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396 [CH. 10] STRATEGIC MOVES

(e) Explain why the children would want to make a threa.t in the first
place, and suggest a way in which they might make their threatened
action credible. ‘

U5. Answer the questions in Exercise S5 for the following situations: N
(a) The students at your university or college want to prevent the adminis-

tration from raising tuition.

(b) Most participants, as well as outsiders, want to achieve a durable peace
in Afghanistan, Iraq, Israel, and Palestine. .

(c) Nearly all nations of the world want Iran to shut down its nuclear
program.

U6. Write a brief description of a game in which you have participated, e.ntailing
strategic moves such as a commitment, threat, or promise and paymg spe-
cial attention to the essential aspect of credibility. Provide an illustration of
the game if possible, and explain why the game that you descrit.)e end.ed asit
did. Did the players use sound strategic thinking in making their choices?

]
The Prisoners’ Dilemma
and Repeated Games

N THIS CHAPTER, we continue our ir study of broad classes of ga _games with an

analysis of the > prisoners’ dllemma game. It is probab]y the classic example

of the theoﬁ of strategy and its implications for predicting the behavior of

game players, and most people who learn only a little bit of game theory
learn about it. Even people who know no game theory may know the basic story
behind this game or they may have at least heard that it exists. The prisoners’ di-
lemma is a game in which each player has a dominant strategy, but the equilib-
rium that arises when all players use their dominant strategies provides a worse
outcome for every player than would arise if they all used their dominated strat-
egies instead. The paradoxical nature of this equilibrium outcome leads to sev-
eral more complex questions about the nature of the interactions that only a
more thorough analysis can hope to answer. The purpose of this chapter is to
provide that additional thoroughness.

We already considered the prisoners’ dilemma in Section 3 of Chapter 4.
There we took note of the curious nature of the equilibrium that is actually a
“bad” outcome for the players. The “prisoners” can find another outcome that
both prefer to the equilibrium outcome, but they find it difficult to bring about.
The focus of this chapter is the potential for achieving that better outcome.
That is, we consider whether and how the players in a prisoners’ dilemma can
attain and sustain their muma\Ih_.r beneficial cooperative outcome, overcoming
their Separate incentives to defect Tor individual g gain. We first review the stan-
dard prisoners’ dilemma game and then develop four categories of solutions.
The first and most important method of solution consists of repetition of the
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standard one-shot game. The general theory of repeated games was the contri-
bution for which Robert Aumann was awarded the 2005 Nobel Prize in Econom-
ics (jointly with Thomas Schelling). As usual at this introductory level, we look at
a few simple examples of this general theory. Two other potential solutions rely
on penalty (or reward) schemes and on the role of leadership. The fourth incor-
porates asymmetric information into a finitely repeated dilemma game. As we
consider each potential solution, the importance of the costs of defecting and
the benefits of cooperation will become clear.

This chapter concludes with a discussion of some of the experimental ev-
idence regarding the prisoners' dilemma as well as several examples of actual
dilemmas in action. Experiments generally put live players in a variety of prison-
ers’ dilemma-type games and show some perplexing as well as some more pre-
dictable behavior; experiments conducted with the use of computer simulations
yield additional interesting outcomes. Our examples of real-world dilemmas
that end the chapter are provided to give a sense of the diversity of situations in
which prisoners’ dilemmas arise and to show how, in at least one case, players
may be able to create their own solution to the dilemma.

1 THE BASIC GAME (REVIEW)

Before we consider methods for avoiding the “bad” outcome in the prisoners’
dilemma, we briefly review the basics of the game. Recall our example from
Chapter 4 of the husband and wife suspected of murder. Each is interrogated
separately and can choose to confess to the crime or to deny any involvement.
The payoff matrix that they face was originally presented as Figure 4.4 and
is reproduced here as Figure 11.1. The numbers shown indicate years in jail;
therefore low numbers are better for both players. .
Both players here have a dominant strategy. Each does better to confess, re-
gardless of what the other player does. The equilibrium outcome entails both
players deciding to confess and each getting 10 years in jail. If they both had

WIFE

Confess (Defect) |Deny (Cooperate)

Confess (Defect) 10yr, 10yr 1yr, 25yr

HUSBAND

Deny (Cooperate) 25yr, 1yr 3yr, 3yr

FIGURE 11.1  Payoffs for the Standard Prisoners’ Dilemma
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chosen to deny any involvement, however, they would have been better off, with
only 3 years of jail time to serve. ’

In any prisoners’ dilemma game, there is always a cooperative s
a_cheating or defecting strategy. In Figure 11,1, Dcnzsls ‘ll'.le cﬁ;:;i.t::;ﬁ: "\‘!
hoth players using that strategy yields the best otutcome for the players t‘unff:?:
is the cheating or defecting strategy; when the players do not cooperate .W;th one
nn?lher, they choose to Confess in the hope of attaining individual gain at the ri-
.vais expense. Thus, players in a prisoners’ dilemma can always be labeled, accord-
ing l:{‘a their choice of strategy, as either défectors or coaperators, We will' use this
labeling system throughout the discussion of potential solutions to the dilemma,

We want to emphasize that, although we speak of a cooperative srm;-
egy, the prisoners’ dilemma game is noncooperative in the sense explained in
Chapter 2—namely, the players make their decisions and i'mpIc'rn'e':}(' iheir
choices individually. If the two players could discuss, choose, and play their
strategies jointly—as if, for example, the prisoners were in the same room and
could give a joint answer to the question of whether they were both. going to
confess—there would be no difficulty about their achieving the outcome that
both prefer. The essence of the questions of whether, when, and how a prison-
ers’ dilemma can be resolved is the difficulty of achieving a cooperative (jointl
preferred) outcome through nencooperative (individual) actions. g

2 SOLUTIONS I: REPETITION

Of all the mechanisms that can sustain cooperation in the prisoners' dilemma
the best known and the most natural is repeated play of the game, Repeateci
or ongoing relationships between players impf?sﬁe?fal characteristics for the
games that they play against one another. In the prisoners’ dilemma, this result
plays out in the fact that each player fears that one instance of defecting will
!gz_ld_r_q a collapse of cooperation in the future. If the value of fulure éooﬁémﬁon
is large and exceeds what can be gained in the short term by defecting, then the
long-term individual interests of the players can automatically and tacitly kee
them from defecting, without the need for any additional punishments or erslf
forcement by third parties.

N We consider the meal-pricing dilemma faced by the two restaurants, Xavier's
tapas and Yvonne's Bistro, introduced in Chapter 5. For our purposes hete, we
have chosen to simplify that game by supposing that only two choices of |J'ﬂl:£'
an‘: available: the jointly best (collusive) price of $26 or the Nash equillbrfuml
price of $20. The payoffs (profits measured in hundreds of dollars per month)
:“Dr each restaurant can be caleulated by using the quantity (demand) functions
n Section LA of Chapter 5; these payoffs are shown in Figure 11,2, As in any
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YVONNE’S BISTRO
20 (Defect) 26 (Cooperate)
t 288, 360,
SAVIER®S 20 (Defect) 288 216
TAEAS 26 (Cooperate) 216, 360 324,324

FIGURE 11.2 Prisoners’ Dilemma of Pricing ($100s per month)

prisoners’ dilemma, each store has a dominant strategy to defect and price its
meals at $20, although both stores would prefer the outcome in which each
cooperates and charges the higher price of $26 per meal.

Let us start our analysis by supposing that the two restaurants are initially in
the cooperative mode, each charging the higher price of $26. If one restaurant—
say, Xavier's—deviates from this pricing strategy, it can increase its profit from
324 to 360 (from $32,400 to $36,000) for one month. But then cooperation has
dissolved and Xavier's rival, Yvonne's, will see no reason to cooperate from then
on, Once cooperation has broken down, presumably permanently, the profit
for Xavier's is 288 each month instead of the 324 it would have been if Xavi-
er’s had never defected in the first place. By gaining 36 ($3,600) in one month
of defecting, Xavier’s gives up 36 ($3,600) each month thereafter by destroying
cooperation. Even if the relationship lasts as little as three months, it seems that,
defecting is not in Xavier's best interest. A similar argument can be made for
Yvonne’s, Thus, if the two restaurants competed on a regular basis for at least
three months, it seems that we might see cooperative behavior and high prices

rather than the defecting behavior and low prices predicted by theory for the

one-shot game.

A. Finite Repetition

But the solution of the dilemma is not actually that simple. What if the rela-
tionship did last exactly three months? Then strategic Testaurants would
want to analyze the full three-month game and choose their optimal pricing
strategies. Each would use rollback to determine what price to charge each
month. Starting their analyses with the third month, they would realize that, at
that point, there was no future relationship to consider. Each restaurant would
find that it had a dominant strategy to defect. Given that, there is effectively no
future to consider in the second month either. Each player knows that there
will be mutual defecting in the third month, and therefore both will defect
in the second month; defecting is the dominant strategy in month 2 also.
Then the same argument applies to the first month as well. Knowing that both
will defect in months 2 and 3 anyway, there is no future value of cooperation
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in the first month. Both ' i
. players defect r ¥ y i
e y ect right from the start, and the dilemma
Thi is ver: g
o l-nh: re‘sult 1s.v‘e1)./ general. As long as the relationship between the two play-
e Izrlsonels dllef‘l’?mfi game lasts af @;ed,_g;l_(j‘_lgpn_wll length of time, the
N 2 ant-strategy equilibrium with defecting should prcvaﬂ i;] the last ;;cnm'i
2 play. 'VVhB(;l the players arrive at the end of the game, there ig never any value
0 continued cooperation, and so the :
. , y defect. Then rollback predicts

mutual

defecting all the way back to the very first play. However, in Dractice, playersuii

finite Y repeate; prisoner e peration; more
1 ted pris ers’ dilem a
ma games show a lot of coope. ’ on

B. Infinite Repetition
A . . .
: fn:lhlysw of the ﬁm;ely repeated Prisoners’ dilemma shows that even repetition
w_:__lei_ghgmg gar}got guarantee the players a solution to their dilérﬁnﬁ. But what
- ;ul :v appen if the relationship did not have a predetermined Iéhgﬂ:? What if

O restaurants expected (o continue i : .

e two competing with one another indefi

nitely? Then our analysis mus p——
st change to incorporate thi

! : ; porate this new aspect of their

1te;'ac{fou. and we will see that the incentives of the players change also
e :S x:}:lpt:alled games of any kind, the sequential nature of the relationship

at players can adopt strategies that de
pend on behavior in edi
plays of the games. Such strategi g
. gles are known as contingent strategi

P ' A egies, and sev-

ral r:pm::ﬁc examples are used frequently in the theory of repeated ganlaes Most
contingent strategies are trigger strategi :

i rigge gies. A player using a trigger stra

I : - L : te

plays cooperatively as long as her rival(s) do so, but any defection on their pagr}t,

;z?iuulng (;j)erfmanent punishment. Playing TFT means choosing, in any speci
period of play, the action chosen b ival i : ;
= Y your rival in the di i
. e action breceding period of
gt:lr];“;!:::.l:'h(:n playing TFT, you tooperate with your rival if she cooperated
ostrecent play of the game and defect (. i i
| 8 : i i as punishment) if your rival
; ::t;c.-cled. I.hc: punishment phase lasts only as long as your rival continli,es to de-
et you will return to cooperation one period after she chooses to do so

ID 5

efecting as retaliation unde, i

) n r the requirements of a tri i

dgppin ) . S olatrigger strategy is often te ishij
nguish it from the original decision to deviate from cooperation & e punihingo
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Let us consider how play might proceed in the reE)eruu(l restaurant pricir;g
game if one of the players uses the contingent strategy ut-fnr—ml.“{n have fl]ll‘ea:i y
seen that if Xavier's Tapas defects one month, it could add 36 to its p‘ruhts (3 |3
instead of 324), But if Xaviers rival is playing TFT, then such de‘l'cc.t.mg WOl
induce Yvonne's Bistro to punish Xavier's the next month in retaliation, Al l].lal
point, Xavier'’s has two choices. One option is [0 continue m.defect hy. pricm.g
at 520, and to endure Yvonne's continued punishment according to TFT; l?1 this
case, Xavier's loses 36 (288 rather than 324) for every lnufuh thereafter in the
foreseeable future, This option appears quite costly. But Xi!\?il?l'ls cufddgel hm'.-k 1o
cooperation, 1o, if it so desired. By reverting to the cuupemurvc pm.:c of $26 ;t’tcr
one month’s defection, Xavier's would incur only one muun.\.s punishment from
Yvonne’s. During that month, Xavier's would suffer a loss in profit c.>f 108 (216
rather than the 324 that would have been earned without any defection). In the
second month after Xavier’s defection, both restaurants could .be bE.iCk at the co-
operative price earning 324 each month. This one-time ‘defectlon yields an ext;a
36 in profit but costs an additional 108 during the punishment, also apparently

ite costly to Xavier’s.
‘illlt?t(;g::fpnrtnni to realize here, however, that Xav.ler‘s extra $36 ‘frum defev:l:t-
ing is gained in the first month. Its losses are ceded in 1P1e future. I heretinn. the
relative importance of the two depends on the relative ‘mpu.uance of the ]thfs-
ent versus the future. Here, because payoffs are calculated in dollar terms, .!:
objective comparison can be made. Generally, money (or profit) that is earne:

today is better than money that is earned later because, even if you do not need

(or want) the money until later, you can invest it now and earn a return on 11,
until you need it. So Xavier's should be able to calculate whether it is worlllnwﬁllu.
1o defect, on the basis of the total rate of return on its fnvesimcnt {lm.ludi'ng
capital gains and/or dividends and/or interest, depending on the type of in-
vestment). We use the symbol  to denote this rate of return. Thus o'ne do.llar
invested generates r dollars of interest and/or dividends. and/ or.capltal gaun.s(i
or 100 dollars generate 100r, therefore the rate of return is sometimes also sai
“ b‘la\li)(t)g ::f’z;t we can calculate whether it is in Xavier's inter:est to deft‘ect because
the firms’ payoffs are given in dollar terms, rather than as simple ratings of out-
comes, as in some of the games in earlier chapters (the street-garden gam‘e in
Chapters 3 and 6, for example). This means that pa)furf values in different uafil;
are directly comparables a payoff of 4 (dollars) is twice as good 'ua a payoif o
(dollars) here, whereas a payoff of 4 is not necessarily exaclly.' twice as good as
a payoff of 2 in any two-by-two game in which the four possible outcomes. are
ranked from 1 (worst) to 4 (best). As long as the payoffs to the .players’ ar.e given
in measurable units, we can calculate whether defecting in a prisoners dilemma
game is worthwhile.
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[. 15 IT WORTHWHILE TO DEFECT ONLY ONCE AGAINST A RIVAL PLAYING TFT?  One of Xavier's options
when playing repeatedly against a rival using TFT is to defect just once from a
cooperative outcome and then to return to cooperating, This particular strategy
gains the restaurant 36 in the first month (the month during which it defects)
but loses it 108 in the second month. By the third month, cooperation is re-
stored. Is defecting for only one month worth it?

