible to show that the meridian is always a principal curvature
curve. We adopt a local coordinate system xyz with origin at P , z defined by
the outward normal and x tangential to the meridian. The principal radius
of curvature associated with the meridian is denoted by rx with center Ox.
In Figure 4.110b, the other principal normal section is shown. Its center of
curvature Oy is located on the axis of symmetry. The parallel that passes
through P is shown in Figure 4.110b and it is a geometrical fact that the
parallel has the same unit tangent vector at P as the principal curve whose
center is Oy. In Figure 4.110c a detail of 4.110a is shown which allows a better
visualization of some quantities such as the differential angle increment dψ
associated with the arc increment of the principal curve whose center is Oy.
Also, r0 is the radius of the parallel that contains the point P .

Let us first consider the equilibrium of the differential element in the z
direction. Referring to Figures 4.111a to 4.111c, we can evaluate the contri-
bution of the membrane forces. The contribution of Nx is given by

− (Nx + dNx) (r0 + dr0) dθdϕ

which, neglecting infinitesimals of higher-order, leads to

−Nxr0dθdϕ. (4.294)

Fig. 4.111. Differential element and principal sections

We note that due to the axisymmetric nature of the solution, Ny is the
same for every meridian plane. Its contribution is given by

−Nyrxdϕdψ. (4.295)
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Next consider the contribution of the external load. Let pz be the com-
ponent of the surface load which is normal to the shell midsurface and taken
positive when oriented as the z axis. Its contribution is given by

pzrxdϕrydψ. (4.296)

From Figure 4.110c, we can write the geometrical relation

r0dθ = rydψ. (4.297)

Therefore using (4.294) to (4.297), equilibrium in the z direction leads to

Nxrydψdϕ + Nyrxdϕdψ = pzrxrydϕdψ

which yields

Nx

rx
+

Ny

ry
= pz. (4.298)

We choose to obtain the additional equilibrium condition isolating a con-
venient part of the shell. This part is defined as the portion of the shell which
lies above the parallel circumference defined by the angle ϕ as summarized
in Figure 4.112, where the intersection of this part with a meridian plane is
shown. Due to the axisymmetric nature of the external loading, a mechani-
cally equivalent force system to the external loading acting on the selected
part is given by its resultant R acting along the symmetry axis as shown in
Figure 4.112. Equilibrium in this direction can be written as

Nx sin ϕ (2πry sin ϕ) = R

or

Nx =
R

2πry (sinϕ)2
. (4.299)

Fig. 4.112. Equilibrium of selected part of the shell
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Equations (4.298) and (4.299) give the equilibrium conditions for the shell.
Therefore, given the external load, these equations can be used to solve for
the membrane forces. We demonstrate a typical solution in the following
example.

Example 4.1916

Spherical domes are used extensively in engineering practice (e.g., churches)
and the major stresses developed are due to self-weight.

Consider the spherical dome in Figure 4.113a and find the membrane
force distribution due to its own weight. Suppose that the required force
distribution is applied at the periphery to guarantee equilibrium. The specific
weight of the shell material is γ.

Find the membrane force distribution of the spherical dome characterized
in Figure 4.113a subjected to its own weight. Suppose that the required force
distribution is applied at the periphery to guarantee equilibrium. The specific
weight of the shell material is γ.

Fig. 4.113. a) Section of the dome; b) Selected part; c) Weight load of a differential
element

Solution

We can evaluate the resultant force due to the dome weight for the part
described in Figure 4.113b. The surface area of the midsurface of the spherical
shell associated with this part is given by

S = 2πrf

and the resultant force, following the convention adopted in Figure 4.112, is
given by
16 This example is also presented in Timoshenko and Woinowsky-Krieger, 1959
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R = −2πrfhγ = −2πr2γh (1 − cos ϕ)

and therefore from equation (4.299)

Nx =
−2πr2γh (1 − cos ϕ)

2πr (sinϕ)2
= − γrh

1 + cos ϕ
. (4.300)

Of course, for a spherical shell rx = ry = r. Referring to Figure 4.113c

pz = −γh cos ϕ.

