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Vaccination is the most effective method to prevent influenza infection. However, current influenza
vaccines have several limitations. Relatively long production times, limited vaccine capacity, moderate
efficacy in certain populations and lack of cross-reactivity are important issues that need to be addressed.
We give an overview of the current status and novel developments in the landscape of influenza vaccines
from an interdisciplinary point of view. The feasibility of novel vaccine concepts not only depends on
immunological or clinical outcomes, but also depends on biotechnological aspects, such as formulation
and production methods, which are frequently overlooked. Furthermore, the next generation of influenza
vaccines is addressed, which hopefully will bring cross-reactive influenza vaccines. These developments
indicate that an exciting future lies ahead in the influenza vaccine field.
� 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Influenza viruses are negative stranded RNA viruses of the
Orthomyxoviridae family. Three types of influenza viruses, influ-
enza A, B and C, are capable of infecting humans, of which influ-
enza A and B are the most common circulating types. Individuals
infected with influenza virus generally display symptoms such as
chills, fever, headache, muscle pain, fatigue, rhinitis and coughing.
Progressed influenza infections can lead to severe complications
including bronchitis, pneumonia, secondary bacterial infections,
acute respiratory distress and cardiovascular complications, which
all can lead to death if left untreated. Individuals with a weakened
immune system, such as immunocompromised patients, elderly
and young children [1–3], are particularly vulnerable to influenza
infections and are thus classified as high-risk populations.

Global influenza epidemics emerge seasonally and typically
occur during the winter seasons of the northern and southern
hemispheres. The WHO estimates that there are 3–5 million cases
of severe influenza infections annually, with 250.000–500.000
deaths globally. The reemergence of a pandemic H1N1 strain in
2009 [4], and the emergence of highly pathogenic avian H5N1
and H7N9 influenza viruses [5,6], has reaffirmed that influenza
remains a global threat to this day.
Vaccination against influenza is the most cost-effective method
to prevent influenza infections. Fast availability of influenza vacci-
nes to the world population is one of the key factors for effective
coverage against seasonal and pandemic influenza. Despite the fact
that influenza vaccines are on the market since the 1930s, several
limitations still exist involving both their availability and their
effectiveness, which are listed in Table 1.

Current influenza vaccines are predominantly produced by
egg-based production methods. Being dependent on the supply
of vaccine-quality eggs, vaccine manufacturers cannot be flexible
in the amount of doses produced. This can lead to vaccine
shortages, especially during pandemic situations. Alternative pro-
duction platforms, such as cell culture-based vaccine production,
plant-based vaccine production or synthetic vaccines, could
increase the flexibility of manufacturers. It is often thought that
these novel production methods decrease the time needed to
develop and release an influenza vaccine. However, the availability
of strain-specific reagents for vaccine potency and release tests
such as the single radial immunodiffusion (SRID) assay and subse-
quent clinical trials are the main factors that delay the commercial
release of influenza vaccines.

Directly tied to the commercial release of influenza vaccines are
the regulatory approval procedures. To speed up these procedures,
mock-up vaccines are developed to generate a registration dossier,
which can subsequently be used for the licensing of an actual sea-
sonal or pandemic influenza vaccine.
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Table 1
Limitations of current influenza vaccines and potential solutions.

Limitation Potential solution(s)

Dependence on egg-based
production

Cell culture-based production of virus
Recombinant antigens
Synthetic vaccines

Regulatory approval
procedures

Mock-up vaccines to generate regulatory
dossier

Limited worldwide vaccine
availability

Technology transfer of vaccine production
methods
Dose sparing by the addition of adjuvants or
alternative administration routes
Increase stability and shelf life of vaccines to
prevent vaccine loss in unfavorable
conditions

Limited efficacy in elderly
and unprimed populations

Increase vaccine immunogenicity by
increasing antigen dose, the addition of
adjuvants or using alternative administration
routes
Increase breadth of immune response by the
addition of adjuvants, alternative
administration routes or by inclusion of
novel antigens

Lack of cross-reactivity by
current vaccines

Vaccines inducing stalk-reactive antibodies
M2e-targeted vaccines
T cell inducing vaccines
Heterologous prime-boost strategies with
seasonal and cross-reactive vaccines
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Limited vaccine availability is not only caused due to the inflex-
ibility of the vaccine production capacity; especially not in devel-
oping countries. Technology transfer of production methods to
developing countries increases the worldwide vaccine production
capacity. Increasing the (heat) stability and shelf life of influenza
vaccines negates the need of a cold chain, which is imperfect in
developing countries. This prevents unnecessary vaccine loss.
Furthermore, decreasing antigen dose by the addition of adjuvants
can also increase the number of influenza vaccines. Development
of stabile vaccine formulations and effective adjuvants is thus
important.

In several population groups, such as unprimed young children,
the elderly and immunocompromised individuals, influenza vacci-
nes have limited efficacy. Unprimed individuals have a reduced
response to influenza vaccines, whereas elderly, due to immunose-
nescence, and immunocompromised individuals generally suffer
from a declined immune function. Increasing the immunogenicity
and breadth of the immune response elicited by influenza vaccines
might improve vaccine efficacy in these vulnerable groups.

Current influenza vaccines induce neutralizing antibodies
against the viral membrane surface proteins hemagglutinin (HA)
and neuraminidase (NA). Due to antigenic shift and drift of HA
and NA genes, neutralizing antibodies elicited by influenza vacci-
nes lack cross-reactivity against non-matching influenza strains.
While seasonal adjustments to the vaccine strains are made to
cope with this problem, it is not as convenient and fast as a poten-
tial cross-protective influenza vaccine. Thus, the identification of
alternative correlates of protection (CoPs) against influenza is an
important step toward the development of cross-reactive influenza
vaccines.

The aforementioned limitations of current influenza vaccines
may be resolved through the implementation of new technologies
in the field of influenza production and vaccine formulation. Novel
antigens often require novel production methods, which carry
their own advantages and disadvantages. Additionally, these novel
antigens often need to be formulated with excipients and adju-
vants to be sufficiently immunogenic. While important, the devel-
opment of alternative administration methods and devices for
influenza vaccines is not within the scope of this current review,
and has been thoroughly reviewed by Amorij et al. previously
[7]. In this review, we will discuss advances in immunological, for-
mulation and production aspects for current and promising novel
influenza vaccine antigens, and discuss their potential to solve
the limitations of influenza vaccines today.

2. Immune responses against influenza

The efficacy of current influenza vaccines is determined by the
presence of adequate hemagglutination inhibition (HI)- or virus
neutralization (VN)-titers in vaccinated individuals. HI titers indi-
cate antibody responses against HA, which are not cross-reactive,
and do not protect against mismatching influenza strains. Ideally,
an influenza vaccine would protect against all strains, uninfluenced
by antigenic changes. VN titers indicate antibody responses that
are able to neutralize influenza virus, and thus can potentially be
applied for cross-reactive vaccines. Nonetheless, identification of
alternative CoPs, such as cross-reactive antibodies or T cell
responses would significantly aid the development of universal
vaccines [8].