We cannot directly compare the 36 gained in the first month with the 108
lost in the second month, because the additional money value of time must
be incorporated into the calculation. That is, we need a way to determine how
much the 108 lost in the second month is worth during the first month, Then we
can compare that number with 36 to see whether defecting once is worthwhile.
What we are looking for is the present value (PV) of 108, or how much in profit
earned this month (in the preséHt) is equivalént to (has the same value as) the
108 earned next month. We need to determine the number of dollars earned this
month that, with interest, would give us 108 next month; we call that number
PV, the present value of 108,

Given that the (monthly) total rate of return is r, getting PV this month and
investing it until next month yields a total next month of PV + rPV, where the
first term is the principal being paid back and the second term is the return
(interest or dividend or capital gain). When the total is exactly 108, then PV
equals the present value of 108. Setting PV + 7PV = 108 yields a solution for PV:

108

PV= )
V=Trr

For any value of 1, we can now determine the exact number of dollars that,
earned this month, would be worth 108 next month.,

From the perspective of Xavier's Tapas, the question remains whether the
gain of 36 this month is offset by the loss of 108 next month. The answer de-
pends on the value of PV. Xavier's must compare the gain of 36 with the PV of the
loss of 108. To defect once (and then return to cooperation) is worthwhile only if
36 > 108/(1 + r). This is the same as saying that defecting once is beneficial only
if 36(1 + 1) > 108, which reduces to r > 2. Thus Xavier's should choose to defect
once against a rival playing TFT only if the monthly total rate of return exceeds
200%. This outcome is very unlikely; for example, prime lending rates rarely ex-
ceed 12% per year. This translates into a monthly interest rate of no more than
1% (compounded annually, not monthly), well below the 200% just calculated.
Here, it is better for Xavier’s to continue cooperating than to try a single instance
of defecting when Yvonne's is playing TFT.

IL. IS IT WORTHWHILE TO DEFECT FOREVER AGAINST A RIVAL PLAYING TET?  What about the possibil-
ity of defecting once and then continuing to defect forever? This second option of
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Xavier's gains the restaurant 36 in the first month but loses it 36 in every month
thereafter into the future if the rival restaurant plays TFL To determine whether
such a strategy is in Xavier's best interest again depends on the present value of
the losses incurred. But this time the losses are incurred over an infinite horizon
of future months of competition.

We need to figure out the present value of all of the 36s that are lost in fu-
ture months, add them all up, and compare them with the 36 gained during the
month of defecting. The PV of the 36 lost during the first month of punishment
and continued defecting on Xavier’s part is just 36/(1 + r); the calculation is
identical with that used in Section 2.B.1 to find that the PV of 108 was 108/(1 + ).
For the next month, the PV must be the dollar amount needed this month that,
with two months of compound interest, would yield 36 in two months. If the
PV is invested now, then in one month the investor would have that principal
amount plus a return of rPV, for a total of PV + PV, as before; leaving this total
amount invested for the second month means that at the end of two months,
the investor has the amount invested at the beginning of the second month
(PV + rPV) plus the return on that amount, which would be r(PV + rPV). The
PV of the 36 lost two months from now must then solve the equation: PV  rPV
T F(PV + rPV) = 36. Working out the value of PV here yields PV(1 + r)* = 36, or
PV = 36/(1 + 2 You should see a pattern developing. The PV of the 36 lost in
the third month of continued defecting is 36/(1 + r), and the PV of the 36 lost
in the fourth month is 36/(1 + r*. In fact, the PV of the 36 lost in the nth month

of continued defecting is just 36/(1 + r)". Xavier’s loses an infinite sum of 36s,
and the PV of each of them gets smaller each month.

More precisely, Xavier's loses the sum, from n=1ton = {(where n labels
the months of continued defecting after the initial month), of 36/(1 + 7 " Math-
ematically, it is written as the sum of an infinite number of terms:*

36/(1+ 1) +36/(L+r2+36/(L+r)7+36/(L+n"+--

Because r is a rate of return and presumably a positive number, the ratio of
1/(1 + r) will be less than 1; this ratio is generally called the discount factor and is
referred to by the Greek letter 5 . With 3, 1 + 4 < 1, the mathematical rule for
infinite sums tells us that this sum converges to a specific value, in this case 36/r.
It is now possible to determine whether Xavier's Tapas will choose to defect
forever. The restaurant compares its gain of 36 with the PV of all the lost 36s, or
36/r. Then it defects forever only if 36 > 36/r, or r> 1; defecting forever is ben-
eficial in this particular game only if the monthly rate of return exceeds 100%, an
unlikely event. Thus we would not expect Xavier's to defect against a cooperative
rival when both are playing tit-for-tat. When both Yvonne's Bistro and Xavier's

The Appendix to this chapter contains a detailed discussion of the solution of infinite sums.
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|T-f)p-as play TET, the cooperative outcome in which both price high is a Nash equi-
ibrium of the game, Both playing TFT is a Nash equilibrium, and use of thi
tingent strategy solves the prisoners' dilemma for the two restaurants o
Remember that tit-for-tat is only one of many trigger strategies I..hal laye;
{-:nulcl.u&e in repeated prisoners' dilemmas. And it is one of thE “nicer” o : fﬁe“f
if'TFT can be used to solve the dilemma for the two restaurants mheru;s' rslll:b
trigger strategies should be able to do the same, The grim sr.rarq;y for i.n;?anc:r

also can be used to sustain ¢ P T o
others. -ooperation in this infinitely repeated game and in

C. Games of Unknown Length

In addition to considering games of finite or infinite length, we can incor;
ahmolh'e sophisticated tool to deal with games of unknown iength. It is pltfs:;;:
lto zt, tl;l s.:(?rlxle repe‘ated games, 'players might not know for certain exactly how
g ?1} Interaction will continue. They may, however, have some idea of th:
probability th.at the game will continue for another period. For example, o y
lrs;tal;:e;r}llts. Tnlght believe that t.heir repeated competition will continuepon‘ly :sr
Chjce. : te;; rceustomers find prix jfi).ce menus to be the dining-out experience of
i Ov, were some probability each month that & la carte dinners would
er that role, then the nature of the game is altered.
. li(—;call t}’fat'the present value of a loss next month is already worth only
‘ (1 + 1) times the amount earned. If in addition there is only a probabil
ity p (less than 1) that the relationship will actually continue to the nex[; moiltlh-
}t(hEI'] I}ext mont.h’s loss is worth only p times & times the amount lost. For’
3 2\;1:3; s["t[}e:sz;s, this m;zjl(s thatthe PV ofthe 36lost with continued defectingis worth
ame as 1 + 1] when the game i inui i
ce'rtainty butis worth only 36 X p X & whe;gl the glzj;s: ;lsn:l::utr(;:; tf)ol?::(;lrllxt]'g “{nh
V\.Ilth probability p. Incorporating the probability that the game may end n e 8
riod means that the present value of the lost 36 is smaller, because y< 1 thext Pe
when the game is definitely expected to continue (when pis assumZd to |e uaari 11t )
The effect of incorporating p is that we now effectively discounct1 fut; .
payoffs by the factor p X & instead of simply by 8. We call this effectiv ot
return R, where 1/(1 + R) = p X 8, and R depends on pand 3 as shown'se et

1/(1+R) = pd
1= p3(1+R)
R:l_‘ﬁ.
pa

k!
We could also express R in terms of rand p, in which case R= (1 + Np-1
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With a 5% actual tate of return on investments (r = 0.05, and so 8 = 1/1.05 =
0.95) and a 50% chance that the game continues for an additional month (p =
0.5), then R = [1 — (0.5)(0.95)]/(0.5)(0.95) = 1.1, or 110%.

Now the high rates of return required to destroy cooperation (encourage
defection) in these examples seem more realistic if we interpret them as effective
Eéthe_r thgip‘act‘ga’l rates o_f; ggium.‘lt becomes conceivable that defecting forever,
or even once, might actﬁajly be to one’s benefit if there is a large enough probabil-
ity that the game v.\_;jll,end'in the near ’f;lg_tgre. Consider Xavier's decision whether
to defect forever against a TFT-playing rival. Our earlier calculations showed that
permanent defecting is beneficial only when r exceeds 1, or 100%. If Xavier's faces
the 5% actual rate of return and the 50% chance that the game will continue for an
additional month, as we assumed in the preceding paragraph, then the effective
rate of return of 110% will exceed the critical value needed for it to continue defect-
iflg. Thus the cooperative behavior sustained by the TFT strategy can break down if
there is a sufficiently large chancg that the repeated game nmight be over by the end
of the next period of play—that is, by a sufficiently small value of p.

D. General Theory

We can easily generalize the ideas about when it is worthwhile to defect against
TFT-playing rivals so that you can apply them to any prisoners’ dilemma game that
you encounter. To do so, we use a table with general payoffs (delineated in appropri-
ately measurable units) that satisfy the standard structure of payoffs in the dilemma
as in Figure 11.3. The payoffs in the table must satisfy the relation H = C=>D > L for
the game fo be a prisoners’ dilemma, where C is the cooperative outcome, D is the
payoff when both players defect from cooperation, H is the high payolf that goes to
the defector when one player defects while the other cooperates, and L is the low
payoff that goes to the loser (the cooperator) in the same situation.

In this general version of the prisoners’ dilemma, a player's one-time gain
from defecting is (H — C). The single-period loss for being puhished whjlé&dﬁ
return to cooperation is (C — I), and the per-period loss for perpetual defect-

COLUMN

Defect Cooperate

Defect D, D HL

ROW

Cooperate LH CC

FIGURE 11.3  General Version of the Prisoners’ Dilemma
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ingis ‘[(.' = D). To be as general as possible, we will allow for situations in which
there is a probability p < 1 that the game continues beyond the next period and
$0 we will discount payoffs using an effective rate of returny of it per perio: l‘lf
;: - I.I;us wiou{d be the case when Ehc game is guaranteed to continue, then
= 1 the silmple interest rate used in our preceding calculations, Replacing r
with R, we find that the results attained earlier generalize almost immediatel ;
' \:Ve found earlier that a player defects exactly vnge against a rival pl: 5 1
TET if the one-time gain from defecting (H — €) excccds_tﬁe'ﬁ':éééilt;;iﬁg a::llj‘l -
single-period loss from being punished (the PV of € - 1). In .t.his ge:l;ml Sy
that means that a player defects once against a TFT-playing opponent f aIm‘[’;'
(H=C)>(C— I}/ + Ryor (1 + R(H-C)> C— L, or w

R> C-L _
N H

— 1;
::}imilarly. wv: fm.m‘d that a player defects forever against a rival playing TFT only
orlhlc one-time gain from defecting exceeds the present value of the infinite sum
o _l':; p:r-parin:l losses from perpetual defecting (where the per-period loss is
). For the general game, then, a player defects forever against a TIT- playin

opponentonly if (H — €) > (€~ D)/R, or 0 E( W-C)

g s, AL BN dejechons -/
c-p L= 4 L))

R= R
H=q LOSE [ay (ant A vty

L\
The three critical elements in a player's decision to defect, as seen in these
two expressions, are the immediate gain from defection (H — ), the future
losses from punishment (€ — Lor €~ D per period of plfn[shme;l}- and the
value of the effective rate of return (R, which measures the impnrtan'ce of th
present {ela!ive to the future). Under what conditions on these various value, de
players find it attractive to defect from cooperation? ‘ "
' First, assume that the values of the gains and losses [rom defecting are fixed
I'hen changes in R determine whether a player defects, and defection is mnre‘
likely when R is large. Large values of R are associated with small values of
and smal_l \rai_u_es of 8 (and large values of 1, so defection is more !Ikﬁ! : when thp
prub._abii‘i;y of continuation is low or the discount factor is low (or ti;c intc.-res‘t3 (=)
:::_-erlst hlg?iu.lj\nulller way to think about it is that defection is more likely when "
b :__(LI:%:I ; qe;%?;gg;?;;::? T!:El present or whelj_lherc is little future to con-
e <t qugcgi ; ikely when players are i_:n_panem or when they
: thiezzr:_j, co.nzider. the case in w.hich the effective rate of return is fixed, as
o pE.EI‘lO ge.un Frnm defecting. Then changes in the per-period losses
sociated with punishment determine whether defecting is worthwhile. Here it
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is smaller values of C — L or C — D that encourage defection. In this case, defec-
tion is more likely when punishment is not very severe.*

Finally, assume that the effective rate of return and the per-period losses as-
sociated with punishment are held constant. Now players are more likely to de-
fect when the gains, H — C, are high. This situation is more likely when defecting
garners a player large and immediate benefits.