Considering equation (4.298), we obtain

−γh

1 + cos ϕ
+

Ny

r
= −γh cos ϕ

and therefore

Ny = γhr
1 − cos ϕ − cos2 ϕ

1 + cos ϕ
. (4.301)

In Figure 4.114 we show the membrane force distributions obtained. We note

Fig. 4.114. Membrane forces for spherical shell problem

that Nx is always negative, i.e., the meridian “slice” (refer to Figure 4.109d)
works in compression. However, Ny changes from compression to tension
when ϕ = ϕ0

.= 52◦. Therefore, the parallel “slices” defined by ϕ < ϕ0 work
in compression while those given by ϕ > ϕ0 work in tension. Of course, when
α < ϕ0 the whole shell is in compression.

�
We next consider the solution of the displacements. Again, due to the

axisymmetric conditions, the displacements are completely characterized if
they are known for a meridian plane.
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In Figure 4.115, we show a meridian extracted from the midsurface of
the shell described in Figure 4.110a. Let u be the displacement in the tan-
gential direction x and w be that in the normal direction. The displacement
increments associated with the increment dϕ are also shown in this figure.
We note the complete analogy with the displacements of the axis of a curved
bar which are described in Figure 4.84. Actually the axial strain given by
equation (4.217) corresponds to the midsurface strain εxx0 and, hence, it is
given by

εxx0 =
1
rx

du

dϕ
+

w

rx
. (4.302)

The circumferential strain εyy0 can be evaluated from the change in radius,

Fig. 4.115. Displacement conventions for a shell of revolution

Δr0, of the parallel considering the undeformed and deformed configurations.
This change in radius is given by

Δr0 = u cos ϕ + w sin ϕ

and

εyy0 =
Δr0

r0
=

u cos ϕ + w sin ϕ

ry sinϕ
.

εyy0 =
u

ry
cot ϕ +

w

ry
. (4.303)

We can eliminate w from equations (4.302) and (4.303) to arrive at

du

dϕ
− u cot ϕ = rxεxx0 − ryεyy0 . (4.304)

Using the plane stress constitutive relation (equation (4.44)) we have



4.4 Shells 343

εxx0 =
1
E

(τxx − ντyy) =
1

Eh
(Nx − νNy) (4.305)

εyy0 =
1
E

(τyy − ντxx) =
1

Eh
(Ny − νNx) . (4.306)

Substituting (4.305) and (4.306) into (4.304), we obtain

du

dϕ
− u cot ϕ =

1
Eh

[Nx (rx + νry) − Ny (ry + νrx)] . (4.307)

We can denote the right-hand side of (4.307) by f (ϕ), i.e.,

f (ϕ) =
1

Eh
[Nx (rx + νry) − Ny (ry + νrx)] (4.308)

which is a known function when we suppose that the membrane forces have
been determined by equilibrium. Hence, the displacement u can be obtained
by solving the following ordinary differential equation

du

dϕ
− u cot ϕ = f (ϕ) (4.309)

subject to appropriate kinematic boundary conditions, and from equation
(4.303) we obtain

w = ryεyy0 − u cot ϕ. (4.310)

Example 4.20

Consider the spherical dome subjected to its own weight studied in Example
4.19. Find the displacement fields when the shell is supported in the tangential
direction as indicated in Figure 4.116.

Fig. 4.116. Section of spherical dome with boundary conditions
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Solution

Since the membrane forces have already been determined (see solution of
Example 4.19), we can directly evaluate f(ϕ) defined by equation (4.308)
which leads to

f(ϕ) =
(1 + ν) γr2

E

(
cos ϕ − 2

1 + cos ϕ

)
(4.311)

and solving (4.309), we obtain

u =
(1 + ν) γr2

E

[
sin ϕ ln (1 + cos ϕ) − sin ϕ

1 + cos ϕ

]
+ C sin ϕ. (4.312)

Imposing the boundary condition u(α) = 0, the constant C can be determined
and it is given by

C =
(1 + ν) γr2

E

[
1

1 + cos α
− ln (1 + cos α)

]
.

The displacement w is obtained from equation (4.310). Note that, as expected
physically, the forces (expressed in (4.311)) and displacements u (given by
(4.312)) and w (given by ( 4.310)) only vary with ϕ.

�
Using Examples 4.19 and 4.20, we have the solution of the spherical dome

supported tangentially as described in Figure 4.116 within the membrane
theory. However, if we change the supports such that the displacements are
constrained in both directions, we can no longer obtain the solution using
the membrane theory, since the solution obtained with this theory predicts
a non-zero radial displacement at the supports. Of course, the transverse
forces that would be developed at the supports associated with the restraint
of the radial displacement w would induce bending and, hence, the membrane
theory is no longer applicable since it neglects bending from the start. This
observation prompts the discussion we present next.