Induction of immune responses against novel and more con-
served epitopes, other than the variable epitopes of HA, has come
under the attention in recent years (Fig. 1). These include vaccines
that induce antibodies directed against stalk regions of HA and
matrix protein 2 ectodomains (M2e), and vaccines that induce cel-
lular responses against internal influenza proteins. These vaccine
could potentially be the basis of a universal influenza vaccine.

2.1. HA-specific antibodies

Antibodies against HA can be divided into categories: those
reactive against the globular head domain, and those reactive to
the stalk domain. Current influenza vaccines induce mainly anti-
bodies directed against the head domain, which is highly variable
due to antigenic drifts. In contrast, the stalk domain is more con-
served, which makes it an attractive target for the induction of a
cross-reactive humoral response. Certain stalk-reactive antibodies,
such as globular head-reactive antibodies, inhibit the virus attach-
ment to cell membranes [9], thereby preventing infection (Fig. 1A).
Other stalk-reactive antibodies disrupt viral membrane fusion
(Fig. 1B), preventing endosomal escape of the virus. Indeed, several
monoclonal antibodies directed against these stalk domains
proved to be effective, and are currently under development to
provide therapeutic treatment of acute influenza infections [10].

Several HA stalk-directed vaccines are currently under develop-
ment, which proved effectiveness against both influenza A group 1
and 2 viruses [11], as well as influenza B. However, the potential
side effects of these antibodies still need to be carefully evaluated.
Khurana et al. showed that HA2 stalk-reactive antibodies pro-
moted viral fusion and respiratory disease symptoms by pH1N1
influenza in pigs [12], indicating that the induction of
stalk-reactive antibodies is not without risk. Further clinical stud-
ies should determine whether stalk-reactive antibodies are suit-
able for protection against influenza infection.

2.2. Matrix protein 2 ectodomain-specific antibodies

Matrix protein 2 (M2) is a tetrameric transmembrane protein
that acts as a proton-selective ion channel. It plays a crucial role
in the acidification and subsequent destabilization of the viral
membrane, which facilitates the release of the genetic material of
the virus into the host cell. The M2 protein is, except in low
amounts in whole inactivated virus (WIV) and live attenuated
influenza virus (LAIV) vaccines, not included in current seasonal
vaccines; M2-specific antibodies are generally not detected in sub-
jects vaccinated with seasonal influenza vaccines. Nonetheless, it



Fig. 1. Immune responses against influenza virus. (A) HA head- or stalk-reactive antibodies neutralize the virus. (B) HA-specific antibodies prevent virus attachment and
entry to host cells. (C) M2e-specific antibodies prevent the budding and release of virus particles produced in infected host cells. (D) Cytotoxic T cells recognize epitopes from
internal influenza proteins presented on the host cell surface by MHC class I molecules, and subsequently lyse the infected host cell through perforin and granzyme release.

P.C. Soema et al. / European Journal of Pharmaceutics and Biopharmaceutics 94 (2015) 251–263 253
possesses a sequence of amino acids that is highly conserved
among influenza subtypes, located on the N-terminal ectodomain.

Since M2e is conserved among influenza subtypes, it is a poten-
tial target for cross-reactive immune responses. M2e is expressed
abundantly by influenza-infected host cells [13], and
M2e-specific antibodies are able to efficiently mark these cells
for phagocytosis by natural killer cells or macrophages through
antibody-dependent cellular cytotoxicity (ADCC) [14].
Furthermore, M2e-specific antibodies disrupt the budding process
of viral particles, preventing virus release from infected host cells
(Fig. 1C). Thus, M2e vaccines do not prevent viral infection, but
efficiently inhibit viral replication once inside the host. Several vac-
cine concepts utilizing M2e-derived antigens are currently being
evaluated as universal influenza vaccines.

2.3. T cell responses

Cellular immune responses appear to play an important role in
the cross-protective immune response against influenza virus [15].
CD8+ T cells (CTLs) can actively eliminate infected cells through
perforin-mediated cell lysis (Fig. 1D), but also exhibit other effector
activities such as Fas ligand- and TRAIL (TNF-related
apoptosis-inducing ligand)-mediated cytotoxicity and cytokine
secretion, which all contribute to the protective cellular immune
response against influenza infections [16]. Recently, several clinical
studies correlated cellular responses with a decrease of
influenza-related illness, indicating that influenza-specific cellular
responses might be an alternative CoP for influenza. Sridhar et al.
showed that individuals which possessed preexisting CD8+ T cells
displayed decreased morbidity after infection with pH1N1 influen-
za, underlining the cross-reactivity of CD8+ T cells [17]. Wang et al.
found that patients infected with H7N9 required prolonged hospi-
talization in the absence of early CD8+ T cell responses, whereas
patients with early CD8+ T cell responses recovered quickly [18].
Additionally, Wilkinson et al. showed that influenza specific CD4+

T cells decreased viral shedding and illness in individuals infected
with pH1N1 in the absence of influenza-specific antibodies [19]. A
novel vaccine concept based on the induction of influenza-specific
T cells, MVA-NP + M1, reduced symptoms and viral shedding of
individuals infected with influenza, demonstrating that such an
approach has merit [20].

Most T cell epitopes, which are highly conserved, are located on
internal influenza proteins such as nucleoprotein (NP), matrix pro-
tein 1 (M1) or polymerase subunits (PA, PB1 and PB2). While these
antigens are not very immunogenic, several formulation strategies
have been utilized to successfully induce influenza-specific T cell
responses. The induction of influenza-specific cellular responses
might be a great addition to current antibody-inducing influenza
vaccines.

3. Current influenza vaccines

Current seasonal trivalent influenza vaccine (TIV) formulations
contain either inactivated influenza antigens or live attenuated
influenza viruses, derived from two influenza A strains and one
influenza B strain. Next to TIV formulations, quadrivalent influenza
vaccine (QIV) formulations have entered the market recently, which
adds an additional influenza B strain. Additionally, several pan-
demic vaccines have been developed in the preparation of possible
future outbreaks of highly pathogenic influenza strains. These vacci-
nes, which are all currently in the market, will be examined below.

3.1. Inactivated influenza vaccines

Inactivated influenza vaccines comprise either whole inacti-
vated virus, split, virosomal or subunit antigen, all differing in
either structural organization or viral components (see Fig. 2).
WIV vaccines were the first to be used in widespread annual influ-
enza vaccination campaigns. However, these WIV formulations
caused local and systemic adverse effects upon administration
[21]. This was possibly due to the presence of impurities, such as
egg proteins, in the vaccine. WIV vaccines were therefore mostly
abandoned when split vaccines entered the market, which were
considered to be less reactogenic. However, the use of current vac-
cine production technologies results in better defined and pure
WIV vaccines than previously, which give rise to very low levels
of side effects [22].