This discussion also highlights the importance of the detection of defecting.
Decisions about whether to continue along a cooperéiiVé .path depend on how
long defecting might be able to go on before it is detected, on how accurately
it is detected, and on how long any punishment can be made to last before an
attempt is made to revert back to cooperation. Although our model does not in-
corporate these considerations explicitly, if defecting can be detected accurately
and quickly, its benefit will not last long, and the subsequent cost will have to
be paid more surely. Therefore the success of any trigger strategy in resolving a
repeated prisoners’ dilemma depends on how well (hoth in speed | and accuracy)
players can detect defecting. This is one reason that the TFT strategy is often
considered dangerous; slight errors in the execution of actions or in the percep-
tion of those actions can send players into continuous rounds of punishment

from which they may not be able to escape for a long time, until a slight error of
the opposite kind occurs.

You can use all of these ideas to guide you in when to expect more coopera-
tive behavior between rivals and when to expect more defecting and cutthroat
actions. If times are bad and an entire industry is on the verge of collapse, for
example, so_that businesses feel that there is no future, competition may
become fiercer (less cooperative behavior may be observed) than in nor-
rpéll ”timevs. Even if times are temporarily good but are not expected to
last, firms may want to make a quick profit while they can, so coop-

erative behavior might again break down. Similarly, in an industry that
emerges temporarily because of a quirk of fashion and is expected to col-
lapse when fashion changes, we should expect less cooperation. Thus
a particular beach resort might become the place to go, but all the hotels
there will know that such a situation cannot last, and so they cannot af-
ford to gollude on pricing. If, on the other hand, the shifts in fashion are
among products made by an unchanging group of companies in long-
term relationships with each other, cooperation might persist. For exam-
ple, even if all the children want cuddly bears one year and Power Ranger

“The costs associated with defection may also be smaller if information transmission is not per-
fect, as might be the case if there are many players, and so difficulties might arise in identifying the
defector and in coordinating a punishment scheme. Similarly, gains from defection may be larger if
rivals cannot identify a defection immediately.
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action figures the next, collusion in pricing may occur if the same smail
group of manufacturers makes both items.

. In (,harfter 12, we will look in more detail at prisoners’ dilemmas that arise
in gam‘es with many players. We examine when and how players can overcome
such dilemmas and achieve outcomes better for them all

3 SOLUTIONS 11: PENALTIES AND REWARDS

Although repetition is the major vehicle for the solution of the prisoners'
dilemma, there are also several others that can be used to achieve this pa:lrpu;:
Qm? of the simplest ways to avert the prisoners’ dilemma in the one-shot ve :
sion of the game is to inflict some direct penalty on the players when they.d i
fect. When the payoffs have been altered to incurbom[e the cost of the ee:r:.:] i
players may find that the dilemma has been resolved.” P
Consider the hushand-wife dilemma from Section 1. If only one player de-
fects, the game’s outcome entails one year in jail for the defector and 25 years
for the conperator. The defector, though, getting out of jail early, might ﬁnﬂ the
Cl‘.?upt.‘rnlnr's friends waiting outside the jail. The physical harm caused by those
f:‘llel‘ld.‘i might I):; equivalent to an additional 20 years in jail. If so, and if the
players account for the possibili i :
s ,_-hangr; o ity of this harm, then the payoff structure of the
Ih‘e “new"” game, with the physical penalty included in the payoffs, is illus-
trated in Figure 11.4. With the additional 20 years in jail added to 'eacl’: player’s
;{Ia;l{t‘;:ij(:ir}\;l;;.::l‘:}l\e player confesses while the other denies, the game is com-
A search for dominant strategies in Figure 11.4 shows that there are none. A
cell-by-cell check then shows that there are now two pure-strategy Nash e I:li~
libria. One of them is the (Confess, Confess) outcome: the other is the (I)gny

WIFE

Confess Deny

Confess | 10yr, 10yr | 21yr, 25 yr

HUSBAND

Deny 25yr, 2T yr | 3yr, 3yr

FIGURE 11.4 Prisoners' Dilemma with Penalty for the Lone Defector

5,
'Not i -
e that we get the same type of outcome in the repeated-game case considered in Section 2
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Deny) outcome. Now each player finds that it is in his or her best interest to co-
operate if the other is going to do so. The game has changed from being a pris-
oners’ dilemma to an assurance game, which we studied in Chapter 4. Solving
the new game requires selecting an equilibrium from the two that exist. One of
them—the cooperative outcome—is clearly better than the other from the per-
spective of both players. Therefore it may be easy to sustain it as a focal point if
some convergence of expectations can be achieved.

Notice that the penalty in this scenario is inflicted on a defector only when
his or her rival does not defect. However, stricter penalties can be incorporated
into the prisoners’ dilemma, such as penalties for any confession. Such disci-
pline typically must be imposed by.a third party with some power over the two
players, rather than by the other player’s friends, because the friends would have
little authority to penalize the first player when their associate also defects. If
both prisoners are members of a special organization (such as a gang or a crime
mafia) and the organization has a standing rule of never confessing to the police
under penalty of extreme physical harm, the game changes again to the one il-
lustrated in Figure 11.5.

Now the equivalent of an additional 20 years in jail is added to all payoffs
associated with the Confess strategy. (Compare Figures 11.5 and 11.1.) In the
new game, each player has a dominant strategy, as in the original game. The dif-
ference is that the change in the payoffs makes Deny the dominant strategy for
each player. And (Deny, Deny) becomes the unique pure-strategy Nash equilib-
rium. The stricter penalty scheme achieved with third-party enforcement makes
defecting so unattractive to players that the cooperative outcome becomes the
new equilibrium of the game.

In larger prisoners’ dilemma games, difficulties arise with the use of penal-
ties. In particular, if there are many players and some uncertainty exists, pen-
alty schemes may be more difficult to maintain. It becomes harder to decide
whether actual defecting is taking place or it's just bad luck or a mistaken move.
In addition, if there really is defecting, it is often difficult to determine the iden-
tity of the defector from among the larger group. And if the game is one shot,

there is no opportunity in the future to correct a penalty that is too severe or to
inflict a penalty once a defector has been identified. Thus penalties may be less

WIFE

Confess Deny

Confess | 30yr,30yr | 21yr, 25yr

HUSBAND
Deny 25yr,21yr | 3yr,3yr

FIGURE 11.5 Prisoners’ Dilemma with Penalty for Any Defecting

R
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ls“ucce‘j;ful in large one-shot games than in the two-person game we consider
taeif?;l Ci satpu::}rf i);.lsoners dilemmas with a large number of players in greater de-
A further interesting possibility arises when a prisoners’ dilemma that has
bee.n sa.lved with a penalty scheme is considered in the context of the larger
society in which the game is played. It might be the case that, althou hr:ghe
dilemma equilibrium outcome is bad for the players, it is ucu::atly goﬁd for
the rcst of society or for some subset of persons within the rest of society. If
50, social or political pressures might arise to try to minimize the abilit ; of
]:!!ayers 10 break out of the dilemma. When third-party pcna]tiés are the s:lu
tion to a prisoners’ dilemma, as is the case with crime mafias that enfurce:;
no-confession rule, for instance, society can come up with its own strategy t
redl}ce the effectiveness of the penalty mechanism. The Federal Witnessglzlro?
tection Program is an example of a system that has been set up for just this
purpose. The U.S. government removes the threat of penalty in retu: Jf
fessions and testimony in court. e
Similar situations can be seen in other prisoners’ dilemmas, such as the
pricing game between our two restaurants. The equilibrium there entailed
both firms charging the low price of $20 even though they enjoy higher profit
when charging the higher price of $26. Although the restaurants want luPbrea;
out of Ehis “bad” equilibrium—and we have already seen how the use of tri
s!m.tegu‘es can help them do so—their customers are happier with the low gr?:;
offered in the Nash equilibrium of the one-shot game. The customers then iave
an in_cemive to try to destroy the efficacy of any enforcement mechanism o
Soiflllt‘m process the restaurants might use. For example, because some ﬁrm;
facing prisoners' dilemma pricing games attempt to solve the dilemma through
{he use of a "meet the competition” or “price matching” campaign cuslomegrs
might want to press for legislation banning such policies. Wc anai)-za; the effi
of such price-matching strategies in Section 7.1, o
Just as a prisoners’ dilemma can be resolved by penalizing defectors, it can
also be resolved by rewarding cooperators, Because this solution is mnr;: diffi
cult to implement in practice, we mention it only briefly. :
The most important question is who is to pay the rewards. If it is a third
party, that pe::son or group must have sufficient interest of its own in the co-
:epvn:“mr;ion achieved by the prisoners to make it worth its while to pay out the
ot {s),;:i ;aarz exxgle of this occurred when the United States brokered the
b o ctween Israel and Egypt by offering large promises of aid
trickIfj ;}:) :f,::;d: are to be paid E’)y the players themselves to each other, the
S i ;t:bliawards contingent (pai}i out only if the other player co-
ey e (guan.mteecl to be paid if the other player cooperates).
eting these criteria requires an unusual arrangement; for example, the
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player making the promise should deposit the sum in advance in an escrow
account held by an honorable and neutral third party, who will hand the sum
over to the other player if she cooperates or return it to the promisor if the
other defects. An end-of-chapter exercise shows how this type of arrangement

can work.

4 SOLUTIONS 111: LEADERSHIP

The third method of solution for the prisoners’ dilemma pertains to situations in
which one player takes on the role of leader in the interaction. In most examples
of the prisoners’ dilemma, the game is assumed to be symmetric. That is, all the
players stand to lose (and gain) the same amount from defecting (and coopera-
tion). However, in actual strategic situations, one player may be relatively “large”
(a leader) and the other “small.” If the size of the payoffs is unequal enough,
so much of the harm from defecting may fall on the larger player that she acts
cooperatively, even while knowing that the other will defect. Saudi Arabia,
for example, played such a role as the “swing producer” in OPEC (Organization
of Petroleum Exporting Countries) for many years; to keep oil prices high, it cut
back on its output when one of the smaller producers, such as Libya, expanded.

As with the OPEC example, leadership tends to be observed more often in
games between nations than in games between firms or individual persons.
Thus out example for a game in which leadership may be used to solve the pris-
oners’ dilemma is one played between countries. Imagine that the populations
of two countries, Dorminica and Soporia, are threatened by a disease, Sudden
Acute Narcoleptic Episodes (SANE). This disease strikes 1 person in every 2,000,
or 0.05% of the population, and causes the victim to fall into a deep sleep state
for a year.® There are no aftereffects of the disease, but the cost of a worker being
removed from the economy for a year is $32,000. Each country has a popula-
tion of 100 million workers, so the expected number of cases in each is 50,000
(0.0005 X 100,000,000, and the expected cost of the disease is $1.6 billion to
each (50,000 X 32,000). The total expected cost of the disease worldwide—that
is, in both Dorminica and Soporia—is then $3.2 billion.

Scientists are confident that a crash research program costing $2 billion
will lead to a vaccine that is 100% effective. Comparing the cost of the research
program with the worldwide cost of the disease shows that, from the perspec-
tive of the entire population, the research program is clearly worth pursuing.
However, the government in each country must consider whether to fund the
full research program on its own. They make this decision separately, but their

SThink of Rip Van Winkle or of Woody Allen in the movie Steeper; but the duration is much shorter.
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SOPORIA
Research No Research
Research =2,=2 N
DORMINICA 2
No Research 0,-2 =1.6,-1.6

FIGURE 11.6  Payoffs for Equal-Population SANE Research Game ($billions)

decisions affect the outcomes for both countries. Specifically, if only one gov-
ernment chooses to fund the research, the population of the other country can
access the information and use the vaccine without cost. But each government's
payoff depends only on the costs incurred by its own population.

The payoff matrix for the noncooperative game between Dorminica and
Soporia is shown in Figure 11.6. Each country chooses from two strategies, Re-
search and No Research; payoffs show the costs to the countries, in billior’ls of
do'llars, of the various strategy combinations. It is straightforward to verify that
this game is a prisoners’ dilemma and that each country has a dominant strat-
egy to do no research.

. But now suppose that the populations of the two countries are unequal
with 150 million in Dorminica and 50 million in Soporia. Then, if no researc};
is funded by either government, the cost to Dorminica of SANE will be $2.4 bil-
lion (0.0005 X 150,000,000 X 32,000) and the cost to Soporia will be $0.8 billion
(0.0005 X 50,000,000 X< 32,000). The payoff matrix changes to the one illustrated
in Figure 11.7.

In this version of the game, No Research is still the dominant strategy for
Soporia. But Dorminica's best response is now Research. What has happened to
change Dorminica’s choice of strategy? Clearly, the answer lies in the unequal
distribution of the population in this revised version of the game. Dorminica
now stands to suffer such a large portion of the total cost of the disease that it
'ﬁr}ds itworthwhile to do the research on its own. This is true even though Dorm-
inica knows full well that Soporia is going to be a free rider and get a share of the
full benefit of the research.

SOPORIA
Research No Research
Research -2,-2 =
DORMINICA ki
No Research 0,-2 -24,-08

FIGURE 11.7  Payoffs for Unequal-Population SANE Research Game ($billions)
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The research game in Figure 11,7 is no longer a prisoners’ dilemma. Here we
see that the dilemma has, in a sense, been “solved” by the size asymmetry. The
larger country chooses to take on a leadership role and provide the benefit for
the whole world.

Situations of leadership in what would otherwise be prisoners’ dilemma
games are common in international diplomacy. The role of leader often falls
naturally to the biggest or most well established of the players, a phenomenon
labeled “the exploitation of the great by the small.”” For many decades after
World War 11, for instance, the United States cartied a disproportionate share of
the expenditures of our defense alliances,such as NATQ.and maintained.a policy
of relatively free international trade even when our partners, such as Japan and
Europe, were much more protectionist. In such situations, it might be reasonable
to suggest further that a large or well-established player may accept the role of
leader because its own interests are closely tied to those of the players as a whole;
if the large player makes up a substantial fraction of the whole group, such a con-
vergence of interests would seem unmistakable. The large player would then be

expected to act more cooperatively than might otherwise be the case.