Membrane-bending theory

In the membrane-bending model we need to consider, besides the mem-
brane stress resultants Nx, Ny and Nxy which are already taken into account
in the membrane theory, the moments Mx, My and Mxy and the transverse
shear forces, Qx and Qy. Since in our simplified setting there are no shear
stresses in any meridian plane the resultants to be considered are summa-
rized in Figure 4.117a, which is a close up of the differential element of Figure
4.110. Equilibrium in the z direction is established as in the membrane the-
ory but we need to include the shear force contribution. In Figure 4.117b, we
repeat Figure 4.111b including the shear force. Therefore, equilibrium implies
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−Nxdϕr0dθ + (Qx + dQx) (r0 + dr0) dθ − Qxr0dθ

−Nyrxdϕ sin ϕdθ + pzr0dθrxdϕ = 0

which leads to

Nxr0 + Nyrx sin ϕ − d

dϕ
(Qxr0) = pzr0rx. (4.313)

The above equation, apart from the term − d
dϕ (Qxr0), is the same as equation

Fig. 4.117. a) Stress resultants acting in a differential element; b) Shear force
appended to principal section defined by rx

(4.298). Note, however, that the above equation was written in terms of r0

instead of ry because the additional term is more easily expressed considering
r0.

For the membrane theory, we did not consider the differential equilibrium
in the x direction, since the second differential equilibrium condition was
imposed in resultant form. Now, however, we need to consider the equilibrium
in the x direction which referring to Figures 4.117 and 4.118 can be written
as

−Nxr0dθ + (Nx + dNx) (r0 + dr0) dθ − Nyrx cos ϕdϕdθ

+Qxr0dθdϕ + pxr0rxdθdϕ = 0

where px is the x direction component of the surface load. Then, we obtain

d

dϕ
(Nxr0) − Nyrx cos ϕ + Qxr0 = −pxr0rx (4.314)

and referring to Figures 4.117 and 4.119 moment equilibrium about the y
axis gives

− (Mx + dMx) (r0 + dr0) dθ + Mxr0dθ + Myrx cos ϕdϕdθ
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−Qxr0rxdϕdθ = 0

leading to

d

dϕ
(Mxr0) − Myrx cos ϕ + Qxrxr0 = 0. (4.315)

Therefore equations (4.313), (4.314) and (4.315) represent the equilibrium
conditions for the differential element.

Fig. 4.118. Contribution of Ny to equilibrium in the x-direction, Nydϕrxdθ acts
in the parallel plane and its cos ϕ component into the x-direction

The compatibility relations for the membrane strains have been already
examined and are given by equations (4.302) and (4.303).

Using Hooke’s law for the membrane components, we obtain

Nx =
Eh

1 − ν2

[
1
rx

(
du

dϕ
+ w

)
+

ν

ry
(u cot ϕ + w)

]
(4.316)

Ny =
Eh

1 − ν2

[
1
ry

(u cot ϕ + w) +
ν

rx

(
du

dϕ
+ w

)]
. (4.317)

The compatibility relations for the bending strains involve the changes
in curvatures. Let us consider first the change in curvature of a meridian.
We recognize that this change in curvature corresponds to the change in
curvature of the axis of a curved bar. Adapting equation (4.221) to the shell
quantities, we obtain

χx =
1
rx

d

dϕ

(
u

rx
− dw

rxdϕ

)
. (4.318)

We note that in this evaluation of the change of curvature, the term(
u
rx

− dw
rxdϕ

)
corresponds to the angular change of the unit normal from the
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Fig. 4.119. Contribution of My to the moment equilibrium about the y axis

undeformed to deformed configuration. The rate of change in the x-direction
gives χx. This same concept will be used for the evaluation of the change in
curvature in the y direction, i.e., we will compute the change in angle per
unit of arc length along y.