Nowadays, influenza vaccines usually consist of either split
viruses or subunit influenza antigens. Split vaccines are influenza
virus particles disrupted by diethyl ether or detergent treatment.
While split vaccine still contains all viral proteins, the original viral
particulate organization and viral ssRNA are mostly lost, losing
some of the inherent immunogenicity of the virus [23]. Split
viruses are currently widely used in TIV formulations, due to their
adequate immunogenicity and relative ease of production. Aside
from standard intramuscular (i.m.) split vaccines, an intradermal
(i.d.) influenza split vaccine is currently licensed, which was pro-
ven to induce non-inferior immune responses as a dose of 9 lg



Fig. 2. Composition of inactivated influenza vaccines. The four different compositions of influenza vaccine differ in antigen components and structural organization. These
differences also have an impact on the immunogenicity of the vaccine.

254 P.C. Soema et al. / European Journal of Pharmaceutics and Biopharmaceutics 94 (2015) 251–263
HA compared to the standard 15 lg HA in adults [24]. This
dose-sparing effect is likely to be mediated by the high density
of antigen presenting cells (APCs) in the skin [25]. In contrast,
elderly still require a normal dose of 15 lg when receiving an i.d.
influenza vaccine.

Subunit antigens, that is HA and NA proteins, are also frequently
used in TIV formulations. HA and NA proteins are separated from
the viral nucleocapsid and lipids after diethyl ether or detergent
splitting. However, the addition of adjuvants to the antigens is
sometimes required to reach adequate immunogenicity in the
elderly [26]. Recently, a recombinant HA (rHA) subunit vaccine
has entered the market, which contains a high dose (45 lg per
strain) of antigen to reach the required immunogenicity. The
administration of a higher dose of rHA compared to other
non-recombinant TIV formulations resulted in higher seroconver-
sion rates in healthy adults and the elderly [27], but lower efficacy
rates in children [28]. Therefore, rHA vaccines need additional for-
mulation with adjuvants to optimize immunogenicity in children.

In addition to split and subunit vaccines, virosomal TIV formu-
lations have been used mainly in EU countries since 1997 [29].
Virosomes are reconstituted influenza virus envelopes consisting
of HA, NA and viral phospholipids. Their particulate structure
enables virosomes to retain viral membrane fusion and
cell-binding capabilities, which could increase their immunogenic-
ity compared to subunit and split vaccines.

In the literature, there are many studies which state that there
are differences in immunogenicity and safety between the
different inactivated influenza vaccine formulations. However,
meta-analyses show that they all are similarly immunogenic and
safe [30,31]. Individual studies often compare vaccines of a single
season, which might give a limited view on these formulations.

3.2. Live-attenuated influenza vaccines

Aside from inactivated influenza vaccines, there are also
live-attenuated influenza vaccines. Intranasal administration of
LAIV mimics the natural route of infection of influenza, resulting
in a localized mucosal immune response at the site of infection
[32]. In contrast to inactivated vaccines, LAIV induces strong muco-
sal IgA responses and cell-mediated immune responses, which are
effective at preventing influenza infection [33]. While proven effec-
tive, the use of LAIV raised two major concerns. The virus in LAIV
can theoretically undergo genetic reversion into a pathogenic,
transmissible influenza strain. However, this event has yet to be
proven, and is unlikely to ever happen [34]. The second concern
is the use of LAIV in young children, which caused wheezing in
infants under 2 years. Therefore, LAIV is currently approved for
use in children and adults between 2 and 49 years old.

3.3. Quadrivalent influenza vaccines

In recent years, more focus has been laid on including a second
influenza B strain in the seasonal influenza vaccine. Two distinct
influenza B lineages have been circulating since 1985, thereby
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decreasing the efficacy of TIV, which only includes one influenza B
strain [35]. Indeed, five strain mismatches have occurred between
2001 and 2011, indicating that inclusion of an additional influenza
B strain, resulting in a quadrivalent influenza vaccine, has become
necessary. The first QIV (a LAIV formulation) entered the market in
2012, and several other QIV formulations based on inactivated vac-
cine formulations, such as split and subunit formulations, have
been licensed since. Several manufacturers continue to develop
novel QIV formulations, expanding the market share of quadriva-
lent influenza vaccines.

3.4. Pandemic influenza vaccines

In the last decade, the global outbreaks of H5N1 and H1N1
influenza viruses have increased the demand for pandemic influ-
enza vaccines. Both WIV and split antigens have been used (with
or without adjuvants) for the development of pandemic vaccines.
While WIV is infrequently used in seasonal influenza vaccines, it
is used in pandemic vaccines due to its high intrinsic immuno-
genicity. During the H1N1 pandemic of 2009, several adjuvanted
and non-adjuvanted pandemic vaccines were widely used
[36,37]. In addition to H1N1 vaccines, several pandemic H5N1
mock-up vaccines have been currently licensed. Mock-up vaccines
are developed to generate a registration dossier, which can subse-
quently be used for the licensing of an actual pandemic vaccine
after inclusion of a pandemic vaccine strain. This could speed up
the regulatory approval process in case of a pandemic.

LAIV formulations are also considered as a pandemic vaccine
candidate, since they elicit strong local mucosal and cellular
immune responses. Chen and Subbarao summarized the preclinical
development of prepandemic live-attenuated influenza vaccines
against H5N1 previously [38]. While these pandemic vaccines are
effective against their matched strains, they still generally lack
cross-reactivity against heterosubtypic strains.

4. Formulation strategies for influenza vaccines: antigens,
adjuvants and excipients

With the advent of novel concepts for immunity against
influenza, as described above, novel types of antigens such as
recombinant proteins, viral vectors, peptides and DNA are under
development. Many of these antigens are poorly immunogenic,
and thus need advanced formulation with adjuvants (immunopo-
tentiators and delivery systems) to become sufficiently immuno-
genic [39]. Most of these concepts aim to be universal influenza
vaccines, and thus need to induce cross-protective immune
responses. Aside from increasing and steering the immunogenicity,
formulation of antigens with excipients can increase vaccine sta-
bility for unfavorable conditions such as elevated temperatures
and freezing [40], thereby preventing the loss of vaccines. In the
following paragraphs we will discuss potential novel antigens
and adjuvants for influenza vaccines, as well as formulation meth-
ods to stabilize them.

4.1. Recombinant antigens

The use of recombinant technology enables the production of a
wide array of influenza protein antigens that can induce different
immune responses. These include not only conventional antibody
responses against HA, but also immune responses against HA stalk
regions and M2 ectodomains, which are potentially cross-reactive.