5 SOLUTIONS [V: ASYMMETRIC INFORMATION

The final solution method we consider is one in which asymmetric information
is introduced into a finitely repeated prisoners’ dilemma. We saw in Section
2.A how an attempt to resolve the dilemma by repeated play would unravel by
rollback reasoning if there were a fixed, finite number of plays. In actual play,
however, even when players know exactly how long their interaction will last,
they are able to sustain cooperation for quite a while; it unravels near the end
when only a few rounds are left. When asked about their reasoning for coop-
erating in the early rounds, the players will usually say something such as, “I
was willing to try and see if the other player was nice, and when this proved to
be the case, I continued to cooperate until the time came to take advantage of
the other's niceness.” Of course the other player may not have been genuinely
nice, but thinking along similar lines. As long as there is some chance that
players in the dilemma are nice rather than selfish, it may pay even a selfish
player to pretend to be nice. She can reap the higher payoffs from cooperation
for a while and then also hope to exploit the gains from double crossing near
the end of the sequence of plays. In this section, we will show how to explain
such behavior more rigorously. If the above intuition suffices to satisfy your

"Mancur Olson, The Logic of Collective Action (Cambridge: Harvard University Press, 1965), p. 29.
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curiosity about this solution, you can skip the rest of this section without loss
of continuity.

A. General Expropriation Game

Note that this will be a game ofa symmetric information. Players are of two Lypes,
selfish and nice. Each player knows his own type but not the type of the mFl'zm:
player. Each is trying to infer the other’s type from his actions. We solved such a
game in Chapter 9, Section 5, where Fordor tried to infer Tudor's cost type from
its ch?ioe of price, The same methods of analysis will work here, although the
sitfrauon we have described above involves both players simultaneously tryin;
to infer the other’s type. Because the analysis of such a situation would get quitg
complicated, we will explain the ideas in a somewhat simpler example, in which
‘only one player has the choice between being selfish and being nice. ,'I'h'is type
of game is sometimes called a one-person dilemma," and is sometimes called a
game of holdup or opportunism.” .

Let us consider a specific situation in which a firm is deciding whether to
_Invﬁ:‘t .in an emerging economy. The investment will entail an up-front cost of
§1 billion, and will then yieid an operating profit of $2 billion. It will also cre-
ate spillover benefits to the country where the investment is located (the ‘haét"
country) of $500 million. We will show all monetary amounts in billions, so these
payofl numbers will be -1, 2, and 0.5, respectively. B

Alter the investment is made, the host country’s government will be tempted
to change the rules so that it can collect the whole profit of 2 (billion) In al:!dh
tion !..o the spillaver benefit of 0.5 (billion). That is, it can leave things as they are,
accepting its payoff of 0.5, or it ¢can expropriate the full profits from the firm's
infestmenl. thereby gaining itself a payoff of 2.5, The game tree in Figure 11.0
shows the host country’s choices as £ (for expropriate) and NE (for not expro n
ate); it has the opportunity to make this choice only after the firm has choserr: (6}
Invest (1) rather than not to invest (V).

. A host country could achieve the expropriation outcome by nationalizing
the local operation without compensating the foreign investor. Such expropria-
tion of foreign investment has occurred quite often in history but is relativel
rare theste days. More comman are indirect and partial expropriations that usz
changes in tax rules, limits on tepatriation of profits, and so on. To keep matters
simple we assume here that the expropriation of profit from the investing firm

L1 n N "
mm‘lf;l:uﬂ:;s:ﬁ:n:::;h us; Ofﬂ;hl;e terminology acturs in the works of Avier Grelf; see his book Insti-
1 10 the Mo E 1 i
Reincidssinland : rn Economy: Lessans fram Medieval Trade (New York: Cambridge
® These concepts were develo
The ped and used by Oliver Williamson; hi i
Institutions of Capitalism (New York: Free Press, 1987). o i
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-1,24+05=25

FIRM

0,0

FIGURE 11.8 Simple Expropriation Game

by the host country is total. When applying the theory in other contexts, you will
have to change the details to fit the specific situation.

In a single play of the game, then, rollback analysis of the game tree in Figure
11.8 shows that the host government will expropriate any available profits if the
firm chooses to invest. Anticipating this choice, the firm will therefore choose
not to invest. Similarly, when both players have full information about the oth-
er’s possible and actual choices, the rollback equilibrium of the finitely repeated
version of this game will entail no investment in any period; firms will not invest
because they expect all profits to be expropriated. Just as in the finitely repeated
prisoners’ dilemma of Section 2.A, there will be no cooperation in equilibrium.

But what if we introduce an information asymmetry into this game? Spe-
cifically, assume that (host) governiné}its come in two tjfpes, Opportunistic and
Honorable, or O type and H type for short. Unable to distinguish the govern-
ment's type, the firm must make its decision about whether to invest without
knowing if the government is an O type or an H type. The former type of govern-
ment will expropriate whenever that choice yields it a higher expected payoff
than not expropriating; the latter type will never expropriate. Letting p denote
the probability of the government being Honorable, we show the tree for the

asymmetric information version of the expropriation game in Figure 11.9. There,
in a single play of the game, the O type government will expropriate and the H
type will not; therefore the firm's expected payoff from investing will be 2 X p +
0 X (1 — p)-1=2p— 1. The firm will invest if this expected payoff exceeds the
expected payoff from not investing, 0; the firm will invest if p> 1/2.

Next, suppose the game is played repeatedly, but a fixed finite number of
times and with no discounting across periods. The same host government will
play in all periods, and its type will not change from one period to the next.
Each period, a new firm gets the opportunity to make an investment. It observes
whether firms invested in previous periods, and if so, whether the government

SOLUTIONS IV: ASYMMETRIC INFORMATION 417

-1,25

NATURE

0.0

FIGURE 11.9 Expropriation Game with Asymmetric Information

expropfriated. The prior probability held by the firm in the very first play of the
gamIe 1shthat the government is H type with probability p.

n the repeated asymmetric inf i i i
-, equﬂ}i'lr;l-ium: ormation game, we will look for the following

1. Each new firm calculates an updated probability of th ing
I—'I _ggfa, using the previous period firm's prior hcllﬁﬁﬁg}ﬂﬁmr:lﬁzzg :‘1:
tions in that period and applying Bayes' rule. Its choice of whether to invest or
not (Tor NIfor short) is optimal, given this updated probability.

2. The O-type government’s decision whether to expropriate or not (E or NE
for short) is optimal at all nodes in all periods, with the govémmént recogniz-
ing the effect this choice will have on the probability calculations and actgions
of firms in future periods. An equilibrium that satisfies this properties will be a
perfect Bﬁyesiap gguilibrium (PBE) as defined in Chapter 9, Section 5.

B. Twice-Repeated Game with Asymmetric Information

?egin by consi(.iering the asymmetric information expropriation game when it
is repeated for ]u.st two periods in total. To avoid confusion with our analysis of
;lzpea;‘(;ld 1games in Section 2.B, we use alphabetic, rather than numeric, labels
re. The last period in actual time is labeled period 7 peri :
s period Z; period Y is the one before
N ;‘he firm’s prior probability of the government being H type when entering
: e. tst period of play (period ¥) is p, = p. Write p, for the prior probability of
acing an H-type government when going into period Z (the second and final
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period of play}. At this point, p; is just our notation for this probability; we will
have to solve for its actual value as part of finding the equilibrium for the game.

We know already that in the period-Z game, the equilibrium actions for the
government are to play Eif it is O type and to play NEif it is H type. The firm
plays Iif p,>1/2, or NIif p, < 1/2. It is indifferent between the two actions, and
therctore willing to randomize between them if p = 1/2.

Now consider the period-Y game, which is the one played first in actual
time. ‘The possibilities for equilibrium play in that period will depend on the un-
derlying value, p. We therefore distinguish three cases (the second of which will
further subdivide) and consider each separately.

I.CASE I: p > 172 As in all situations, the H-type government will play NE, Given
p > 1/2, the period-Y firm (firm Y) would play I even if the O-type government
was playing E. Thus, it has a dominant strategy to play I (It does best to play /
against the H-type government and against the O type, regardless of the choice
made by that government.) The O-type government has two possible strategies
however. One, in which the O type plays E, would lead to separation, whereas
the other, in which it plays NE, would result in pooling. We consider each pos-
sibility individually.

{1} Separation: We know that an H-type government plays NE, and firm Y plays
1. Suppose an O-type government plays E in period ¥; then the government’s
action would reveal its type. Can this set of stralegies generate a separating
equilibrium?

Given the strategies described, the firm investing in the second period (firm
7) will see that firm Y had been expropriated. Firm Z would then conclude that
the government was O type for sure and would update the probability of it being
H type to p, = 0. Therefore firm Z would not invest, so the O-type government
would get 2.5 in period Yand 0 in period Z.

But what if the O-type government were to deviate and play NE in period Y
instcad? Observing NE in period Y, firm Z would update the probability of the
government being H type to p, = 1. (Remember that in Nash equilibrium the
firm will take the governments’ equilibrium strategies as given, so it will_beliéve
that a government playing NE must be type H.) Therefore firm Z would play 7, at
which point the O-type government could play E. The government would then
get 0.5 in period Yand 2.5 in period Z. This total payoff of 3 is better then the
total of 2.5 the government gets by using its specified stralegy, £, so that original
strategy cannot be optimal. (Remember that we are not discounting across peri-
0ds.) So we cannot get a separating equilibrium in the case of p > 1/2.

{2] Pooling: The second possibility is that the H-type government plays NE, firm
Y plays J, and the O-type government also plays NE. Then the O type’s action in
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period Yis the same as the H type's. Can these strategies coustitute a pooling
equilibrium?

Because both types of governments take the same action in periodY, no new
information regarding type emerges for use by firm Z. Its Bayesian updating will
lead to p; = py = p. So firm Z will play / (because p > 1/2), and the O-type gov-
ernment will play £ Thus the O type gets 0.5 in period Yand 2.5 in period Zfor a
total of 3 when it follows the stipulated strategy.

If_thc O type were to deviate from its stated strategy and play Fin period Y,
this raises a question of how firm Z would update. The most natural assmnptlor;
is that a choice of Ewould be interpreted as a sure indicator of O type, since Fis
not even a strategy available to the H type. Then firm 7, observing Fin period Y,
would play NI. The O-type government would get 2.5 in period Yand 0in period
Z.This total payoff is worse than what the O type geis from playing NE as stipu-
lated, so the deviation is unprofitable. Pooling in the period- ¥game is a perfect
Bayesian equilibrium,

In this two-play case, the first play (period ¥) has a different outcome from
the single-play version of the game. Investment takes place, and profits are not
expropriated by either type of government, (With justone play and with p> 1/2,
investment would take place, but the type-0 government would expropriate it.)
Many observers would regard this outcome of the twice-played game as better
than the single-play game, because actions are honorable, even though the sum
of the players’ payoffs is the same in both versions. '

1L flsi Hip<12 Again, the H-type government always plays NE But with p<li2,
itis no longer the case that firm Y has a dominant strategy to play /, Nor does it
have a dominant strategy to play NI if the O-type govemmeﬁt pools and plays
NE, firm Y's strategy N could be part of a Nash equilibrium in period ¥, Thus, we
will have to consider all four possible combinations of pure strategies for firm Y
(playing either I or NI) and the O-type government (playing either £ or NE) to
see which set or sets can be equilibria. '

[1] Separation with investment: Consider first the set of strategies in which the
H-type -goyeajnmem plays NE, the O type plays £ and firm Y plays 1, Although
these stll;n:egnes-wmud result in a separation of types for the governments, they
cannot be an equilibrium. Firm Y would have negative expected profit (b

T ¢ expected profit (because

(2] Separation without investment: Now ‘suppose that the H-type government
plays NE, the O-1ype government plays E, and firm Y plays NI. Again, this would
lead to separation if the set of strategies constitutes an equilibrium.

In this situation, firm Z gains no information about government type from
the actions in period ¥because no investment occurs. Thus, firm 7 will 456 play




420 [CH. 11] THE PRISONERS’ DILEMMA AND REPEATED GAMES

NI. Then the O type government’s choices are irrelevant in both periods Yand Z,
and itis indifferent between Eand NE,

This makes the specified strategies a Nash equilibrium in period ¥, but we
do not have a perfect Bayesian equilibrium of the two-period game. Consider
the off-equilibrium node where firm Y has played I. If the O-type government
plays its stipulated equilibrium action E, that choice will reveal its type to firm Z,
which will then play NI. So the O type's payoff would be 2.5 in period ¥, and 0 in
period Z. If instead the O type deviates to play NE, firm Z, which takes equilib-
rium strategies as given, will believe that the government is H type; that is, it will
update to p, = 1. Therefore firm Z will invest. The O-type government can then
expropriate and get a payoff of 2.5 in period Zto add to its payofl of 0.5 in period
Y. The total payoff of 3 exceeds the payoff of 2.5 from playing E. This deviation is
profitable to the O type, and even though this is true only when firm Y also devi-
ates, it means that we cannot have a perfect Bayesian equilibrium of this type.

[3] Pooling with investment: Here we consider the possibility that both types of
governments play NVE while firm Y plays L If these strategies are an equilibrium,
we would have pooling of the two types of governments.

Given the stipulated strategies,the O-type government gets 0.5 in period Y.
Because both governments play NE, there is no new information revealed for
firm Z. Its updating leaves it with p, = p, = p < 1/2. Then firm Z plays NI, and
the government gets 0 in period Z The total payoff to the O-type government is
0.5 over the two periods.

If the O-type government were to deviate to E'in period ¥, it would get a pay-
off of 2.5 in that period. Its type would be revealed to firm Z, however, which
would update to p, = 0 and therefore play NI The government would get 0 in
period Z and a total of 2.5 over the two periods. The O-type government’s de-
viation is then profitable, and the originally stated strategies cannot be a Nash
equilibrium.