Namely, referring to Figure 4.120, consider
(

u
rx

− dw
rxdϕ

)
at point R; it

corresponds to the change in angle of an infinitesimal meridian arc. Of course,
due to the symmetry of the deformation, both, this normal and the arc remain
in the meridian plane. Therefore, the rotation vector which characterizes this
rotation is orthogonal to the meridian plane at R as shown in Figure 4.121.
This rotation vector has a projection on the x axis which is different from
zero. In Figure 4.121 all quantities used to evaluate this projection are shown
and we obtain

−
(

u

rx
− dw

rxdϕ

)
cos ϕdθ

which gives the change in angle of the normal around the x axis when we
move from point P to R. Therefore, we have

χy =
(

u

rx
− dw

rxdϕ

)
cos ϕdθ

r0dθ
(4.319)

leading to

χy =
(

u

rx
− dw

rxdϕ

)
cos ϕ

r0
=

(
u

rx
− dw

rxdϕ

)
cot ϕ

ry
. (4.320)
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Fig. 4.120. Definition of points P and R for axisymmetrical shell

Fig. 4.121. Rotation vector at point R

Finally the bending moments can be evaluated using relation (4.292) and
(4.293)

Mx = −D

[
1
rx

d

dϕ

(
u

rx
− dw

rxdϕ

)
+

ν

ry

(
u

rx
− dw

rxdϕ

)
cot ϕ

]
(4.321)

My = −D

[(
u

rx
− dw

rxdϕ

)
cot ϕ

ry
+

ν

rx

d

dϕ

(
u

rx
− dw

rxdϕ

)]
. (4.322)

Now all conditions have been considered. Namely, equilibrium (equations
(4.313), (4.314) and (4.315)), compatibility (equations (4.302), (4.303), (4.319)
and (4.320)) and the constitutive (equations (4.316), (4.317), (4.321) and
(4.322)). Therefore, these equations appended by appropriate boundary con-
ditions represent the complete formulation.

We note that the substitution of equations (4.302), (4.303), (4.319),
(4.320), (4.316), (4.317), (4.321) and (4.322) into (4.313), (4.314) and (4.315)
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reduces the problem to three equations in the variables u, w and Qx. The
solution of these equations has been addressed in many references, for exam-
ple, in the classical work of Timoshenko and Woinowsky-Krieger, 1959. Of
course, our objective is not to discuss these solutions. Actually, we presented
the formulations only to gain some insight into the variables and into the
resisting mechanisms of a shell in bending.

Membrane versus bending

We next want to mention some issues related to the accuracy of the mem-
brane theory when compared to the bending theory which is, of course, a
hierarchically higher-order theory. This discussion is also based on the book
of Timoshenko and Woinowsky-Krieger, 1959.

Consider the membrane theory solution of the spherical shell subjected
to its own weight for the displacements u and w (Example 4.20). These
displacements can be substituted into equations (4.321) and (4.322) to obtain
an estimate of the bending moments which are, of course, neglected in the
membrane theory. These bending moments are given by

Mx = My =
γh2

12
2 + ν

1 − ν
cos ϕ. (4.323)

If we use these moments to evaluate the ratio between the bending stresses
and the compressive membrane stresses predicted by the membrane theory
and compute the maximum value, we arrive at 3.29h/r for ν = 0.3. Therefore,
since for thin shells the ratio of the thickness h to the radius of curvature r
is small, these bending stresses are negligible.

An improved estimate for the membrane forces Nx and Ny can be obtained
if the moment estimates given in (4.323) are substituted into the equilibrium
equations ((4.313), (4.314) and (4.315)). A comparison of these membrane
forces with those of (4.300) and (4.301) shows that they differ by quantities
that are proportional to h2

r2 , a difference which becomes also negligible for thin
shells. Therefore, as long as the boundary conditions are compatible with the
membrane theory and the shell is thin the above discussion indicates that
the membrane theory provides good predictions.

The effect on the solution of violating the boundary conditions which are
compatible with the membrane theory can also be assessed.

Consider the spherical shell described in Figure 4.122. We report solutions
for the problems summarized in Figures 4.123a and 4.123b. These solutions
are based on further approximations of the differential formulation presented
for the bending problem, which are increasingly appropriate as the shell be-
comes thinner.