Recombinant antigens are the main type of antigen to induce
HA stalk-specific antibodies. Recombinant headless HA2 protein
was expressed on virus-like particles (VLPs) [41], which induced
cross-reactive antibodies that showed immunogenicity against
heterologous influenza strains in mice. Recombinant VLPs were
also utilized to present the A-helix domain of HA2 [42], which
were able to induce stalk-reactive antibodies that recognized sev-
eral influenza group 1 and 2 HA subtypes. Next to recombinant VLP
antigens, nanoparticles were used to increase the immunogenicity
of recombinant HA ectodomains. HA ectodomains were fused to
ferritin nanoparticles [43], which induced high antibody titers in
mice to both the globular head and stalk domains of HA.

Recombinant proteins are being widely used to induce
M2e-specific immune responses [14]. Purified recombinant M2e
proteins (in a multimeric state) were also combined with several
adjuvants to induce M2e-specific antibodies [44]. Vaccines with
covalently bound M2e antigen to a carrier protein or adjuvant
could induce potent cross-protective immune responses in mice.
Some studies reported a shift to IgG2a as the predominant IgG sub-
type [45,46], indicating a skewing toward TH1 responses, which
support the induction of cytotoxic lymphocytes. This additional
immune response could further broaden the protection of these
vaccine concepts.

4.2. Viral vectors

Recombinant technology is applied to engineer
replication-deficient viral vectors, which produce influenza anti-
gens once administered in the host. These vectors are usually
immunogenic and can display multiple antigens. One of the most
studied viral vectors is Modified Vaccinia virus Ankara (MVA),
which has already been used to express multiple influenza anti-
gens such as HA, M2e, M1 and NP [47]. One of the most promising
influenza vector vaccines is MVA-NP + M1, which was able to elicit
potent T cell responses in both healthy adults and elderly individ-
uals in multiple phase I clinical trials [20,48]. These studies did not
find any severe adverse effects associated with the vector vaccine,
other than an increased reactogenicity profile. MVA-NP + M1 could
therefore be a possible universal influenza vaccine in the future.

Adenoviruses are other viral vectors used to engineer influenza
vaccines. Clinical studies with adenoviruses expressing either HA
or NP + M1 have been performed successfully [49,50], indicating
that adenoviruses are also a suitable vector platform for influenza
vaccines.

The possibility of anti-vector immunity remains one of the risks
involved with vector-based vaccines, since it could induce toler-
ance to the vaccine. Indeed, both humoral and cellular
vector-specific immune responses negatively impacted the efficacy
of a HIV vaccine based on a adenovirus vector in a clinical trial [51],
indicating the importance of monitoring for anti-vector immunity
in such studies.

4.3. Peptides

Peptides can be used for the induction of both influenza-specific
immune B-cell and T cell responses against conserved epitopes.
Peptide antigens can either be minimal epitopes, which generally
suffer from poor immunogenicity, or long peptides which are com-
posed of multiple epitopes [52].

Several preclinical studies have used minimal epitope peptides
as their main antigen to induce influenza-specific cellular
responses. Liposomes have proven to be effective adjuvants for
these peptides in numerous studies. NP366–374 peptide encapsu-
lated in liposomes was able to induce potent T cell responses in
the presence of anti-CD40 mAbs, and reduced viral lung titers of
influenza-infected mice [53]. HLA-A2.1 and HLA-A24.2 restricted
peptides conjugated to liposomes were able to minimize morbidity
in influenza-infected mice [54,55]. Remarkably, these peptide-
liposome conjugates were able to induce CD8+ memory T cells
without contribution of CD4+ T cells, which are thought to be
crucial for the support of effective CTL responses [56].
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Conjugation of an influenza PA-derived peptide to Pam2Cys, a bac-
terial lipopeptide and natural PAMP, efficiently induced
peptide-specific CTL responses, which reduced viral lung titers in
influenza-infected mice [57]. Ichihashi et al. showed that, surpris-
ingly, influenza peptides conjugated to phosphatidylserine were
more immunogenic alone than incorporated in a liposomal formu-
lation [58], indicating that particulate formulations not always
have superior immunogenicity.

Aside from liposomes, virosomes have also been used as deliv-
ery systems for short peptide antigens. An early study showed that
virosomes loaded with the H-2Kd binding influenza NP147–155 pep-
tide induced CTLs that were able to lyse influenza-infected target
cells [59]. The addition of the adjuvant CpG ODN 1826 to influenza
M158–66 peptide-loaded virosomes increased peptide-specific CD8+

T cell responses even further [60], which resulted in an increased
recovery of mice infected with heterologous influenza virus.

Long peptide antigens that include multiple epitopes are, com-
pared to short peptides, in an advanced stage of development.
Recently, FP-01.1 was tested in a phase I clinical trial [61].
FP-01.1 is composed of six 35-mer peptides, each consisting of
multiple CD4+ and CD8+ epitopes derived from influenza A internal
proteins, which have been conjugated to a fluorocarbon chain. The
vaccine formulation was found to be safe and induced
cross-reactive immune responses in most subjects.

Multiple antigenic peptide (MAP) constructs are also effective
for enhancing the immunogenicity of peptide antigens. The MAP
approach has been widely studied with M2e-derived antigens
[62]. Multimeric-001, which consists of nine linear B cell and T cell
epitopes of HA, NP and M1 combined in a single 50 kDa polyepi-
tope [63]. Multimeric-001 was able to induce considerable cellular
immune responses when administered twice in both adults and
elderly [64]. Interestingly, Multimeric-001 was also used in a
prime-boost approach with seasonal TIV in the same study.
Individuals who were primed with Multimeric-001 and subse-
quently boosted with TIV had significantly higher HI titers than
individuals who were primed and boosted with TIV. Further for-
mulation with adjuvants might increase the immunogenicity of
standalone Multimeric-001 vaccine in the future.

Aside from the induction of T cell responses, peptide antigens
have also been used to induce HA stalk-specific antibodies.
Polypeptide HA276–130 (the binding domain of stalk reactive mAb
12D1) was conjugated to the carrier protein keyhole limpet hemo-
cyanin, which induced 12D1 antibodies that protected mice
against influenza H5N1 and H1N1 infections [65].

Peptides are thus promising influenza antigens, especially for
the induction of influenza-specific T cell responses. While the for-
mulation of these antigens remains challenging, the approaches
discussed above have shown promising results, specifically in
prime-boost regimens with regular influenza vaccines. Furthermore,
peptide antigens do not require folding or post-translational mod-
ifications, and might be more stable compared to protein antigens
in unfavorable conditions.