[4] Pooling without investment: Qur last possible set of pure strategies entails both
types of governments playing NE and firm Y playing NI These strategies cannot
be an equilibrium, however, because firm Y would benefit by switching to 1.

This analysis of the case of p < 1/2 shows that none of the four combina-
tions of pure strategies for firm Y and the O-type government generate an equi-
librium. With all of these pure-strategy combinations ruled out, we have to
consider an equilibrium that entails mixing. With mixed strategies, we may be
able to generate a semiseparating equilibrium.

5] Semiseparation (with investment): Here we consider a possible equilibrium
in which firm Y plays I while the O-type government mixes in period ¥, playing
NEwith probability gy and Ewith probability (1 — gy). In period Z, firm Z mixes,
playing Iwith probability 1, and NI with probability (1 — ), while the government
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GOVERNMENT ACTION
Sum of
F = row
GOV. 2 2 8 A2
TYPE
0 (1-plg, (1-p)(1-gq,) 1-p
Sum of column p+(1-plg, (1-p)X1-q,)

FIGURE 11.10  Applying Bayes’ Rule to the Expropriation Game

reverts to its true type; the O-type government plays E if the firm has invested.
l'"he values for gy and r, will be determined as part of our analysis of the equi-
librium conditions. These conditions are the standard “opponent’s-indifference”
couditions; each player's mixture must keep the other indifferent between its
pure aclions.

In order for there to be an equilibrium with mixing by firm Z, the O-type
government's period- Y mixture must keep firm 7 indifferent between I and NI,
For that, firm Z’s Bayesian updating must yield p, = 1/2. What does this mean
for the O type’s choice of 4v¢ To answer this queslion, we need to consider the
probability table of types and actions illustrated in Figure 11.10. This table is
similar to the ones we created in Chapter 9 when we explained Bayes’ theorem
in the Appendix and in the bluffing game of Section 5. Note that in the table the
probability of observing an O-type government playing NE just equals the prob-
ability that the government is O type (I — p) times the probability that the O
.type chooses NVEin its mixture (gy). The probability of observing an O type play-
ing Eis calculated similarly.

We can now use the table to determine how firm Z will update its probability
that the government is H type. If firm Y’s investment meets the government re-
sponse NVE, then Bayes’ theorem states that the posterior probability of the gov-
ernment being H type (that is, firm Z’s updated prior) will equal the probability
of observing an H type playing NE divided by the sum of the probabilities asso-
ciated with observing NE, The posterior probability is then p/[p + (1 — payl.

Recall that to ensure mixing by firm Z, we need its updated probability that
the government is H type to equal 1/2. Therefore we need

R B
p+-pgq, 2

- 2p= . i P _
o1 P P+(1 p)qv or 17p ‘_qy.

(Note that p < 1/2 ensures that gy < 1 will hold.) This condition specifies the ap-
propriate level of ¢, for the O-type government’s period- Y mixing.

Now we need to determine the correct mixture for firm Z. Its mix must keep
the O-type government indifferent between Eand NEin period Y (and therefore
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willing to mix in period Y). If the O-type government chooses Ein period ¥, it
earns of payoff of 2.5 in that period but reveals its type. That revelation leads
firm Z to play NI and the government gets a payoff of 0 in petiod Z, for a total
payoff of 2.5. If the O type plays NE in period Y, it gets 0.5 in that period, and
then firm Z will mix in period Z. With firm Z's mixing, the O-type government
will get a payoff of 2.5 in period Z with probability 1z (the probability that firm
Z plays I) for a total payoff across the two periods of 0.5 + 2.5 1. To keep the
O-type government indifferent between Eand NEin period Y, firm Z will want to
choose the r, that equates these two payoffs. So firm Z needs 2.5 = 0.5 + 2.5 1z,
orr; = 0.8,

We now have calculated equilibrium values for both gy and r, but all of our
analysis assumed that firm Y would choose I If firm Y chose NI, there would be
no action for the period-Y government to take and nothing to reveal its type
even probabilistically. But we do need to verify that this assumption is valid.

To do so, we must consider firm Y's expected profit from investing in
period Y. We know that firm Y's investment will not be expropriated if it meets an
H-type government (probability p) or an O-type government choosing NE (prob-
ability (1 — p)gy = (1 — p) X p/(1 — p) = p, using the solution above for gy). The
total probability of meeting a government that will play NEis then 2p. So firmY
gets expected profits of (2p X 2) — 1 = 4p~ 1. Thisexpected profitis positive when
4p — 1> 0 or when p > 1/4. Therefore firm Y will invest if p > 1/4, and there will
be a semiseparating equilibrium with the mixture probabilities calculated above.
Note that the condition p > 1/4 is weaker than the p > 1/2 that was required to
induce investment in the single-play version of this game. Thus repetition, even
just two periods, increases the possibility of the good or cooperative outcome.

1. CASE 1I: p = 1/2  In this final case, firm Y will be indifferent between investing
and not investing. This case is exceptional, being just on the borderline between
the case of p>1/2 (where we found a pooling equilibrium in which firm Y
invests and neither type of government expropriates) and the case 1/2 > p > 1/4
(where we found a semiseparating equilibrium in which firm Y invests and the
O-type government randomizes between E and NE). As p rises to 1/2 in the
range of the semiseparating equilibria, the probability of the O-type govern-
ment choosing NE, g, = p/(1 — p), tises to 1. So the two cases on either side of
p=1/2 converge to the same outcome. Therefore we will regard the case
p=1/2 as a limiting case of the first two and we will not go into its details
separately.

C. Thrice-Repeated Game

Our analysis in Section 5.B showed that going to a twice-repeated version of
the expropriation game increased the likelihood that the cooperative outcome
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would be observed in equilibrium. We now consider additional repetitions, start-
ing specifically with the case of a three-period game. Counting backward again,
the first period of play will be labeled period X, with periods Yand Z being the
second and third (or final) periods, as before. Here we can show that the equilib-
rium has the following features:

Case a: If p > 1/4, there will be a pooling equilibrium in period X where firm
Xinvests and even an opportunistic government does not expropriate.

Case b: If 1/4 > p > 1/8, there will be a semiseparating equilibrium where
firm X (the first to play) invests, the O-type government randomizes in its
response, and firmY also randomizes.

Note that the range of values of p where investment takes place and is not ex-
propriated in the first period of play has expanded geometrically (in powers of
1/2) with the increase in the number of repetitions. This pattern would continue
if we were to add more repetitions of the game.

The details of the analysis verifying the equilibrium strategies are similar to
those of the twice-repeated case, so we omit most of them. But we want to em-
phasize and check two key issues in the thrice-repeated case.

First, we need to verify the optimality of nonexpropriation in Case a; it must
be optimal for the O-type government to play NE in period X (the first period of
play) when the initial probability is px = p> 1/4. If the O-type government does
play NE, it will get 0.5 in period X (remember, firm X plays I). This action pools
it with the H-type government, so it reveals no new information about type to
firmY. The game in period Y therefore has the same p, = p > 1/4. Our analysis
in Section 5.B above showed that the O-type government’s total payoff over peri-
ods Yand Zis 2.5 when 1/2 > py > 1/4 and 3 when py > 1/2. Therefore, over the
three periods the O-type government gets 3 when 1/2 > py > 1/4 and 3.5 when
py>1/2.1f it deviated and chose Ein the very first play (period X), it would get
2.5 in that period, but it would reveal its type to firms Y and Z and so get a payoff
of 0 thereafter. The deviation from NEin period X is therefore not profitable, and
pooling in period Xis an equilibrium in this case.

Second, we must check the condition from Case b that guarantees that ran-
domization is sustained when 1/4 > p. The O-type government’s period-X (first
play) randomization should keep firm Y indifferent about investing. By the anal-
ysis for the twice-repeated case, this indifference will be ensured when firm Y's
Bayesian updating yields py, = 1/4. Therefore, as above, we need plp+Q1 — plgy
= 1/4. (The equilibrium entry probability, r, in firm Y’s mixture is similarly cal-
culated to be 0.8.)

Finally, firm X will indeed invest if its expected profit is positive. Firm X’s
profits are not expropriated with probability p (that it meets an H-type govern-
ment) plus (1 — p)gx (that it meets an O-type government playing NE). Then
firm X's expected profitis [p + (1 — p)gy] X2 — 1= 8p — 1, where we have made
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use of the condition defining gy that was derived in the preceding paragraph.
This expected profit is positive, and firm X does invest, if p > 1/8. This confiition
on investment in the first period of play is even weaker than that found in the
two-stage game. )

Further repetitions will follow the same pattern. If the game is played N
times where N is large, there will be a pooling equilibrium with investment and
no expropriation in the initial (N — n) periods, where n is deﬁnec! as the smal‘l-
est integer that makes p < (1/2)" true. In the following (n — 1) periods t.here will
be semiseparating equilibria. The O-type government’s randomization in one ?f
these following periods may yield expropriation, in which case later firms will
not invest. Otherwise, in the last period (period Z) the firm will be indifferent be-
tween investing and not investing because its updated p, will exactly equal 1./ 2.
(This result follows from the observation of NE in the period-Y semiseparating
equilibrium.) But in period Z, an O-type government will play NEfor sure.

In an exercise at the end of this chapter, we will guide you through a more
general formulation of this game, with the payoffs and probabilities denoted.by
algebraic symbols instead of specific numbers, to show that the idea underlym‘g
this solution is perfectly general. The corresponding two-sided dilemma game is
harder to solve, and we merely refer ambitious readers to the original article.'®

5 EXPERIMENTAL EVIDENCE

Numerous people have conducted experiments in which subjects compete in
prisoners’ dilemma games against each other."' Such experiments sho.w that
cooperation can and does occur in such games, even in repeated verS}ons of
known and finite length. Many players start off by cooperating and contlr?ue to
cooperate for quite a while, as long as the rival player reciprocates. Only 1.n the
last few plays of a finite game does defecting seem to creep in. Although this be-

®David Kreps, Paul Milgrom, John Roberts, and Robert Wilson, “Rational Cooperation in a Fi-
nitely Repeated Prisoner’s Dilemma,” Journal of Economic Theory, vol. 27 (19'82), Pp. 2457252. ,

"IThe literature on experiments involving the prisoners’ dilemma game is vas.t. A brief oYemgw
is given by Alvin Roth in The Handbook of Experimental Economics (Princeton: Princeton Unn./e:rsu};
Press, 1995), pp. 26-28. Journals in both psychology and economics can be consulted for a“ddmfma
references. For some examples of the outcomes that we describe, see Kenneth Terhufme, Motlvef,l
Situation, and Interpersonal Conflict Within Prisoners’ Dilemmas,” Journal of Personality and Social
graph Suppl ¢, vol. 8, no. 30 (1968), pp. 1-24; and R. Selten and R. .Stoecker.
“End Behavior in Sequences of Finite Prisoners’ Dilemma Supergames,." Journal ofEa{nomtc Be‘l{mit
ior and Organization, vol. 7 (1986), pp. 47-70. Robert Axelrod’s Evolution of Cooperation (New York:
Basic Books, 1984) presents the results of his computer-simulation tournament for the best strategy
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in an infinitely repeated dilemma,
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havior goes against the reasoning of rollback, it can be “profitable” if sustained
for a reasonable length of time. The pairs get higher payoffs than would rational,
calculating strategists who defect from the very beginning.

Such observed behavior can be rationalized in different ways. Perhaps the
players are not sure that the relationship will actually end at the stated time. Per-
haps they believe that their reputations for cooperation will carry over to other
similar games against the same opponent or other opponents. Perhaps they
think it possible that their opponents are naive cooperators, and they are willing
to risk a little loss in testing this hypothesis for a couple of plays. If successful,
the experiment will lead to higher payoffs for a sufficiently long time.

In some laboratory experiments, players engage in multiple-round games,
each round consisting of a given finite number of repetitions. All of the repeti-
tions in any one round are played against the same rival, but cach new round is
played against a new opponent. Thus there is an opportunity to develop coop-
eration with an opponent in each round and to “learn” from preceding rounds
when devising one’s strategy against new opponents as the rounds continue.
These situations have shown that cooperation lasts longer in early rounds than
in later rounds. This result suggests that the theoretical argument on the unrav-
eling of cooperation, based on the use of rollback, is being learned from experi-
ence of the play itself over time as players begin to understand the benefits and
costs of their actions more fully. Another possibility is that players learn simply
that they want to be the first to defect, and so the timing of the initial defection
occurs earlier as the number of rounds played increases.

Suppose you were playing a game with a prisoners’ dilemma structure and
found yourself in a cooperative mode with the known end of the relationship
approaching. When should you decide to defect? You do not want to do so too
early, while a lot of potential future gains remain. But you also do not want
to leave it until too late in the game, because then your opponent might pre-
empt you and leave you with a low payoff for the period in which she defects.
In fact, your decision about when to defect cannot be deterministic. If it were,
your opponent would figure it out and defect in the period before you planned
1o do se. If no deterministic choice is feasible, then the unraveling of coopera-
tion must include some uncertainty, such as mixed strategies, for both players,
Many thrillers whose plots hinge on tenuous cooperation among eriminals or
between informants and police acquire their suspense precisely because of this
uncertainty.

Examples of the collapse of cooperation as players near the end of a re-
peated game are observed in numerous situations in the real world, as well as
in the laboratory. The story of a long-distance bicycle (or foot) race is one such
example. There may be a lot of cooperation for most of the race, as players take
turns leading and letting others ride in their slipstreams; nevertheless, as the fin-
ish line loomms, each participant will want to make a dash for the tape. Similarly,
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signs saying “no checks accepted” often appear in stores in college towns each
spring near the end of the semester.