These approximate solutions may be obtained as shown in Timoshenko
and Woinowsky-Krieger, 1959 and are, for the problem of Figure 4.123a,
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Fig. 4.122. Generic section of a spherical shell

Fig. 4.123. End conditions for spherical shell problem: Δh is the displacement
induced by H and Δθ is the rotation induced by Mα

Nx = −
√

2 cot (α − ψ) sin αe−λψ sin
(
λψ − π

4

)
H

Ny = −2λ sin αe−λψ sin
(
λψ − π

2

)
H

Mx =
r

λ
sinαe−λψ sin (λψ) H

Δh =
2rλ sin2 α

Eh
H

Δθ =
2λ2 sin α

Eh
H

and for the problem of Figure 4.123b

Nx = −2λ

r
cot (α − ψ) e−λψ sin (λψ)Mα

Ny = −2
√

2λ2

r
e−λψ sin

(
λψ − π

4

)
Mα

Mx =
√

2e−λψ sin
(
λψ +

π

4

)
Mα
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Δh =
2λ2 sin α

Eh
Mα

Δθ =
4λ3Mα

Erh

where

λ4 = 3
(
1 − ν2

) ( r

h

)2

. (4.324)

Examining the functional form of these solutions, we note that the mem-
brane forces and the bending moments damp out as we move away from
the edge due to the factor e−λψ. Of course, as the shell becomes thinner,
λ becomes larger and the significant part of these solutions is closer to the
boundary.

These solutions can be used to consider restraints at the boundary which
are different from those compatible with the membrane theory in a similar
way as solving statically indeterminate structures (refer, for example, to the
discussion of Section 4.2.3 and to the example given below).

Example 4.21

Consider the spherical dome subjected to its own weight as described in
Example 4.19 now clamped at the periphery. Obtain the solution for the
bending moment Mx and the membrane force Nx using the membrane theory
solution superimposed to the solutions for the problems given in Figure 4.123.
To obtain numerical values use r = 20 m, h = 0.2 m, α = 90◦, E = 2.1 × 107

kN/m2, ν = 0.3, γ = 2.4g kN/m3 where g = 9.81 m/s2.

Solution

For the clamped condition both Δh and Δθ (refer to Figure 4.123 for the
definitions of Δh and Δθ) should be zero. Therefore

(Δh)m + (Δh)horiz + (Δh)moment = 0 (4.325)

(Δθ)m + (Δθ)horiz + (Δθ)moment = 0 (4.326)

where the subscript m refer to the membrane solution, “horiz” to the con-
tribution of the horizontal force H given per unit of length and “moment”
to the contribution of the moment Mα also given per unit of length. Then

(Δh)horiz =
2rλ sin2 α

Eh
H = F11H

(Δh)moment =
2λ2 sin α

Eh
Mα = F12Mα
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(Δθ)horiz =
2λ2 sin α

Eh
H = F21H = F12H

(Δθ)moment =
4λ3

Erh
Mα = F22Mα

where λ is given in (4.324).
The values of H and Mα come from the solutions of (4.325) and (4.326)

which can be re-written as

F11H + F12Mα = − (Δh)m (4.327)

F21H + F22Mα = − (Δθ)m . (4.328)

Since the flexibility coefficients F11, F12, F22 are given above, we only need
to determine (Δh)m and (Δθ)m. Referring to (4.310), we can write

(Δh)m = r0εyy0 = ry sin αεyy0

since u = 0 and using (4.306), we obtain

(Δh)m =
ry sin α

Eh
(Ny − νNx) . (4.329)

Introducing the numerical values we obtain

(Δh)m = 5.830 × 10−4 m.

The change of angle (Δθ)m can be evaluated as the change of the normal
at the section given by α. Referring to equation (4.318) and considering the
convention defined in Figure 4.123b, we obtain

(Δθ)m = − u

rx
+

1
rx

dw

dψ
.

Considering that at the section given by α, u = 0 and using equation (4.310),
we obtain

(Δθ)m =
1
rx

(
d

dψ
(ryεyy0) − d

dψ
(u cot ψ)

)
leading to

(Δθ)m =
1
rx

(
d

dψ

(
(Δh)m

sin ψ

)
− du

dψ
cot ψ

)
.

Using equation (4.307) we finally arrive at

(Δθ)m =
1
rx

{
d

dψ

(
(Δh)m

sin ψ

)
− cot ψ

Eh
[Nx (rx + νry) − Ny (ry + νrx)]

}
.

Since (Δh)m is given in (4.329), we obtain
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(Δθ)m =
rγ

E
(2 + ν) sin α = 5.1572 × 10−5 rad.

The solution of (4.327) and (4.328) gives

H = −8.869 kN/m and Mα = 6.39 kN.