4.4. DNA and RNA

Unlike protein or peptide-based antigens, DNA vaccines induce
antigen production in the host itself. In short, a DNA copy is made
of the viral RNA segment coding for the antigen of interest (i.e. an
influenza protein), which is then inserted into an expression plas-
mid. Bacteria carrying the production plasmid are cultured and
subsequently the plasmid is purified. The purified plasmid is
administered, and the plasmid enables antigen production in cells
of the host, which results in an immune response against the
antigen.

The concept has been evaluated in a phase I efficacy and safety
study with an epidermal administered influenza DNA vaccine
containing an HA gene. The DNA plasmids were coated on gold
particles, which were subsequently applied epidermally using a
gene gun. A trivalent DNA vaccine was able to protect individuals
from influenza infection, proving that the DNA vaccine concept
was viable [66].

Aside from the replacement of seasonal influenza vaccines, DNA
antigens are also used to induce more broadly reactive immune
response. In a clinical study, Ledgerwood et al. showed that prim-
ing with an H5 encoding DNA vaccine in advance of a monovalent
H5N1 subunit boost vaccine significantly improved antibody
responses [67], and induced influenza-specific T cell responses.
This prime-boost regimen is an example of a novel antigen supple-
menting existing influenza vaccines. The same group showed that
vaccination with a H1N1 HA-encoding DNA vaccine and subse-
quent boosting with subunit vaccine induced broadly-protective
stalk-directed antibodies in mice and ferrets [68,69]. Both
approaches did not require any additional formulation of the
DNA vaccine, which suggests that DNA plasmids are efficiently
taken up by host cells.

An influenza DNA vaccine encoding for H5N1 HA, NP and M2
proteins induced antibody and T cell responses in combination
with the cationic liposome adjuvant Vaxfectin in a clinical study
[70]. The vaccine was able to induce HI titers comparable to titers
induced by a subunit vaccine, showing that adjuvanted DNA vacci-
nes have the potential to be used in humans.

While influenza DNA vaccines are a promising concept, several
concerns regarding safety have to be considered. Antibodies
against the DNA plasmid could render the vaccine ineffective.
Also, the continued production of influenza antigens in the host
might alter the immune system, or induce tolerance against influ-
enza antigens. Arguably, the largest issue is the introduction of
extraneous DNA into the vaccinated subject, which could lead to
unwanted genetic changes such as tumor growth. Extensive safety
and efficacy studies are therefore necessary to overcome these
concerns.

RNA-based influenza vaccines are recently in preclinical devel-
opment. Like DNA, mRNA enables influenza antigen production in
host cells. A non-amplifying mRNA encoding for HA was able to
confer protective HI responses in mice and ferrets with a single
immunization of 80 lg mRNA [71]. Another study incorporated a
self-amplifying mRNA encoding for HA and NA in lipid nanoparti-
cles, which were able to induce HI titers with a mRNA dose as low
as 0.1 lg [72]. This concept vaccine was fully synthetic, and is
thought to have limited safety concerns compared to DNA-based
and protein vaccines, which are usually generated in in vitro
platforms.
4.5. Adjuvants for influenza vaccines

Enhancing the immunogenicity of vaccine antigens by the addi-
tion of adjuvants has several advantages, such as dose sparing,
increased efficacy in the elderly, unprimed individuals and
immunocompromised, and broadening of the influenza-specific
immune response. Many novel antigens such as peptide and DNA
antigens require the addition of adjuvants to steer the immune
response toward a specific response, such as a cellular immune
response. The development of suitable adjuvants for influenza vac-
cines is therefore imperative. A comprehensive overview of adju-
vants currently on the market or in development is shown in
Table 2.

There are currently several adjuvants that are approved for use
in influenza vaccines. The most commonly used vaccine adjuvant,
aluminum salt, is currently used in pandemic influenza vaccines.
However, no beneficial effect of alum with these vaccines was
observed during the 2009 H1N1 pandemic [36].
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In contrast to aluminum salts, oil-in-water emulsions have
proved to be suitable adjuvants for influenza vaccines. MF59 was
the first of these adjuvants approved for use with influenza vacci-
nes in 1997. MF59 is an oil-in-water emulsion, which consists of
150 nm-sized biodegradable squalene oil droplets stabilized by
non-ionic surfactants. Several modes of action have been attribu-
ted to this adjuvant [73], including enhanced regulation of genes
for cytokines and chemokines, local release of ATP as an endoge-
nous danger signal, increased influx of macrophages and mono-
cytes to the site of injection, differentiation of monocytes to
active dendritic cells, and antigen transportation to draining lymph
nodes. Numerous reports observed increased immunogenicity and
efficacy of MF59-adjuvanted subunit vaccine in young children,
healthy adults, and elderly individuals [74–77]. Additionally,
MF59 has similar immunostimulatory effects in combination with
prepandemic vaccine formulations [78]. Overall, MF59 has thus far
proven to be a very effective adjuvant for the stimulation of
humoral responses against both seasonal and prepandemic influ-
enza vaccines.

Similar to MF59, AS03 is also an oil-in-water emulsion based on
squalene droplets. However, unlike MF59, AS03 is currently only
used in pandemic influenza vaccines. AS03 adjuvanted influenza
vaccines were significantly more immunogenic than their unadju-
vanted counterparts both in primed and unprimed individuals
[79,80]. Furthermore, AS03-adjuvanted influenza vaccines were
also able to confer seroprotection in immunocompromised
Table 2
Adjuvants for influenza vaccines.

Adjuvant category Adjuvant

Salts Alum

Oil-in-water emulsions MF59 (squalene, Span 85, polysorbate 80)

AS03 (squalene, DL-a-tocopherol, polysorbate 80)
AF03 (squalene, Brij 76)
CoVaccine HT (squalene, polysorbate 80, sucrose fatty
sulfate esters)

Saponins Iscomatrix
Matrix-M

Glycolipids Alpha-GalCer (alpha-galactosylceramide)

Liposomes CCS/c (cationic liposomes of ceramide carbamoyl-
spermine/cholesterol)
CAF01 (cationic liposomes of DDA/TDB)
Vaxfectin (cationic liposomes of GAP-DMORIE/DPyPE)

Bacterial components CTA1-DD (Cholera toxin subunit A)
LT patch (Escherichia coli enterotoxin)
Salmonella and Escherichia coli flagellins

Cytokines IL-12, IL-23
GM-CSF (Granulocyte-Monocyte Colony Stimulating F
Type 1 IFN (IFNa)

TLR agonists/
immunomodulators

GLA (glucopyranosyl lipid A) (TLR4)
Bacterial flagellins (TLR5)

CpG oligodeoxynucleotide (TLR9)
PolyI:C (TLR3)

IC31 oligodeoxynucleotide (TLR9)
sLAG-3 (IMP321) (MHC class II ligand)

Polymers Chitosan

PCPP (poly[di(carboxylatophenoxy)phosphazene])
Advax (delta inulin)
patients infected with HIV-1 [81]. In contrast, adjuvanted vaccines
failed to increase seroprotection rates in other immunocompro-
mised groups, such as transplant recipients or patients with
lymphoid malignancies [82,83].