Computer-simulation experiments have matched a range of very simple to
very complex contingent strategies against each other in two-player prisoners’
dilemmas. The most famous of them were conducted by Robert Axelrod at the
University of Michigan. He invited people to submit computer programs that
specified a strategy for playing a prisoners’ dilemma repeated a finite but large
number (200) of times. There were 14 entrants. Axelrod held a “league tourna-
ment” that pitted pairs of these programs against one another, in each case for
a run of the 200 repetitions. The point scores for each pairing and its 200 repeti-
tions were kept, and each program’s scores over all its runs against different op-
ponents were added up to see which program did best in the aggregate against
all other programs. Axelrod was initially surprised when “nice” programs did
well; none of the top eight programs were ever the first to defect. The winning
strategy turned out to be the simplest program: Tit-for-tat, submitted by the
Canadian game theorist Anatole Rapoport. Programs that were eager to defect
in any particular run got the defecting payoff early but then suffered repetitions
of mutual defections and poor payoffs. On the other hand, programs that were
always nice and cooperative were badly exploited by their opponents. Axelrod
explains the success of Tit-for-tat in terms of four properties: it is at once forgiv-
ing, nice, provocable, and clear.

In Axelrod’s words, one does well in a repeated prisoners' dilemma to abide
by these four simple rules: “Dor’t be envious. Don't be the first to defect. Recip-
rocate both cooperation and defection. Don't be too clever.”!? Tit-for-tat embod-
ies each of the four ideals for a good, repeated prisoners’ dilemma strategy. It is
not envious; it does not continually strive to do better than the opponent, only
to do well for itself. In addition, Tit-for-tat clearly fulfills the admonitions not to
be the first to defect and to reciprocate, defecting only in retaliation to the oppo-
nent's preceding defection and always reciprocating in kind. Finally, Tit-for-tat
does not suffer from being overly clever; it is simple and understandable to the
opponent. In fact, it won the tournament not because it helped players achieve
high payoffs in any individual game—the contest was not about “winner takes

all’—but because it was always close; it simultaneously encourages cooperation
and avoids exploitation, whereas other strategies cannot.

Axelrod then announced the results of his tournament and invited sub-
missions for a second round. Here, people had a clear opportunity to design
programs that would beat Tit-for-tat. The result: Tit-for-tat won again! The pro-
grams that were cleverly designed to beat it could not beat it by very much,
and they did poorly against one another. Axelrod also arranged a tournament

2Axelrod, Evolution of Cooperation, p. 110,
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of a different kind. Instead of a league where each program met each other
program once, he ran a game with a whole population of programs, with a
number of copies of each program. Each type of program met an opponent ran-
domly chosen from the population. Those programs that did well were given a
larger proportion of the population; those that did poorly had their proportion
in the population reduced. This was a game of evolution and natural selection,
which we will study in greater detail in Chapter 13. But the idea is simple in this
context, and the results are fascinating. At first, nasty programs did well at the
expense of nice ones. But as the population became nastier and nastier, each
nasty program met other nasty programs more and more often, and they began
to do poorly and fall in numbers. Then Tit-for-tat started to do well and eventu-
ally triumphed.

However, Tit-for-tat has some flaws. Most importantly, it assumes no errors
in execution of the strategy. If there is some risk that the player intends to play
the cooperative action but plays the defecting action in error, then this action
can initiate a sequence of retaliatory defecting actions that locks two Tit-for-tat
programs playing one another into a bad outcome; another error is required to
rescue them from this sequence. When Axelrod ran a third variant of his tourna-
ment, which provided for such random mistakes, Tit-for-tat could be beaten by
even “nicer” programs that tolerated an occasional episode of defecting to see
if it was a mistake or a consistent attempt to exploit them and retaliated only
when convinced that it was not a mistake.'?

Interestingly, a twentieth-anniversary competition modeled after Axelrod’s
original contest and run in 2004 and 2005 generated a new winning strategy.*
Actually, the winner was a set of strategies designed to recognize one another
during play so that one would become docile in the face of the other’s con-
tinued defections. (The authors likened their approach to a situation in which
prisoners manage to communicate with each other by tapping on their cell
walls.) This collusion meant that some of the strategies submitted by the win-
ning team did very poorly, whereas others did spectacularly well, a testament
to the value of working together. Of course Axelrod’s contest did not permit
multiple submissions, so such strategy sets were ineligible, but the winners of
the recent competition argue that with no way to preclude coordination, strat-
egies such as those they submitted should have been able to win the original
competition as well.

) "For a description and analysis of Axelrod’s computer simulations from the biological perspec-
tive, see Matt Ridley, The Origins of Virtue (New York: Penguin Books, 1997), pp. 61, 75. For a dis-
cussion of the difference between computer simulations and experiments using human players,
see John K. Kagel and Alvin E. Roth, Handbook of Experimental Economics (Princeton: Princeton
University Press, 1995), p. 29.

"See Wendy M. Grossman, “New Tack Wins Prisoner's Dilemma,” Wired, October 13, 2004,
Available at http://www.wired.com/culture/lifestyle/news/2004/10/65317 (accessed 6/14/08).
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7 REAL-WORLD DILEMMAS

Games with the prisoners’ dilemma structure arise in a surprisingly varied num-
ber of contexts in the world. Although we would be foolish to try to show you
every possible instance in which the dilemma can arise, we take the opportu-
nity in this section to consider in detail three specific examples from a variety
of fields of study. One example comes from evolutionary biology, a field that we
will study in greater detail in Chapter 13. A second example describes the policy
of “price matching” as a solution to a prisoners’ dilemma pricing game. And a
final example concerns international environmental policy and the potential for
repeated interactions to mitigate the prisoners’ dilemma in this situation.

A. Evolutionary Biology

In our first example, we consider a game known as the bowerbirds’ dilemma,
from the field of evolutionary biology.’® Male bowerbirds attract females by
building intricate nesting spots called bowers, and female bowerbirds are
known to be particularly choosy about the bowers built by their prospective
mates. For this reason, male bowerbirds often go out on search-and-destroy
missions aimed at ruining other males’ bowers. While they are out, however,
they run the risk of losing their own bower to the beak of another male. The
ensuing competition between male bowerbirds and their ultimate choice re-
garding whether to maraud or guard has the structure of a prisoners’ dilemma
game.

Ornithologists have constructed a table that shows the payoffs in a two-bird
game with two possible strategies, Maraud and Guard. That payoff table is shown
in Figure 11.11. GG represents the benefits associated with Guarding when
the rival bird also Guards; GM represents the payoff from Guarding when the
rival bird is a Marauder. Similarly, MM represents the benefits associated with
Marauding when the rival bird also is a Marauder; MG represents the payoff

BIRD 2

Maraud Guard

Maraud MM, MM MG, GM

BIRD 1
Guard GM, MG GG, GG

FIGURE 11.11  Bowerbirds’ Dilemma

'SLarry Conik, “Science Classics: The Bowerbird's Dilemma,” Discover;, October 1994.
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from Marauding when the rival bird Guards. Careful scientific study of bower-
bird matings led to the discovery that MG > GG > MM > GM. In other words,
the payoffs in the bowerbird game have exactly the same structure as the prison-
ers' dilemma. The birds’ dominant strategy is to maraud, but when both choose
that strategy, they end up in equilibrium each worse off than if they had both
chosen to guard.

In reality, the strategy used by any particular bowerbird is not actually the
result of a process of rational choice on the part of the bird. Rather, in evolution-
ary games, strategies are assumed to be genetically “hardwired” into individual
organisms, and payoffs represent reproductive success for the different types.
Then equilibria in such games define the type of population that naturalists can
expect to observe—all marauders, for instance, if Maraud is a dominant strategy
as in Figure 11.11. This equilibrium outcome is not the best one, however, given
the existence of the dilemma. In constructing a solution to the bowerbirds’ di-
lemma, we can appeal to the repetitive nature of the interaction in the game.
In the case of the bowerbirds, repeated play against the same or different op-
ponents in the course of several breeding seasons can allow you, the bird, to
choose a flexible strategy based on your opponent’s last move. Contingent strat-
egies such as tit-for-tat can be, and often are, adopted in evolutionary games
to solve exactly this type of dilemma. We will return to the idea of evolution-
ary games and provide detailed discussions of their structure and equilibrium
outcomes in Chapter 13.

B. Price Matching

Now we return to a pricing game, in which we consider two specific stores en-
gaged in price competition with each other, using identical price-matching
policies. The stores in question, Toys “R" Us and Kmart, are both national chains
that regularly advertise prices for name-brand toys (and other items). In addi-
tion, each store maintains a published policy that guarantees customers that it
will match the advertised price of any competitor on a specific item (model and
item numbers must be identical) as long as the customer provides the competi-
tor’s printed advertisement.'

For the purposes of this example, we assume that the firms have only two
possible prices that they can charge for a particular toy (Low or High). In ad-
dition, we use hypothetical profit numbers and further simplify the analysis by

*“The price-matching policy at Toys “R” Us is printed and posted prominently in all stores, A sim-
ple phone call confirmed that Kmart has an {dentical policy, Similar policles are appearing in many
industrics, including that for eredit cards where *interest rate matching™ has been observed, See
Aaran 5. Edlin, Do Guaranteed-Low-Price Policies Guatantee High Prices, und Can Antitrist Rise to
the Challenge?” Harvarel Law Rivicw, vol. 111, no. 2 (December 1947), pp. 520-575,
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KMART

Low High

Low  |2,000,2,000| 4000,0

TOYS “R" US

High 0,4,000 |3,000, 3,000

FIGURE 11.12 Toys “R” Us and Kmart Toy Pricing

assuming that Toys “R” Us and Kmart are the only two competitors in the toy
market in a particular city—Billings, Montana, for example.

Suppose, then, that the basic structure of the game between the two firms
can be illustrated as in Figure 11.12. If both firms advertise low prices, they split
the available customer demand and each earns $2,000. If both advertise high
prices, they split a market with lower sales, but their markups end up being large
enough to let them each earn $3,000. Finally, if they advertise difterent prices,
then the one advertising a high price gets no customers and earns nothing,
whereas the one advertising a low price earns $4,000.

The game illustrated in Figure 11.12 is clearly a prisoners’ dilemma. Advertis-
ing and selling at a low price is the dominant strategy for each firm, although both
would be better off if each advertised and sold at the high price. But as mentioned
earlier, each firm actually makes use of a third pricing strategy: a price-matching
guarantee to its customers. How does the inclusion of such a policy alter the pris-
oners’ dilemma that would otherwise exist between these two firms?

Consider the effects of allowing firms to choose among pricing low, pricing
high, and price matching. The Match strategy entails advertising a high price
but promising to match any lower advertised price by a competitor; a firm using
Match then benefits from advertising high if the rival firm does so also, but it
does not suffer any harm from advertising a high price if the rival advertises a
low price. We can see this in the payoff structure for the new game, shown in
Figure 11,13, In that table, we see that a combination of one firm playing Low
while the other plays Match is equivalent to both playing Low, while a combi-
nation of one firm playing High while the other plays Match (or both playing
Match) is equivalent to both playing High.

Using our standard tools for analyzing simultaneous-play games shows
that High is weakly dominated by Match for both players and that once High is
eliminated, Low is weakly dominated by Match also. The resulting Nash equilib-
rium entails both firms using the Match strategy. In equilibrium, both firms earn
$3,000—the profit level associated with both firms pricing high in the original
game. The addition of the Match strategy has allowed the firms to emerge from
the prisoners’ dilemma that they faced when they had only the choice between
two simple pricing strategies, Low or High.
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KMART

Low High Match

Low 2,000, 2,000 4,000, 0 2,000, 2,000

TOYS “R” US High 0, 4,000 3,000, 3,000 | 3,000, 3,000

Match 2,000, 2,000 | 3,000, 3,000 | 3,000, 3,000

FIGURE 11.13  Toys "R" Us and Kmart Toy Pricing

How did this happen? The Match strategy acts as a penalty mechanism. By
guaranteeing to match Kmart's low price, Toys “R” Us substantially reduces the
benefit that Kmart achieves by advertising a low price while Toys “R" Us is advertis-
inga high price. In addition, promising to meet Kmart's low price hurts Toys “R" Us,
too, because the latter has to accept the lower profit associated with the low price.
Thus the price-matching guarantee is a method of penalizing both players when-
ever either one defects. This is just like the crime mafia example discussed in Sec-
tion 3, except that this penalty scheme—and the higher equilibrium prices that it
supports—is observed in markets in virtually every city in the country.

Actual empirical evidence of the detrimental effects of these policies is
available but limited, and some research has found evidence of lower prices in
markets with such policies.'” However, more recent experimental evidence does
support the collusive effect of price-matching policies. This result should putall
customers on alert." Even though stores that match prices promote their poli-
cies in the name of competition, the ultimate outcome when all firms use such
policies can be better for the firms than if there were no price matching at all,
and so customers can be the ones who are hurt.

C. International Environmental Policy: The Kyoto Protocol

Our final example pertains to the international climate control agreement known
as the Kyoto Protocol. Negotiated by the United Nations Framework Convention

71D, Hess and Eitian Genstner present evidence of inereased prices as 4 result of price-matching
.p‘?llcies in '{’rfanichlng Policies: An Empirical Case,” Managerial aned Dectsfon Economics, vol.
12 (1891), pp. 305-315, C ¥ evidance Is provided by Athatskaya, Hvitd, and Shiffer, who find
'."‘" the effect of matching policies s to lower prices; see Maria Arbatskaya, Morten Hviid, and Greg
Shaffer, “Promises to Match or Beat the Competitlon; Bvidence from retail Tire Prices,” Advwanees in
ﬂmrﬂnrl Microsconomics, vol. 8: Oligopoly (New York: JAl Press, 1999), pp. 123-138,

See h Dugar, "Price-Matching G s and Equilibrium Selection in a Homoge-
feaus Product Market: An Experimental Study” Revlew of Industrial Organization, vol, 30 (2007,
pp. 107-119,
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THEM

Cut Emissions | Don’t Cut

Cut Emissions -1, -20,0

us
Don’t Cut 0,-20 -12,-12

FIGURE 11.14 Greenhouse Gas Emissions Game

on Climate Change in 1997 as a tool for reducing greenhouse gas emissions, it
went in to effect in 2005 and is due to expire in 2012. Over 170 countries have
signed on to the treaty, although the United States is noticeably absent from the
list. Ongoing meetings continue to work on a plan for extending the protocol
beyond its current end date.