If we plot Nx corresponding to the membrane solution and the value including
the edge effects we would barely be able to distinguish both curves.

We obtain for Mx, which is identically zero in the membrane solution,
the values shown in Figure 4.124. Note that the resulting moment has high

Fig. 4.124. Bending moment Mx for clamped shell

gradients near the edge but it is close to zero in the rest of the domain.

�

4.4.4 Remarks on shell modeling of engineering structures

In this introductory presentation on shells, the emphasis was placed on basic
facts and behaviors. The formulation of the membrane-bending model was
discussed for a very limited class of problems; namely, axisymmetric shells
loaded axisymmetrically. Nevertheless, insight was gained into the relevant
variables of the model, resisting mechanisms, membrane and bending behav-
iors, edge effects, among others.

As mentioned, the presentation was structured having in mind that the
reader who is faced with the modeling of a shell structure will most probably
be solving the shell models through finite element analysis. Therefore, the
most important objective of the presentation was to focus on some basic
understanding of shell structural behavior.
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Of course, the formulations and results given above should also help the
reader to understand and use other formulations, considering more general
shell geometries, loadings and boundary conditions.

If a shell finite element analysis is undertaken − and not considering yet
the task of making sure that the finite element solution is close enough to
the solution of the mathematical model, a task which will be dealt with later
on and which is very challenging for shells − the analyst needs to be aware
that the response of shell structures is in general very sensitive to the shell
geometry, loading and boundary conditions. Also, the behavior is not always
easy to anticipate since the propagation of edge and perturbation effects
may vary significantly depending on the conditions mentioned above, for
detailed discussions see Chapelle and Bathe, 2010a. Hence, the hierarchical
modeling concepts are clearly very valuable in shell analyses − as indeed
already illustrated by the relatively simple shell solutions given above.

4.5 Summary of the mathematical models for structural
mechanics

We end this long chapter with a summary of the mathematical models dis-
cussed. The objective is to synthesize the main aspects of each model for
future reference. We list the basic model assumptions as well as the main
variables, organized as kinematic, strain and stress type variables.

For all models, we define: the displacement, or generalized displacement,
as the column matrix u which collects all independent kinematic variables
of the model; the strain, or generalized strain, as the column matrix ε which
collects the strain, or strain type, variables and the stress, or generalized
stress, as the column matrix τ which collects the stress variables such as
stresses and stress resultants.

Of course, as detailed in the presentation of each model, these stress type
variables are used to enforce the equilibrium conditions. Also, the constitutive
relations allow us to write

τ = Cε (4.330)

and the strain compatibility is given by

ε = ∂εu. (4.331)

where we assume, as pointed out in Section 3.2.2, continuous displacements
satisfying the displacement boundary conditions.
The specific forms of C and ∂ε for the models studied are presented in Tables
4.3 and 4.4.



4.5 Summary of the mathematical models for structural mechanics 355

Plane strain model

Hypotheses

• Solid is prismatic

• Displacement assumptions

u = u(x, y), v = v(x, y)

w = 0

• Restrictions on loading

Volume Lateral surface

fB
x = fB

x (x, y) fS
x = fS

x (x, y)

fB
y = fB

y (x, y) fS
y = fS

y (x, y)

fB
z = 0 fS

z = 0

Top and bottom surfaces

fS
x = 0, fS

y = 0

Primary variables

Displacements Stresses Strains

u =

⎡⎣ u(x, y)

v(x, y)

⎤⎦ τ =

⎡⎢⎢⎢⎣
τxx

τyy

τxy

⎤⎥⎥⎥⎦ ε =

⎡⎢⎢⎢⎣
εxx

εyy

γxy

⎤⎥⎥⎥⎦

Remarks

Formulation is cast in the 2-D domain

Upon solution of u, τ , ε, we can evaluate τzz = ν(τxx + τyy)

Remaining variables are zero: w = 0, εzz = γxz = γyz = 0,

τxz = τyz = 0

Solution is exactly the same as for the 3-D model when restrictions are
satisfied
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Plane stress model

Hypotheses

• Solid is a plate

• Stress assumptions

τzz = τxz = τyz = 0

τxx = τxx(x, y)

τyy = τyy(x, y)

τxy = τxy(x, y)