Saponin-based adjuvants are currently in clinical development
for use with influenza vaccines. Natural or synthetic saponin
QS-21 (a fraction from soluble triterpene glycosides purified from
Quillaja saponaria) was clinically tested with TIV vaccine, but failed
to increase HI titers significantly compared to unadjuvanted TIV
[84]. These saponins can form complexes with lipids like choles-
terol resulting in particles, the so-called immune stimulating com-
plexes (ISCOMs). These are hollow, cage-like particles of around
40 nm diameter [85]. Clinical studies with ISCOM-adjuvanted
influenza split vaccines revealed accelerated antibody responses
in individuals who received ISCOM-adjuvanted influenza vaccines
[86]. Furthermore, this coincided with a notable increase of
influenza-specific CD8+ T cell responses [87]. A third generation
of saponin based adjuvants, named Matrix-M, was evaluated in a
clinical study in combination with a pandemic virosomal influenza
vaccine [88]. The addition of Matrix-M resulted in a significant
dose sparing of the antigen, and increased vaccine-induced T cell
responses. Matrix-M was successfully used as an adjuvant for a
H7N9 VLP vaccine in a phase II clinical trial, in which the adju-
vanted VLP vaccine showed significantly higher seroconversion
rates after vaccination compared to non-adjuvanted VLP vaccine
[89].
Antigen(s) Stage of development Reference

Split, WIV (pandemic) Licensed N/A

Subunit (seasonal and
pandemic)

Licensed N/A

Split, WIV (pandemic) Licensed N/A
Split (pandemic) Licensed N/A

acid WIV (pandemic) Animal model [123]

WIV (seasonal) Clinical development [86]
Virosomes (pandemic) Clinical development [88]

LAIV (seasonal) Animal model [124]
DNA (HA-encoding) [125]

Subunit (seasonal) Animal model [126]

Split (seasonal) Animal model [127]
Split (seasonal), WIV
(pandemic)

Animal model (split,
WIV)

[128]

DNA (HA-encoding) Clinical development
(DNA)

[70]

Peptide (M2e-based) Animal model [129]
Split (pandemic) Clinical development [92]
rHA (pandemic) Clinical development [91]
rM2e [130]

WIV (laboratory strain) Animal model [131]
actor) DNA (HA-encoding) Animal model [132]

Subunit (seasonal) Animal model [133]

rHA (pandemic) Clinical development [134]
rHA (pandemic) Clinical development [91]
rM2e [130]
Split (seasonal) Clinical development [135]
Split (seasonal) Animal model [136]
LAIV (laboratory strain) [137]
Subunit (seasonal) Animal model [138]
Split (seasonal) Clinical development [139]

Subunit (laboratory strain) Animal model [140]
DNA (M2 and NP encoding) [141]
Subunit (pandemic) Animal model [142]
Split (pandemic) Clinical development [143]
rHA (pandemic) [94]
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Bacterial-derived components can also serve as potent adju-
vants for influenza vaccines. Flagellin was fused genetically to
the globular head of a HA1 subdomain, and was able to induce
protective HI titers in healthy adults with only 2 lg of antigen,
and in elderly with 4 lg of antigen [90,91]. Currently advancing
to phase III trials, this fusion vaccine shows that
bacterial-derived components can be very effective adjuvants.
Indeed, the co-administration of heat-labile enterotoxin via a patch
after immunization with an influenza split vaccine boosted HI
responses to the vaccine in healthy adults [92].

Recently a novel polysaccharide adjuvant, Advax, was used as
an adjuvant for pandemic influenza vaccines. Made from delta inu-
lin, this adjuvant stimulated both humoral and cellular responses
induced by split vaccines in ferrets, which protected the animals
from a lethal influenza challenge [93]. However, an
Advax-adjuvanted rHA H1N1 vaccine failed to induce the required
EMA/FDA seroprotection rates after two immunizations, except
with a high antigen dose of 45 lg [94]. While the mode of action
of Advax might also be partially through the induction of cellular
responses, this still needs to be assessed in well-designed clinical
studies.

Besides increasing the immunogenicity of the antigens, the
addition of adjuvants to influenza vaccines can induce unwanted
immune responses. AS03-adjuvanted influenza vaccines have been
under close attention since a sudden increase of childhood nar-
colepsy incidence was observed in Scandinavian countries after
the pandemic influenza epidemic of 2009–2010 and subsequent
administration of AS03-adjuvanted Pandemrix influenza vaccines
[95]. The 2009 pandemic H1N1 influenza was associated with
the incidence of narcolepsy in patients with a HLA-DQB1*06:02
allele, and it is suspected that the pH1N1 vaccine caused an
autoimmune response leading to narcolepsy in individuals with
this genotype [96]. A recent study identified higher amounts of
structurally altered influenza NP protein in the Pandemrix vaccine
than Arepanrix, another AS03-adjuvanted influenza vaccine [97].
Strikingly, they found higher levels of NP-specific antibodies in
children with the HLA-DQB1*06:02 allele, which suggests a link
between the antigen content of Pandemrix and narcolepsy, rather
than a link between narcolepsy and the adjuvant. Another group
also suggested that differences between vaccine antigens might
be related to the higher incidence of narcolepsy associated with
Pandemrix [98]. Nonetheless, extra care should be given to the
safety profile when combining powerful adjuvant with complex
protein vaccines such as WIV, split, virosomal or subunit influenza
vaccines, since the induction of broad antibody responses increases
the risk of cross-reactivity with self-proteins.

4.6. Improving influenza vaccine stability

The shelf life of influenza vaccines is limited to approximately
one year if stored refrigerated (2–8 �C). The potency of the HA anti-
gen can be negatively affected by either elevated temperatures or
temperatures below 0 �C [40]. Consequently influenza vaccines
need to be refrigerated during distribution and storage (so-called
cold-chain), which is costly and can be difficult to guarantee in
developing countries. Increasing the stability of influenza vaccines
would therefore reduce the dependency on the cold chain, and
would ensure that antigen retains its potency until administration.
Additionally, improving the antigen stability can also prolong the
vaccine shelf life, which would facilitate stockpiling of influenza
vaccines in the preparation of a possible pandemic.

Stabilization of liquid antigens is commonly achieved through
conversion to dry formulations. The solid state provides stability
by decreasing the mobility of the protein antigen and the absence
of water-based degradation pathways. However, drying methods
are associated with their own stress factors that can affect the
stability of the antigen. The addition of excipients such as sugars
to influenza vaccines can stabilize the antigen during the
freeze-drying process and subsequent storage [40]. During drying,
sugars form a glassy matrix that protects the antigen by providing
a physical barrier. Furthermore, the glass matrix of some carbohy-
drates such as inulin or trehalose possesses high glass transition
temperatures, which increases the heat stability of the formula-
tions due to a decrease in molecular mobility.

