FCM0502 - Física II
 $5^{\text {a }}$ Lista de exercícios - Oscilador Harmônico

2/10/2016

Exercícios, mais exigentes, do Cap. 14 - Tipler e Mosca, Vol. 1, 4a. edição:

Oscilador harmônico livre

120 A energia de um corpo de massa m é dada em função da posição pela igualdade

$$
\begin{equation*}
U(x)=U_{0}\left(\alpha+\frac{1}{\alpha}\right), \tag{1}
\end{equation*}
$$

onde $\alpha=x / a$, e a é um constante com dimensão de comprimento.
a) Faça o gráfico de $U(x)$ contra x no intervalo $0.1 a<x<3 a$.
b) Determine a posição de equilíbrio estável $x=x_{0}$.
c) Encontre a expressão para a energia potencial $U(x)$ para $x=x_{0}+\epsilon$, onde ϵ é um pequeno deslocamento a partir do equilíbrio.
d) Para simplificar o resultado do item (c), encontre uma expressão aproximada para $1 / \alpha$ contendo somente potências positivas de x. Tome por base a expressão

$$
\begin{equation*}
(1+r)^{n}=1+r n+\frac{n(n-1)}{2!} r^{2}+\frac{n(n-1)(n-2)}{3!} r^{3}+\ldots, \tag{2}
\end{equation*}
$$

com $r=\epsilon / x_{0} \ll 1$, e abandone os termos com potência acima de r^{2}.
e) Compare o resultado do item (d) com o potencial para o oscilador harmônico simples. Mostre que o corpo terá movimento harmônico simples quando o deslocamento em relação ao equilíbrio for pequeno e encontre a frequência desse movimento.

122 Um rolo cilíndrico maciço, com massa de 6 kg e diâmetro 0.06 m , rola sem escorregar sobre uma superfície horizontal, como mostra a figura abaixo. O eixo do rolo está preso a certa mola de constante $k=4000 \mathrm{~N} / \mathrm{m}$.

$\Theta^{-m m m m m m m m}$

a) Determine a frequência da oscilação desse sistema para pequenos deslocamentos.
b) Qual o mínimo coeficiente de atrito que garante não haver escorregamento quando a energia de vibração for 5.0 J ?

123 A figura abaixo mostra um meio cilindro maciço, de massa M e raio R, pousado sobre uma superfície horizontal. Se a face superior for ligeiramente inclinada e depois solta, o corpo oscila em torno de sua posição de equilíbrio. Determine o período da oscilação.

128 Um corpo de massa m está sobre uma mesa horizontal preso a certa mola de constante k, como mostra a figura abaixo. O coeficiente de atrito cinético entre o corpo e a mesa é μ_{k}. A mola é esticada de A e depois solta. A posição x é medida a partir do comprimento relaxado da mola.

a) Aplique a segunda lei de Newton ao corpo para obter uma equação diferencial para a aceleração na primeira metade do ciclo, durante a qual o corpo se desloca para a esquerda. Mostre que a equação pode ser escrita como

$$
\frac{d^{2} x^{\prime}}{d t^{2}}+\omega^{2} x^{\prime}
$$

com $x^{\prime}=x-x_{0}$ onde $x_{0}=\mu_{k} m g / k$, ou seja, $x_{0}=\mu_{k} g / \omega_{0}^{2}$.
b) Repita a parte (a) na segunda metade do ciclo, quando o corpo se desloca para a direita, e mostre que

$$
\frac{d^{2} x^{\prime \prime}}{d t^{2}}+\omega^{2} x^{\prime \prime}
$$

onde $x^{\prime \prime}=x+x_{0}$, com o mesmo x_{0} definido no item (a).
c) Mostre em gráfico alguns ciclos iniciais do movimento com $A=10 x_{0}$.

125 Abre-se um túnel retilíneo através da Terra, como mostra a figura abaixo. As paredes do túnel não oferecem atrito.

a) A força gravitacional exercida pela Terra sobre uma partícula de massa m à distância r, quando $r<R_{E}$ (onde R_{E} é o raio do planeta) tem módulo

$$
F_{T}=-m g \frac{r}{R_{E}},
$$

onde g é a aceleração da gravidade na superfície da Terra. Mostre que a componente da força ao longo do eixo do túnel, quando a partícula está a uma distância x do centro do túnel, é

$$
F_{T}=-m g \frac{x}{R_{E}},
$$

e que o movimento resultante é harmônico simples.
b) Mostre que o período desse movimento é

$$
T=2 \pi \sqrt{\frac{R_{E}}{g}},
$$

e calcule o seu valor, em minutos. (O período T coincide com o que teria um satélite se pudesse girar em torno da Terra rente à superfície e independe do comprimento do túnel.)