• Restrictions on loading

Volume Lateral surface

fB
x = fB

x (x, y) fS
x = fS

x (x, y)

fB
y = fB

y (x, y) fS
y = fS

y (x, y)

fB
z = 0 fS

z = 0

Top and bottom surfaces

fS
x = 0, fS

y = 0, fS
z = 0

Primary variables

Displacements Stresses Strains

u =

⎡⎣ u(x, y)

v(x, y)

⎤⎦ τ =

⎡⎢⎢⎢⎣
τxx

τyy

τxy

⎤⎥⎥⎥⎦ ε =

⎡⎢⎢⎢⎣
εxx

εyy

γxy

⎤⎥⎥⎥⎦
Remarks

Formulation is cast in the 2-D domain

Upon solution of u, τ , ε, we can evaluate: εzz = − ν
E (τxx + τyy),

w by integration of εzz

Remaining variables are zero: τzz = τxz = τyz = 0,

γxz = γyz = 0

Solution is only approximate compared with the solution of the 3-D model;

however, it is close to the solution of the 3-D model

as long as the restrictions are satisfied and the plate is thin.

Additional solution terms of the 3-D exact solution are proportional to z2.
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Axisymmetric model

Hypotheses

• Solid is of revolution

• Loading is axisymmetric

These hypotheses lead to

w = 0

τxz = τyz = 0

γxz = γyz = 0

εzz = u
x

Primary variables

Displacements Stresses Strains

u =

⎡⎣ u(x, y)

v(x, y)

⎤⎦ τ =

⎡⎢⎢⎢⎢⎢⎢⎣
τxx

τyy

τxy

τzz

⎤⎥⎥⎥⎥⎥⎥⎦ ε =

⎡⎢⎢⎢⎢⎢⎢⎣
εxx

εyy

γxy

εzz

⎤⎥⎥⎥⎥⎥⎥⎦

Remarks

Formulation is cast in the 2-D domain

The solution for u, τ , ε appended by w = 0, τxz = τyz = 0,

γxz = γyz = 0 is exactly the same as the solution of the 3-D model

provided restrictions are satisfied



358 4. Mathematical models used in engineering structural analysis

Bernoulli-Euler beam model

Hypotheses

• Solid is a straight bar

• Bar sections remain plane

and orthogonal to the

deformed axis

• Kinematics is fully described

by:

u(x) displacement of the

axis in the x direction

w(x) displacement of the

axis in the z direction

• Loading

p(x) transverse distributed

load

f(x) axial distributed

load

Primary variables

Displacements Generalized stresses Generalized strains

u =

⎡⎣ u(x)

w(x)

⎤⎦ τ =

⎡⎣ N(x)

M(x)

⎤⎦ ε =

⎡⎣ ε

κ

⎤⎦

Remarks

Formulation is cast in the 1-D domain

There is no transverse shear strain, i.e., γxz = 0

Note that κ gives the change in curvature χ since the initial

curvature is zero (bar is straight)
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Curved bar model

Hypotheses

• Solid is a curved bar

• Bar sections remain plane

and orthogonal to the

deformed axis

• Kinematics is fully described

by:

u(s) displacement of the

axis in the tangential

x direction

w(s) displacement of the

axis in the normal

z direction

• Loading

px(s) tangential distributed

load

pz(s) normal distributed

load

Primary variables

Displacements Generalized stresses Generalized strains

u =

⎡⎣ u(s)

w(s)

⎤⎦ τ =

⎡⎣ N(s)

M(s)

⎤⎦ ε =

⎡⎣ εxx0

−χ

⎤⎦

Remarks

Formulation is cast in a 1-D curved domain

There is no transverse shear strain, i.e.,γxz = 0

Kinematic assumptions of Bernoulli-Euler model
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Timoshenko beam model

Hypotheses

• Solid is a straight bar

• Bar sections remain plane

but not necessarily

orthogonal to the defor-

med axis

• Kinematics is fully described

by:

w(x) displacement of the

axis in the z direction

β(x) rotation of the cross-

section

• Loading

p(x) transverse distributed

load

Primary variables

Displacements Generalized stresses Generalized strains

u =

⎡⎣ w(x)

β(x)

⎤⎦ τ =

⎡⎣ V (x)

M(x)

