FCM0502 - Física II

5ª Lista de exercícios - Oscilador Harmônico 2/10/2016

Exercícios, mais exigentes, do Cap. 14 - Tipler e Mosca, Vol. 1, 4a. edição:

Oscilador harmônico livre

120 A energia de um corpo de massa m é dada em função da posição pela igualdade

$$U(x) = U_0 \left(\alpha + \frac{1}{\alpha} \right), \tag{1}$$

onde $\alpha = x/a$, e a é um constante com dimensão de comprimento.

- a) Faça o gráfico de U(x) contra x no intervalo 0.1a < x < 3a.
- b) Determine a posição de equilíbrio estável $x = x_0$.
- c) Encontre a expressão para a energia potencial U(x) para $x = x_0 + \epsilon$, onde ϵ é um pequeno deslocamento a partir do equilíbrio.
- d) Para simplificar o resultado do item (c), encontre uma expressão aproximada para $1/\alpha$ contendo somente potências positivas de x. Tome por base a expressão

$$(1+r)^n = 1 + rn + \frac{n(n-1)}{2!}r^2 + \frac{n(n-1)(n-2)}{3!}r^3 + \dots,$$
(2)

com $r=\epsilon/x_0\ll 1,$ e abandone os termos com potência acima de $r^2.$

- e) Compare o resultado do item (d) com o potencial para o oscilador harmônico simples. Mostre que o corpo terá movimento harmônico simples quando o deslocamento em relação ao equilíbrio for pequeno e encontre a frequência desse movimento.
- 122 Um rolo cilíndrico maciço, com massa de 6 kg e diâmetro 0.06 m, rola sem escorregar sobre uma superfície horizontal, como mostra a figura abaixo. O eixo do rolo está preso a certa mola de constante k = 4000 N/m.

- a) Determine a frequência da oscilação desse sistema para pequenos deslocamentos.
- b) Qual o mínimo coeficiente de atrito que garante não haver escorregamento quando a energia de vibração for 5.0 J?
- 123 A figura abaixo mostra um meio cilindro maciço, de massa M e raio R, pousado sobre uma superfície horizontal. Se a face superior for ligeiramente inclinada e depois solta, o corpo oscila em torno de sua posição de equilíbrio. Determine o período da oscilação.

128 Um corpo de massa m está sobre uma mesa horizontal preso a certa mola de constante k, como mostra a figura abaixo. O coeficiente de atrito cinético entre o corpo e a mesa é μ_k . A mola é esticada de A e depois solta. A posição x é medida a partir do comprimento relaxado da mola.

 a) Aplique a segunda lei de Newton ao corpo para obter uma equação diferencial para a aceleração na primeira metade do ciclo, durante a qual o corpo se desloca para a esquerda. Mostre que a equação pode ser escrita como

$$\frac{d^2x'}{dt^2} + \omega^2 x',$$

com $x'=x-x_0$ onde $x_0=\mu_k mg/k,$ ou seja, $x_0=\mu_k g/\omega_0^2.$

b) Repita a parte (a) na segunda metade do ciclo, quando o corpo se desloca para a direita, e mostre que

$$\frac{d^2x''}{dt^2} + \omega^2 x''$$

onde $x'' = x + x_0$, com o mesmo x_0 definido no item (a).

- c) Mostre em gráfico alguns ciclos iniciais do movimento com $A = 10x_0$.
- 125 Abre-se um túnel retilíneo através da Terra, como mostra a figura abaixo. As paredes do túnel não oferecem atrito.

a) A força gravitacional exercida pela Terra sobre uma partícula de mass
amà distânciar,quand
o $r < R_E$ (onde R_E é o raio do planeta) tem módulo

$$F_T = -mg\frac{r}{R_E},$$

onde g é a aceleração da gravidade na superfície da Terra. Mostre que a componente da força ao longo do eixo do túnel, quando a partícula está a uma distância x do centro do túnel, é

$$F_T = -mg\frac{x}{R_E},$$

e que o movimento resultante é harmônico simples.

b) Mostre que o período desse movimento é

$$T = 2\pi \sqrt{\frac{R_E}{g}},$$

e calcule o seu valor, em minutos. (O período T coincide com o que teria um satélite se pudesse girar em torno da Terra rente à superfície e independe do comprimento do túnel.)