The difficulty in achieving global reduction in greenhouse gas emissions
comes in part from the prisoners’ dilemma nature of the interaction. Any indi-
vidual country will have no incentive to reduce its own emissions, knowing that
if it does so alone it bears significant costs with little benefit to overall climate
change. If others do reduce their emissions the first country cannot be stopped
from enjoyiong the benefits of the others' actions.

Consider the emissions reduction problem as a game played between two
countries, Us and Them. Estimates generated by the British government’s Office
on Climate Change suggest that coordinated action may come at a cost of about
1% of GDP per nation, whereas coordinated inaction could cost each nation
between 5 and 20% of GDP, perhaps 12% on average.'® By extension, the cost to
cutting emissions on your own may be at the high end of the inaction estimate
(20%), but holding back and letting the other country cut emissions could entail
virtually no cost to you at all. We can then summarize the situation between Us
and Them using the game table in Figure 11.14, where payoffs represent changes
in GDP for each country.

The game in Figure 11.14 is indeed a prisoners’ dilemma. Both countries
have a dominant strategy to refuse to cut their emissions. The single Nash equi-
librium occurs when neither country cuts emissions, but they suffer as a group
as a result of the ensuing climate change. From this analysis we should expect
little or no progress in greenhouse gas emissions reduction.

This interpretation of the problem inherent in the Kyoto Protocol has been
challenged by recent research from Michael Liebriech, who argues that the game

9See Nicholas Stein, The Economics of Climate Change: The Stern Review (Cambridge:
Cambridge University Press, 2007).

REAL-WORLD DILEMMAS 433

is not a one-off interaction and that countries repeatedly interact and negotiate
additional amendments to the existing agreement.* He argues that the iterated
nature of this game makes it amenable to solution by way of contingent strate-
gies and that countries should use strategies that embody the four critical prop-
erties of TFT as outlined by Axelrod and described in Section 6 above. Specifically,
countries are encouraged to employ strategies that are “nice” (signing on to the
protocol and beginning emissions reductions), “retaliatory” (employing mecha-
nisms to punish those that do not do their part), “forgiving” (welcoming to those
newly accepting the protocol), and “clear” (specifying actions and reactions).

Liebriech assesses the actions of current players, including the European
Union, the United States, and developing countries (as a group), and provides
some suggestions for improvements. He explains that the European Union does
well with nice, forgiving, and clear but not with retaliation, so other countries will
do best to defect when interacting with the European Union. One solution would
be for the European Union to institute carbon-related import taxes or another
retaliatory-type policy for dealing with recalcitrant trade partners. The United
States, on the other hand, ranks high on retaliatory and forgiving, given its his-
tory of such behavior following the end of the cold war. But it has not been nice
or clear, at least on the national level (individual states may behave differently),
giving other countries an incentive to retaliate against it quickly and painfully, if
possible. The solution is for the United States to make a meaningful commitment
to carbon-emission reduction, a standard conclusion in most policy circles. De-
veloping countries are described as not nice (negotiating no carbon limits for
themselves), retaliatory, unclear, and quite unforgiving. A more beneficial strat-
egy, argues Liebriech, would be for these countries—particularly China, India,
and Brazil—to make clear their commitment to sharing in international efforts
to affect climate change; this approach would leave them less subject to retalia-
tion and more likely to benefit from a global improvement in climatic outlook.

The general conclusion is that the process of international carbon emis-
sions reduction does fit the profile of a prisoners’ dilemma game. But the fu-
ture of global greenhouse gas emissions should not be considered a lost cause
simply because of the prisoners’ dilemma aspects of the one-time interaction.
Repeated play among the nations involved in the Kyoto Protocol negotiations
make the game amenable to solutions by way of contingent (nice, clear, and for-
giving, but also retaliatory) strategies.

“Michael Liebriech presents his analysis of the Kyoto Protocol as an iterated prisoners’ dilemma
in his paper “How to Save the Planet: Be Nice, Retaliatory, Forgiving and Clear,” New Energy Finance
White Paper, September 11, 2007. Available at www.newenergylinance.com/docs/Press/NEF-WP_
Carbon-Game-Theor y_05,pdf (accessed 9/11/08).
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SUMMARY

The prisoners’ dilemma is probably the most famous game rff strategy. E.ac‘h
player has a dominant strategy (1o Defect), but the equilibrium outcome 15
worse for all players than when each uses her dominated strategy (to Coo!:er-
ate). The best-known solution to the dilemma is repetition of play. In a finitely
played game, the present valtie of future cooperation is eventually zero, and
rollback yields an equilibrium with no cooperative behavior. With infinite play
{or an uncertain end date), cooperation can be achieved with the use of an ap-
propriate contingent stratcgy such as tit-for-tar (TFT) or the grim s:mnfgy;
i either case, cooperation is possible only if the present value of cooparatllon
exceeds the present value of defecting. More generally, the pmspe.cts of “no
tomorrow” or of short-term relationships lead to decreased cooperation among

TS,

I:‘]a!.p“la'hc dilemma can also be “solved” with penalty schemes that alter the pay-
offs for players who defect from cooperation when their rivals are cooperating
or when others also are defecting. A third solution method arises if a large or
strong player's loss from defecting is greater than the available gain from }:tmp-
erative behavior on that player's part. Allowing for asymmetric information in
the dilemma can lead to some cooperation, even in finitely repeated games.

Experimental evidence suggests that players often cooperate longer than
theory might predict. Such behavior can be explained by incomplete knowledge
of the game on the part of the players or by their views regarding the henefits of
caoperation. Tit-for-tat has been observed to be a simple, nice, provocable, anr.i‘
forgiving strategy that performs very well on the average in repeated prisoners
dilemmas.

Prisoners’ dilemmas arise in a variety of contexis. Specific examples from
international environmental policy, evolutionary biology, and product pricing
show how to explain and predict actual behavior by using the framework of the
prisoners’ dilemma.

KEY TERMS
compound interest (404) penalty (409)
contingent strategy (401) present value (PV) (403)
discount factor (404) punishment (401)
effective rate of return (405) repeated play (399)
grim strategy (401) tit-for-tat (TFT) (401)
infinite horizon (404) trigger strategy (401)

leadership (412)
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SOLVED EXERCISES

S1. “If a prisoners’ dilemma is repeated 100 times, and both players know how
many repetitions to expect, they are sure to achieve their cooperative out-
come.” True or false? Explain and give an example of a game that illustrates
your answer.

S2. Consider a two-player game between Child’s Play and Kid’s Korner, each of
which produces and sells wooden swing sets for children. Each player can
set either a high or a low price for a standard two-swing, one-slide set. If they
both set a high price, each receives profits of $64,000 per year. If one sets a
low price and the other sets a high price, the low-price firm earns profits of
$72,000 per year, while the high-price firm earns $20,000. If they both set a
low price, each receives profits of $57,000.

(a) Verify that this game has a prisoners’ dilemma structure by looking at
the ranking of payoffs associated with the different strategy combina-
tions (both cooperate, both defect, one defects, and so on). What are the
Nash-equilibrium strategies and payoffs in the simultaneous-play game
if the players meet and make price decisions only once?

(b) Ifthe two firms decide to play this game for a fixed number of periods—
say, for 4 years—what would each firm’s total profits be at the end of the
game? (Don't discount.) Explain how you atrived at your answer.

(¢) Suppose that the two firms play this game repeatedly forever. Let each
of them use a grim strategy in which they both price high unless one
of them “defects,” in which case they price low for the rest of the game.
What is the one-time gain from defecting against an opponent playing
such a strategy? How much does each firm lose, in each future period,
after it defects once? If r = 0.25 (8 = 0.8), will it be worthwhile for them
to cooperate? Find the range of values of r (or 8) for which this strategy is
able to sustain cooperation between the two firms.

Suppose the firms play this game repeatedly year after year, neither ex-

pecting any change in their interaction. If the world were to end after

4 years, without either firm having anticipated this event, what would

each firm’s total profits (not discounted) be at the end of the game?

Compare your answer here with the answer in part (b). Explain why the

two answers are different, if they are different, or why they are the same,

if they are the same.

Suppose now that the firms know that there is a 10% probability that one

of them may go bankrupt in any given year. If bankruptcy occurs, the re-

peated game between the two firms ends. Will this knowledge change
the firms’ actions when r = 0.25? What if the probability of a bankruptcy
increases to 35% in any year?

(d

(e
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$3. A firm has two divisions, each of which has its own manager. Managers of
these divisions are paid according to their effort in promoting produc-
tivity in their divisions. The payment scheme is based on a comparison
of the two outcomes. If both managers have expended “high effort,” each (c
earns $150,000 a year. If both have expended “low effort,” each earns “only”
$100,000 a year. But if one of the two managers shows “high effort” whereas
the other shows “low effort,” the “high effort” manager is paid $150,000 plus
a$50,000 bonus, but the second (“low effort”) manager gets a reduced salary
(for subpar performance in comparison with her competition) of $80,000. $5. Recall the example from Exercise $3
Managers make their effort decisions independently and without knowl- of High or Low effort levels deter

(b) For what values of r can there be an e
peated game, in which each period
repays as agreed?

If the rate of interest is 10% per year,
splitting agreement that s an equil
repeated game, where each period
repays as agreed?

quilibrium outcome of the re-
you invest with your friend and he

<

can there be an alternative profit-
ibrium outcome of the infinitely
You invest with your friend and he

inwhich two division managers' choices
mine their salary payments. In part (b) of

edge of the other manager’'s choice. that exercise, the cost ofexerting High effort is assumed to be $60,000 a year.

(@) Assume that expending effort is costless to the managers and draw the Suppose now that the two managers play the game in part (b) nl'l:ixrm:ise 53.
payoff table for this game. Find the Nash equilibrium of the game and repeatedly for many years. Such fepetition allows scope for an unusual type
explain whether the game is a prisoners’ dilemma. of cooperation in which one is des e

ignated 1o choose High effort while the
€ agreement requires that the High-effort
e Low-effort manager so that theijr payoffs

(b) Now suppose that expending high effort is costly to the managers (such other chooses Low. This cooperativ
as a costly signal of quality). In particular, suppose that “high effort” manager make a side payment to th

costs an equivalent of $60,000 a year to a manager who chooses this ef- are identical.
| fortlevel. Draw the game table for this new version of the game and find (@) What size side payment guarantees that the final payoffs of the two
the Nash equilibrium. Explain whether the game is a prisoners’ dilemma s managers are identical? How much does each manager earn in a year in
I and how it has changed from the game in part (a). which the cooperative agreement is in place?
(c) If the cost of high effort is equivalent to $80,000/year, how does the (b) Cooperation in this repeated game entails each manager’s chops-
‘ : || ” game change from that described in part (b)? What is the new equilib- ing'her assigned effort level and the High-effort manager making the
2 rium? Explain whether the game is a prisoners’ dilemma and how it has designated side payment. Defection entails refusing to make the side
changed from the games in parts (a) and (b). el Under what values of the rate of return can this agreement
§4. You have to decide whether to invest $100 in a friend’s enterprise, where sustain cooperation in the fmanagers' repeated game?
in a year’s time the money will increase to $130. You have agreed that your 86. Consider the game of chicken in Chapter 4, with slightly more general
friend will then repay you $120, keeping $10 for himself. But instead he may payoffs (Figure 4.14 had k = 1);

choose to run away with the whole $130. Any of your money that you don’t

invest in your friend’s venture you can invest elsewhere safely at the prevail- DEAN
ing rate of interest 7, and get $100(1 + ) next year.
r (@) Draw the game tree for this situation and show the rollback Swerve Straight
equilibrium,. Swerve 0,0 1k
Next, suppose this game is played repeatedly infinitely often. That is, J JAMES -
each year you have the opportunity to invest another $100 in your friend's traight bl e

enterprise, and the agreement is to split the resulting $130 in the manner !

already described. From the second year onward, you get to make your de- Suppose this game is played repeate dly, every Saturday evening If T
cision of whether to invest with your friend in the light of whether he made ‘ two players stand to benefit by cooperating o play (S)\,,ver . sg. : H, the
ve, swerve) all the

the agreed repayment the preceding year. The rate of interest between any time, whereas if k= 1, they stand 1o benefit by cooperatin
two successive periods is 1; the sarne as the outside rate of interest and the Swerve and the other plays Strai P
same for you and your friend.

g so that one plays

ght, taking turns to 80 Straight in alternate
weeks. Can ¢ither type of cooperation be sustained?
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87. Recall the example from Exercise $8 of Chapter 5, where South Korea and
Japan compete in the market for production of VLCCs. As in parts (a) and (b)
of that exercise, the cost of building ships is $30 (million) in each country,
and the demand for ships is P = 180 - Q, where Q = g0 + Yapan:

(a) Previously, we found the Nash equilibrium for the game. Now find the

collusive outcome. What total quantity should be set by the two coun-
tries in order to maximize their joint profit?
Suppose the two countries produce equal quantities of VLCCs, so that
they earn equal shares of this collusive profit. How much profit would
each country earn? Compare this profit with the amount they would
earn in the Nash equilibrium.
Now suppose the two countries are in a repeated relationship. Once
per year, they choose production quantities, and each can observe the
amount its rival produced in the previous year. They wish to cooperate
to sustain the collusive profit levels found in part (b). In any one year,
one of them can defect from the agreement. If one of them holds the
quantity at the agreed level, what is the best defecting quantity for the
other? What are the resulting profits?

(d) Write down a matrix that represents this game as a prisoners’ dilemma.

(e) For what interest rates will collusion be sustainable when the two coun-
tries use grim (defect forever) strategies?