The sugars inulin and trehalose both have been used as stabiliz-
ing excipients to facilitate influenza vaccine drying (either freeze-,
spray- or spray freeze-drying). All four types of inactivated influ-
enza antigens have been stabilized successfully by one or more
drying methods with various excipients [99–102]. This proves that
the addition of stabilizing excipients can greatly enhance influenza
vaccine stability under extremely unfavorable conditions.
5. Universal influenza vaccines

Some of the aforementioned novel formulations are prospective
universal influenza vaccines; these should be able to protect
against all influenza strains regardless of any antigen shifts or
drifts. In the last few years, many of such universal vaccine con-
cepts have entered clinical trials, as listed in Table 3. Vaccines
based on HA stalk-reactive antibodies have yet to enter the clinical
phase, indicating that this concept still has a long way to go.

The most advanced are the M2e- and T cell-based vaccine con-
cepts, with several vaccine concepts having completed phase II tri-
als. Most concepts proved to be immunogenic in humans (either
healthy adults or elderly) and had positive safety profiles. It is
expected that some of these vaccines will enter phase III trials in
the coming years, from which we will finally be able to conclude
whether these concepts are able to offer increased cross-
reactivity against multiple influenza strains.

Interestingly, prime-boost or simultaneous immunizations
combining these novel vaccines with seasonal vaccine formula-
tions are gaining popularity [64,103], indicating that these con-
cepts are more prone to supplement rather than to replace
existing seasonal vaccines.
6. Production strategies for influenza vaccines

6.1. Production of current influenza vaccines

The production of seasonal influenza vaccines is performed
each year in a limited window of time between influenza strain
selection and the release of the final vaccine. The steps involved
are depicted in Fig. 3. Several time determining steps, such as the
availability of reagents for the SRID assay, are crucial for the
advancement of the production process, and thus limit the speed
of vaccine production each year, regardless of production platform.

Virus propagation on embryonated chicken eggs remains the
most frequently used method to manufacture influenza vaccines.
Furthermore, securing sufficient vaccine-quality eggs to manufac-
ture influenza vaccines for the world population is a daunting,
probably impossible task. Several other risks with egg-based vac-
cine production also need to be considered. An influenza outbreak
among poultry is a serious possibility that would decrease the
availability of vaccine-quality eggs [104]. Additionally, influenza
wild type (WT) strains need to be optimized for growth in eggs,
which involves recombination of these WT strains with
high-yield laboratory strains such as A/PR/8/34. During this step,
mutations in the egg-adapted reassortant strain can contribute to
a mismatch between the vaccine strain and the circulating strain,
which occurred recently during the 2012–2013 influenza season
[105]. Decreasing dependence on egg-based influenza propagation



Table 3
Universal influenza vaccine concepts currently in the clinical phase of development.

Targeted
response

Concept Status Registration number References

M2e
antibodies

VAX102 (recombinant M2e fused to flagellin) Phase I/II completed NCT00603811,
NCT00921947,
NCT00921206

[130]

VAX102 + seasonal vaccine (coadministered) Phase I completed NCT00921973 Unpublished
data

ACAM FLU-A (recombinant M2e fused to hepatitis B core protein) Phase I completed NCT00819013 Unpublished
data

VGX-3400X (DNA plasmid encoding for HA, NA and M2e-NP of H5N1 delivered
by electroporation)

Phase I completed NCT01184976,
NCT01142362

Unpublished
data

Influenza-
specific T
cells

FP-01.1 (long peptides containing multiple T cell epitopes) Phase I completed,
phase II ongoing

NCT01265914,
NCT01677676,
NCT02071329

[61]

FP-01.1 + undisclosed adjuvant Phase I completed NCT01677676 Unpublished
data

FP-01.1 combined with seasonal vaccine (prime) + FP-01.1 (boost) Phase I completed NCT01701752 Unpublished
data

Flu-v (long peptides containing multiple T cell epitopes) Phase I completed NCT01226758,
NCT01181336

[144]

Multimeric-001 (recombinant protein containing multiple T cell epitopes) Phase I/II completed NCT01010737,
NCT00877448,
NCT01146119

[63]

Multimeric-001 (prime) + seasonal vaccine (boost) Phase I/II completed NCT01419925,
NCT02293317

[64]

MVA-NP + M1 (modified vaccinia virus Ankara vectored vaccine containing
multiple T cell epitopes)

Phase I/II completed NCT00942071,
NCT00993083

[20,48,145]

MVA-NP + M1 + seasonal vaccine (coadministered) Phase I completed NCT01465035 [103]
ChAdOx1 NP + M1 (simian adenovirus vectored vaccine containing multiple T
cell epitopes) + MVA-NP + M1 (mixed prime/boost)

Phase I ongoing NCT01818362 [50]

Fig. 3. Timeline of seasonal influenza vaccine production. While some novel production methods can grow influenza viruses faster, the vaccine production timeline contains
several steps that are time determining (red lines). This means that while the vaccine can be produced faster, the time from strain selection to vaccine release remains similar
for all production platforms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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is thus a crucial step toward the increase of influenza vaccine pro-
duction capacity worldwide. Current influenza production plat-
forms are listed in Table 4.

One alternative to egg-based production systems is cell
culture-based systems. Cell culture-based influenza propagation
is not dependent on the availability of vaccine-quality eggs. More
importantly, cell-culture based production platforms are easy to
scale up, and theoretically should be able to meet the high demand
for influenza vaccine in case of a pandemic situation [106].
However, WT influenza strains still need to be adapted for growth
on cells, and building costs and validation of cell-based manufac-
turing plants are high, which might be unattractive for manufac-
turing companies [104].

As of yet, only a few cell culture-based seasonal and prepan-
demic influenza vaccine formulations are currently approved.
Madin-Darby canine kidney (MDCK) cells were the first to be used
for the production of seasonal TIV vaccines [107]. Most WT human
influenza viruses grow efficiently in MDCK cells, and existing
egg-adapted reassortant strains can grow to similar titers [108].
These advantages make MDCK cells an acceptable substitute for



Table 4
Influenza vaccine production platforms.