⎤⎦ ε =

⎡⎣ γxz

dβ
dx

⎤⎦

Remarks

Formulation is cast in the 1-D domain

The model includes transverse shear deformations γxz �= 0

The formulation can also be presented including the axial

displacement u(x) and the loading f(x) as for the Bernoulli-

Euler model



4.5 Summary of the mathematical models for structural mechanics 361

Kirchhoff plate model

Hypotheses

• Solid is a thin plate

• Straight material lines which are initially

orthogonal to the midsurface of the

plate remain straight and orthogonal

to the deformed midsurface

• Displacements in the transverse

direction do not vary along the

thickness of the plate

• Each plate lamina is in a state

of plane stress

• Kinematics is fully described by:

w = w(x, y)

• Loading

p(x, y) transverse loading per

unit of surface area

Primary variables

Displacements Generalized stresses Generalized strains

u =
[

w(x, y)
]

τ =

⎡⎢⎢⎢⎣
Mx

My

Myx

⎤⎥⎥⎥⎦ ε =

⎡⎢⎢⎢⎣
κx

κy

κyx

⎤⎥⎥⎥⎦

Remarks

Formulation is cast in a 2-D domain, the midsurface of the plate

There are no transverse shear stresses: γxz = γyz = 0
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Reissner-Mindlin plate model

Hypotheses

• Solid is a thin to moderately

thick plate

• Straight material lines which are

initially orthogonal to the midsurface

of the plate remain straight but not

necessarily orthogonal to the

deformed midsurface

• For bending each plate lamina is

in a state of plane stress

• Kinematics is fully described by:

w = w(x, y)

βx = βx(x, y)

βy = βy(x, y)

• Loading

p(x, y) transverse loading per

unit of surface area

Primary variables

Generalized displacements Generalized stresses Generalized strains

u =

⎡⎢⎢⎢⎣
w(x, y)

βx(x, y)

βy(x, y)

⎤⎥⎥⎥⎦ τ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mx

My

Myx

Qx

Qy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ε =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂βx

∂x

∂βy

∂y

∂βx

∂y
+ ∂βy

∂x

γxz

γyz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Remarks

Formulation is cast in a 2-D domain, the midsurface of the plate
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Shell models

Hypotheses

Basic shell model

• Solid is a shell with a midsurface

• Straight material lines initially orthogonal to the

midsurface remain straight and unstretched

during deformations

• Kinematic variables are referred to

the shell midsurface

• The stress in the direction orthogonal

to the midsurface is zero

Membrane-shear-bending model

Additional hypotheses permit the analytical integration through the shell thickness

Membrane-bending model

• Additional hypothesis: straight material lines initially orthogonal to the

midsurface remain orthogonal to the midsurface during deformations

• Hence transverse shear strains are zero

Remarks

This summary for shells is only giving some basic model hypotheses

since much more discussion would be required before we could

present for each shell model a summary analogous to those

presented for the other models, see Chapelle and Bathe, 2010a
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Table 4.4. Definitions of C and ∂ε for structural mathematical models

Mathematical

model

(generalized

displacements)

Generalized constitutive

matrix C

Generalized strain-

displacement

matrix ∂ε

Bernoulli-Euler

beam

(u,w)

⎡⎣ EA 0

0 EI

⎤⎦ ⎡⎣ d ·
dx

0

0 d2 ·
dx2

⎤⎦

Curved beam

(u,w)

⎡⎣ EA 0

0 EI

⎤⎦ ⎡⎣ d ·
ds

·
r

− d
ds

( ·
r

)
d2 ·
ds2

⎤⎦

Timoshenko

beam

(w,β)

⎡⎣ kGA 0

0 EI

⎤⎦ ⎡⎣ d ·
dx

−1

0 d ·
dx

⎤⎦

Kirchhoff

plate

(w)

D

⎡⎢⎢⎣
1 ν 0

ν 1 0

0 0 (1 − ν)

⎤⎥⎥⎦
⎡⎢⎢⎣

∂2 ·
∂x2

∂2 ·
∂y2

∂2 ·
∂x∂y

⎤⎥⎥⎦

Reissner-

Mindlin

plate

(w,βx,βy)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D νD 0 0 0

νD D 0 0 0

0 0 D(1−ν)
2

0 0

0 0 0 kGA 0

0 0 0 0 kGA

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 ∂ ·
∂x

0

0 0 ∂ ·
∂y

0 ∂ ·
∂y

∂ ·
∂x

∂ ·
∂x

−1 0

∂ ·
∂y

0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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