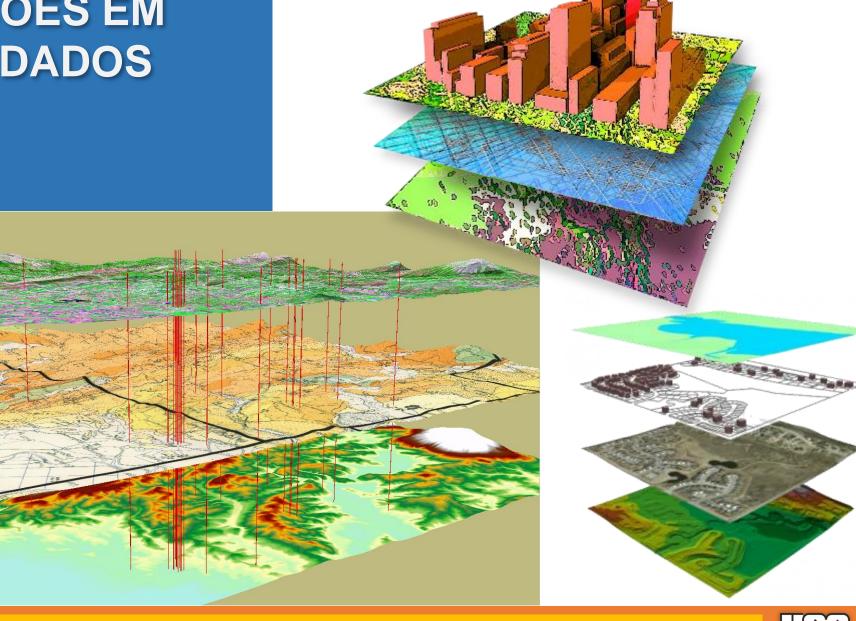

UNIVERSIDADE DE SÃO PAULO

Escola Politécnica

Departamento de Engenharia de Minas e de Petróleo – PMI Graduação em Engenharia de Petróleo


PMI 3331 – GEOMÁTICA APLICADA À ENGENHARIA DE PETRÓLEO

SIG: OPERAÇÕES EM BANCOS DE DADOS

Escala e Resolução

Dados espaciais são especiais!

Escala

 Um padrão espacial em uma escala pode ser simplesmente uma variação aleatória em outra escala.

Indexação Espacial

- Modelos de dados geográficos
- Topologia
- Medidas de proximidade
- Incerteza ("Borda" / "MAUP")

Escala e Resolução

Superfície da terra é quase infinitamente complexa;

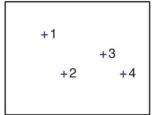
Ex: Linha de Costa.

- Resolução espacial é um termo dado para um limite de distância abaixo do qual os detalhes são desnecessários, irrelevantes ou imperceptíveis;
- Escala, uma fração representativa, que é a razão das distâncias no mapa e suas distâncias correspondentes no mundo real.

Fonte: Adaptado de Smith, Goodchild e Longley, 2013

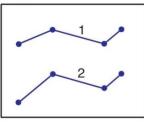
Modelo de Dados

Modelo de Dados	Examplo de aplicação
Computer-aided design (CAD)	Desenho ou projeto de engenharia automatizado
Gráfico (não-topológico)	Mapeamento comum
Imagem	Processamento de imagens e análises de <i>grids</i> simples
Raster/grid	Análise espacial e modelagem, especialmente em aplicações de recursos ambientais e naturais
Vetor/Georreferenciado	Operações sobre as feições geométricas dos dados vetoriais em cartografia, análise sócioeconômica e de recursos, e modelagem
Redes	Análise de redes aplicada ao transporte, hidrologia e utilitários
Triangulated irregular network (TIN)	Visualização de superfície/terreno
Objeto	Operações em todos os tipos de entidades (varredura / vetor / TIN etc) em diversos tipos de aplicações.



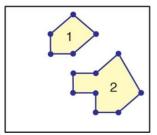
Modelos de Dados Geográficos

Vetor



Point number (x,y) coordinates

1 (2,4) 2 (3,2) 3 (5,3) 4 (6,2)


Polylines

Polyline number

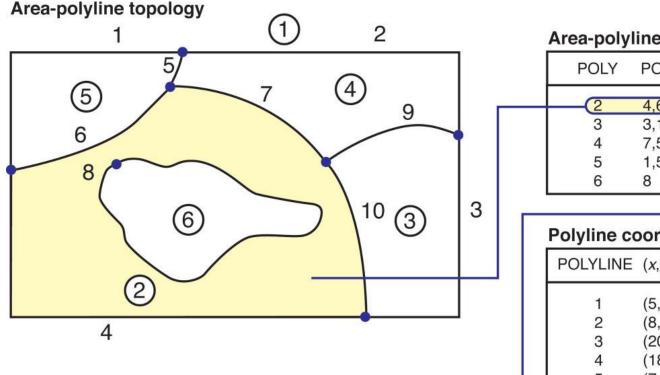
1 (1,5) (3,6) (6,5) (7,6) 2 (1,1) (3,3) (6,2) (7,3)

Areas

Area number

(x,y) coordinates

(x,y) coordinates


1 (2,4) (2,5) (3,6) (4,5) (3,4) (2,4) 2 (3,2) (3,3) (4,3) (5,4) (6,2) (5,1) (4,1) (4,2) (3,2)

Vetores: estrutura topológica

The polygons are made up of the polylines shown in the area polyline list. The lines are made up of the coordinates shown in the line coordinate list.