Production
platform

Vaccines Status

Fertilized eggs Seasonal and (pre)pandemic
subunit and split

Licensed
worldwide

(Pre)pandemic WIV
MDCK cells Seasonal and (pre)pandemic

subunit and WIV
Licensed in EU and
USA

Vero cells (Pre)pandemic WIV and split Licensed in EU and
Japan

Baculovirus Seasonal subunit Licensed in US and
Japan
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egg-based influenza virus production. Vero cells have also been
used as a production platform for both seasonal and prepandemic
vaccines [109,110]. Influenza virus cultivation in laboratory-scale
bioreactors was compared between MDCK and Vero cells, but pro-
duction yields between cell lines were not significantly different
[111]. However, different virus strains showed differences in
growth stability depending on culture medium and cell line.
Searching other cell lines suitable for influenza production is there-
fore important, since influenza viruses might grow more efficiently
on cell lines other than the ones that are currently used.

One of these novel cell lines is human retina-derived PER.C6,
which is able to grow without the need of solid support for growth
such as microcarriers [112]. The growth of suspension cell cultures
is limited to the concentration of cells in the medium, rather than
surface area in case of adherent cell cultures. This might allow
easier scale-up of the vaccine production if necessary. A split
H7N1 influenza vaccine grown on PER.C6 cells was successfully
tested for safety in a phase I clinical trial [113], but failed to induce
adequate immune responses. It is believed that, similar to recom-
binant HA, higher doses of antigen are needed to confer protective
antibody titers. Other cell-based platforms for influenza produc-
tion such as Human Embryonic Kidney (HEK)-293 and Amniocyte
Derived (CAP) cell lines are currently still in preclinical develop-
ment [114,115]. These human-derived cell lines might be more
suitable for the growth of human-adapted influenza strains com-
pared to the currently used animal-derived cells. Indeed, there
are indications that influenza viruses grow better in cell lines
derived from their preferred host [116].

While these production methods are definitely an improve-
ment, vaccines produced on cell lines have to be thoroughly
screened for adventitious viruses and residual cell line DNA and
cell line proteins, which might cause adverse effects [117].
Nonetheless, cell-based influenza virus production remains an
improvement over egg-based production methods, due to
increased vaccine purity.

Recombinant influenza antigens represent another alternative
technology to traditional egg production methods. The baculovirus
expression vector system (BEVS) efficiently produces recombinant
HA in insect Sf9 cells, resulting in a recombinant influenza subunit
vaccine [118]. By producing merely the HA antigen and not the
entire influenza virus, several purification and inactivation steps
can be omitted from the production process. This also results in
predictable and more robust yields during production. However,
the current rHA vaccine on the market requires a dose of 45 lg
HA per strain to be effective, which is 3 times higher than the stan-
dard 15 lg HA dose in non-recombinant influenza vaccines.
Further formulation of rHA with adjuvants might be required for
considerable dose sparing.

Aside from technological improvements of the vaccine produc-
tion process, it is necessary to increase the number of influenza
vaccine manufacturers worldwide to meet demand. Technology
transfer of influenza vaccine production methods to new
manufacturers is therefore important. Incentives like the
International Technology Platform for Influenza Vaccines (ITPIV)
and other projects provide the transfer of influenza vaccine pro-
duction knowledge to new vaccine manufacturers [119], expand-
ing the number of influenza vaccine producers and increasing
influenza vaccine production capacity in the world.

6.2. Production of future influenza vaccines

The advent of novel influenza vaccines antigens also requires
production technologies that are different from classical egg- or
cell-based virus propagation. This could offer several advantages,
such as faster production times, increased capacity and product
consistency, and less risk of adventitious agents in the final
product.

Recombinant protein technology is bound to play a major role
in the production of these novel antigens. Already utilized for the
production of rHA, it is clear that recombinant technology is a
viable option for the production of influenza antigens. The previ-
ously discussed peptide-based Multimeric-001 vaccine is produced
in E. coli, for instance. HA and M2 ectodomain antigens, both in
peptide and in protein forms, are regularly produced by recombi-
nant technology in various vectors, such as E. coli, tobacco mosaic
virus, papaya mosaic virus, bacteriophage T7 and baculovirus. The
ability to fuse a carrier protein or immunopotentiators to the
antigen during production is a great advantage of recombinant sys-
tems, and negates the need of post-production antigen formulation
with, for instance, an adjuvant. Similar strategies have also been
used with T cell inducing antigens such as NP epitopes [120].
With its versatility and the recent approval of rHA vaccine, recom-
binant technology is bound to be used widely for the production of
novel influenza antigens.

The production process of DNA vaccines has rapidly evolved
since the approval of several veterinary DNA vaccines [121].
Nowadays, manufacturing kilogram-scale batches of DNA plasmids
is not uncommon. However, several problems still exist, such as
getting an adequate concentration of DNA in a small enough vol-
ume for vaccination. These problems are expected to be resolved
in the coming years, as the realization of influenza DNA vaccines
comes closer.

Peptide antigens are fundamentally different from aforemen-
tioned protein antigens in terms of manufacturing process. Short
to medium length peptides that do not require specific folding
can be chemically synthesized rather than biologically produced.
Thus, these antigens can be produced without the inherent risks
of using biological systems, such as the presence of adventitious
agents or cellular components in the final product. Technological
developments in the field of chemical peptide synthesis over the
last two decades have enabled the industry to manufacture large
quantities of peptides at competitive prices, underlining the feasi-
bility of large scale production of peptide vaccines [122].
Additionally, chemical synthesis of peptides is relatively fast,
which is required for the production of influenza vaccines. The
aforementioned FP-01.1 influenza peptide vaccine shows the
potential of peptide-based vaccines [61]. However, most peptide
antigens will need additional formulation with adjuvants or
delivery systems in order to be immunogenic, which may add
complexity and time to the production process of the final vaccine
formulation. Another more simple option would be combining
universal vaccines with current seasonal vaccines in a prime/boost
regime, in order to broaden the immune response.

The aforementioned antigen production methods are all rela-
tively fast and flexible, certainly compared to the egg-based influ-
enza vaccine production. While most of the novel influenza
antigens are still in development, there is great potential for these
antigens from a formulation and production point of view.
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7. Conclusion

The field of influenza vaccine development is constantly chang-
ing. While improvements on formulation and production level are
continuously being made for traditional influenza vaccines, great
steps are being made in the development of universal influenza
vaccines. The introduction of novel influenza antigens and accom-
panying novel correlates of protection will be the most crucial and
revolutionary step that has to be taken. Before a universal influ-
enza vaccine is developed, it is likely that novel more conserved
antigens will supplement current day influenza vaccine formula-
tions in order to broaden the immune response by combining
strong humoral and cellular responses. Fortunately, the production
methods for these novel antigens seem more flexible than produc-
tion methods of current influenza vaccines. While novel produc-
tion methods can produce vaccines faster, the timely availability
of reagents for vaccine potency testing remains the main
time-delaying factor, and should therefore be considered.
Furthermore, universal vaccines could be produced continuously
opposed to the current seasonal vaccines, which would greatly
increase vaccine production capacity and coverage. The next dec-
ade will thus be an exciting time for the influenza vaccine field.
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