(b

=

(c

<

UNSOLVED EXERCISES

U1. Two people, Baker and Cutler, play a game in which they choose and divide
a prize. Baker decides how large the total prize should be; she can choose
either $10 or $100. Cutler chooses how to divide the prize chosen by Baker;
Cutler can choose either an equal division or a split where she gets 90% and
Baker gets 10%. Write down the payoff table of the game and find its equilib-
ria for each of the following situations:

(a) When the moves are simultaneous.

(b) When Baker moves first.

(¢} When Cutler moves first.

(d) Is this game a prisoners’ dilemma? Why or why not?

U2. Consider a small town that has a population of dedicated pizza eaters but is
able to accommodate only two pizza shops, Donna's Deep Dish and Pierce's
Pizza Pies. Each seller has to choose a price for its pizza, but for simplic-
ity, assume that only two prices are available: high and low. If a high price
is set, the sellers can achieve a profit margin of $12 per pie; the low price
yields a profit margin of $10 per pie. Each store has a loyal captive customer
base that will buy 3,000 pies per week, no matter what price is charged by

e —
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cither store. There is also a floating demand of 4,000 pies per week. The peo-

ple who buy these pies are price conscious and will £o to the store with the

lower price; if both stores charge the same price, this demand will be split
equally between them.

(@) Draw the game table for the pizza-pricing game, using each store’s prof-
its per week (in thousands of dollars) as payoffs. Find the Nash equilib-
rium of this game and explain why it is a prisoners’ dilemma.

(b) Now suppose that Donna’s Deep Dish has a much larger loyal clien-
tele that guarantees it the sale of 11,000 (rather than 3,000) pies a week.
Profit margins and the size of the floating demand remain the same,
Draw the payoff table for this new version of the game and find the
Nash equilibrium,

(c) How does the existence of the larger loyal clientele for Donna's Deep
Dish help “solve” the pizza stores’ dilemma?

U3. A town council consists of three members who vote every year on their own
salary increases. Two Yes votes are needed to pass the increase. Each mem-
ber would like a higher salary but would like to vote against it hersell be-

cause that looks good to the voters, Specifically, the payoffs of each are as
follows:

Raise passes, own vote is No: 10
Raise fails, own vote is No: 5
Raise passes, own vote is Yes: 4
Raise fails, own vote is Yes: 0

Voting is simultaneous. Write down the (three-dimensional) payoff table,
and show that in the Nash equilibrium the raise fails unanimously, Examine
how a repeated relationship among the members can secure them salary in-
creases every year if (i) every member serves a 3-year term, (i) every year
in rotation one of them is up for reelection, and (iii) the townspeople have
short memories, remembering only the votes on the salary-increase motion
of the current year and not those of past years,

U4. Consider the following game, which comes from James Andreoni and Hal
Varian at the University of Michigan.®' A neutral referee runs the game,
There are two players, Row and Column. The referce gives two cards to each:
2and 7 to Row and 4 and 8 to Column, This is common knowledge. Then,
playing simultaneously and independently, each player is asked to hand
over to the referee either his high card or his low card, The referee hands out
payoffs—which come from a central kitty, not from the players' pockets—

*James Andreoni and Hal Va rian, “Preplay Contacting in the Prisoners’ Dilemma,” Proceedings of
l‘he‘NazionalAcademy of Sciences, vol. 96, no. 19 (September 14, 1999), pp. 10933-10938.
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that are measured in dollars and depend on the cards that he collects. If Row
chooses his Low card, 2, then Row gets $2; if he chooses his High card, 7,
then Column gets $7. If Column chooses his Low card, 4, then Column gets
$4; if he chooses his High card, 8, then Row gets $8.

(a) Show that the complete payoff table is as follows:

COLUMN
Low High
Low 2,4 10,0
ROW
High 0,11 87

(b) What is the Nash equilibrium? Verify that this game is a prisoners’

(c

-~

dilemma.

Now suppose the game has the following stages. The referee hands
out cards as before; who gets what cards is common knowledge. At stage
1, each player, out of his own pocket, can hand over a sum of money,
which the referee is to hold in an escrow account. This amount can be
zero but cannot be negative. When both have made their Stage I choices,
these are publicly disclosed. Then at stage II, the two make their choices
of cards, again simultaneously and independently. The referee hands
out payoffs from the central kitty in the same way as in the single-stage
game before. In addition, he disposes of the escrow account as follows.
If Column chooses his high card, the referee hands over to Column the
sum that Row put into the account; if Column chooses his low card,
Row’s sum reverts back to him. The disposition of the sum that Column
deposited depends similarly on Row’s card choice. All these rules are
common knowledge.

Find the rollback (subgame-perfect) equilibrium of this two-stage game.
Does it resolve the prisoners’ dilemma? What is the role of the escrow
account?

US5. Glassworks and Clearsmooth compete in the local market for windshield re-

pairs. The market size (total available profits) is $10 million per year. Each

firm can choose whether to advertise on local television. If a firm chooses to
advertise in a given year, it costs that firm $3 million. If one firm advertises
and the other doesn't, then the former captures the whole market. If both
firms advertise, they split the market 50:50. If both firms choose not to ad-
vertise, they also split the market 50:50.

(a) Suppose the two windshield-repair firms know they will compete for

just one year, Write down the payoff matrix for this game. Find the Nash
equilibrium strategies.
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(b) Suppose the firms play this game for five years in a row, and they know

that at the end of five years, both firms plan to go out of business, What
is the subgame-petfect equilibrium for this five-period game? Explain.

(c) Whatwould be a “tit-for-tat” strategy in the game described in part (b)?
(d) Suppose the firms play this game repeatedly forever, and suppose that

future profits are discounted with an interest rate of 20% per year. Can
you find a subgame-perfect equilibrium that involves higher annual
payoffs than the equilbrium in part (b)? If so, explain what strategies are
involved. If not, explain why not.

U6. Consider the pizza stores introduced in Exercise U2, Donna’s Deep Dish and
Pierce’s Pizza Pies. Suppose that they are not constrained to choose from
only two possible prices, but that they can choose a specific value for price
to maximize profits. Suppose further that it costs $3 to make each pizza (for
each store) and that experience or market surveys have shown that the rela-
tion between sales (Q) and price (P) for each firm is as follows:

Qpierce = 12 = Ppicrce + 0.5 Ppoppa-

Then profits per week (Y, in thousands of dollars) for each firm are:

Yoierce = (Poierce — 3) Qpierce = (Ppierce — 3) (12 — Prierce + 0.5Pponna)s
YDonna = (Pponna — 3) Qbonna = (Pponna — 3) (12 — Pponna + 0.5 Proerce)-

(@) Use these profit functions to determine each firm's best-response rule,

(b)

(c

(5

as in Chapter 5, and use the best-response rules to find the Nash equi-
librium of this pricing game. What prices do the firms choose in equilib-
rium? How much profit per week does each firm earn?

If the firms work together and choose a joint best price, P, then the profit
of each will be;

Yoonna = Yierwe = (P—3) (12— P+ 0.5 P) = (P— 3) (12 — 0.5 P).

What price do they choose to maximize joint profits?

Suppose the two stores are in a repeated relationship, trying to sustain
the joint profit-maximizing prices calculated in part (b). They print
new menus each month and thereby commit themselves to prices
for the whole month. In any one month, one of them can defect from
the agreement. If one of them holds the price at the agreed level, what
is the best defecting price for the other? What are its resulting prof-
its? For what interest rates will their collusion be sustainable by using
grim-trigger strategies?

U7.Now we extend the analysis of Exercise S7 to allow for defecting in a col-

lusive triopoly. Exercise S9 of Chapter 5 finds the Nash outcome of a VLCC
triopoly of Korea, Japan, and China.
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(a) Now find the collusive outcome of the triopoly. That is, what total quan-
tity should be set by the three countries collectively in order to maxi-
mize their joint profit?

(b) Assume that under the collusive outcome found in part (a), the three
countries produce equal quantities of VLCCs, so that each earns an equal
share of the collusive profit. How much profit would each country earn?
Compare this profit with the amount each earns in the Nash outcome.
Now suppose the three countries are in a repeated relationship, Once
per year, they choose production quantities, and each can observe the
amount its rivals produced in the previous year. They wish to cooperate
to sustain the collusive profit levels found in part (b). In any one year,
one of them can defect from the agreement. If the other two countries
are expected to produce their share of the collusive outcome found in
parts (a) and (b), what is the best defecting quantity for the third to pro-
duce? What is the resulting profit for a defecting country when it pro-
duces the optimal defecting quantity while the other two produce their
collusive quantities?
(d) Of course, the year after one country defects, both of its rivals will also
defect. They will all find themselves back at the Nash outcome (perma-
nently, if they use grim-trigger strategies). How much does the defect-
ing country stand to gain in one year of defecting from the collusive
outcome? How much will the defecting country then lose in every
subsequent year from earning the Nash profit instead of the collusive
profit?

For what interest rates will collusion be sustainable if the three coun-

tries are using grim-trigger strategies? Is this set of interest rates larger

or smaller than that found in the duopoly case discussed in Exercise S7,
part (e)? Why?

=

(c

(e

Appendix: Infinite Sums

The computation of present values requires us to determine the current value of
a sum of money that is paid to us in the future. As we saw in Section 2 of Chapter
11, the present value of a sum of money—say, x—that is paid to us n months
from now is just x/(1 + )" where r is the appropriate monthly rate of return.
But the present value of a sum of money that is paid to us next month and every
following month in the foreseeable future is more complicated to determine.
In that case, the payments continue infinitely, and so there is no defined end
to the sum of present values that we need to compute, To compute the present
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value of this flow of payments requires some knowledge of the mathematics of
the summation of infinite series.

Consider a player who stands (o gain $36 this month from defecting in a
prisoners’ dilemma but who will then lose $36 every month in the future as a re-
sult of her choice to continue defecting while her opponent punishes her (using
the tit-for-tat, or TFT, strategy). In the first of the future months—he first for
which there is a loss and the first for which values need o be discounted—the
present value of her loss is 36/(1 + 1); in the second future month, the present
value of the loss is 36/(1 + % in the third future month, the present value of the
loss Is 36/(1 + #. That is, in each of the n future months that she incurs a loss
from defecting, that loss equals 36/(1 + n",

We could write out the total present value of all of her future losses as a large
sum with an infinite number of components,

pv=_36_, 36 _ 3 36 36 6,
Lar D 0Fm Q4 0t @ Q4 '

or we could use summation notation as a shorthand device and instead write

x 36
PV=

n=1

This expression, which is equivalent to the preceding one, is read as “the sum,
from n equals 1 to n equals infinity, of 36 over (1 + 1 to the nth power.” Because
36 is a common factor—it appears in each term of the sum—it can be pulled out
to the front of the expression. Thus we can write the same present value as

- 36

PV=36x 6
"E:, 1T+ne

We now need to determine the value of the sum within the present-value expres-
sion to calculate the actual present value. To do so, we will simplify our notation

by switching to the discount factor 8 in place of 1/(1 + 1. Then the sum that we
are interested in evaluating is

It is important to note here that = 1/ (1 + 71 <1because ris strictly positive.
An expert on infinite sums would tell you, after inspecting this last sum, that

it converges to the finite value 3/(1 — 8).) Convergence is guaranteed because

increasingly large powers of a number less than 1, § in this case, become smaller

getting closer and closer to that value as additional components of the series are included in the
sum. The series diverges if the sum of the values in the series gets increasingly larger (more nega-
tve) with each addition to the sum. Convergence requires that the components of the series get
Progressively smaller, T T

R . .
An infinite series converges if the sum of the valyes in the series approaches a specific value,
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and smaller, approaching zero as n approaches infinity. The later terms in our
present value, then, decrease in size until they get sufficiently small that the se-
ries approaches (but technically never exactly reaches) the particular value of
the sum. Although a good deal of more sophisticated mathematics is required to
deduce that the convergent value of the sum is 3/(1 — 8), proving that this is the
correct answer is relatively straightforward.

We use a simple trick to prove our claim. Consider the sum of the first m
terms of the series, and denote it by S,.. Thus

M:

D=8 + BB e + I M,
1

S, =

Now we multiply this sum by (1 — 3) to get

(1-8)8, =8 +82+8+ - +5m 145"
_82_83_ 84 [ _am_sm—l
=5-8m.

Dividing both sides by (1 — 8), we have

6_8m+1
Sn= 15

Finally we take the limit of this sum as m approaches infinity to evaluate
our original infinite sum. As m goes to infinity, the value of 3"*! goes to zero be-
cause very large and increasing powers of a number less than 1 get increasingly
small but stay nonnegative. Thus as m goes to infinity, the right-hand side of the
preceding equation goes to 3/(1 — 8), which is therefore the limit of " as m ap-
proaches infinity. This completes the proof.

We need only convert back into rto be able to use our answer in the calcula-
tion of present values in our prisoners’ dilemma games. Because 3 = 1/(1 + 1), it
follows that

5 _ad+4n _1

1-5 r/l+n r’

The present value of an infinite stream of $36s earned each month, starting next
month, is then
e 1 36
X =
5E S a+nn r

This is the value that we use to determine whether a player should defect forever
in Section 2 of Chapter 11. Notice that incorporating a probability of continua-
tion, p < 1, into the discounting calculations changes nothing in the summation
procedure used here. We could easily substitute R for r in the preceding
calculations, and pd for the discount factor, 3.
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Remember that you need to find present values only for losses (or gains) in-
curred (or accrued) in the future. The present value of $36 lost today is just $36.
So if you wanted the present value of a stream of losses, all of them $36, that
begins foday, you would take the $36 lost today and add it to the present value
of the stream of losses in the future. We have just calculated that present value
as 36/r. Thus the present value of the stream of lost $36s, including the $36 lost
today, would be 36 + 36/7, or 36((r + 1)/r], which equals 36/(1 — 8). Similarly,
if you wanted to look at a player’s stream of profits under a particular contin-
gent strategy in a prisoners’ dilemma, you would not discount the profit amount
earned in the very first period; you would only discount those profit figures that
represent money earned in future periods.