POLY	POLYLINE
	4,6,7,10,0,8
3	3,10,9
4	7,5,2,9
5	1,5,6
6	8

Polyline coordinate list

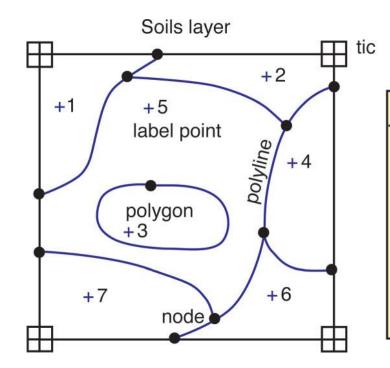
	POLYLINE	(<i>x</i> , <i>y</i>) c	oordina	ites
	1	(5,3)	(5,5)	(8,5)
	2	(8,5)	(20,5)	
	3	(20,4)	(20,1)	
	4	(18,1)	(5,1)	(5,3)
	5	(7,4)	(8,5)	107 Tel 85
-	6	(7,4)	(6,3)	
	7			
	8			
	9			
	10			

Vetores: estrutura topológica

For each polyline the left and right polygons are stored with the geometry data

Left-right topology Left-right list Polyline# LPoly **RPoly** 4 (5) 8 110 (3) 3 6 Polyline coordinate list POLYLINE# X, Y Pairs 5,3 5,5 8,5 8,5 20,5 ... 20,4 20,1 ... 18,1 5,1 5,3 7,4 8,5 7,4 6,3 ...

(Source: after ESRI 1997)


10

Vetores: relação com atributos

Relational DataBase Management System (RDBMS)

Each of the polygons is linked to a row in an RDBMS table. The table has multiple attributes, one in each column.

Soils attributes

ID	Soil	Class	Suitability
1	АЗ	113	HIGH
2	C6	95	LOW
3	B7	212	MODERATE
4	B13	201	MODERATE
5	Z22	86	LOW
6	A6	77	HIGH
7	A1	117	LOW

Modelos de Dados Geográficos

Vetor: operações em um mapa, em dois mapas ou em múltiplos.

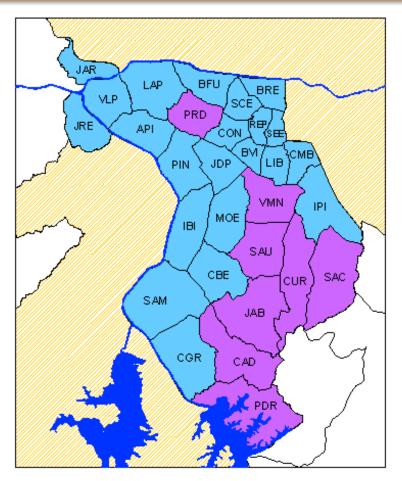
Em **um** mapa:

- Seleção por atributo
- Classificação por atributo
- Seleção por relação espacial: adjacência, continência, etc

Em dois mapas:

Overlay

Em **múltiplos** mapas:

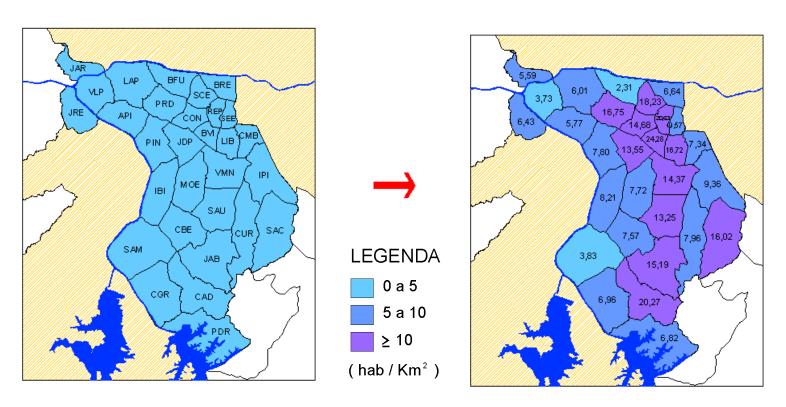

Seleção por atributo

Vetores: seleção por atributo

- condições de seleção são geralmente formalizadas com uso dos operadores:
 - "menor que" (<)
 - "maior que" (>)
 - "igual" (=)
 - "diferente" (<>)

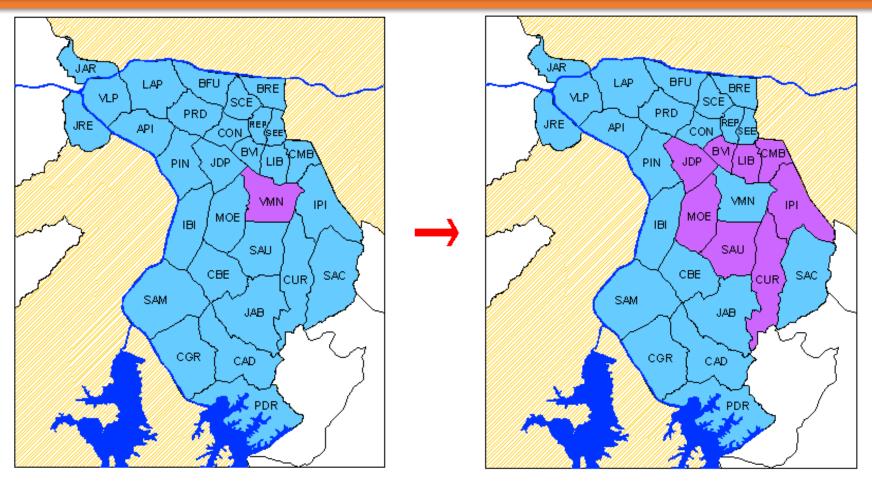
 exemplo: seleção dos distritos municipais com: população > 100.000 hab.

Operação: classificação dos distritos municipais por classe de densidade populacional.

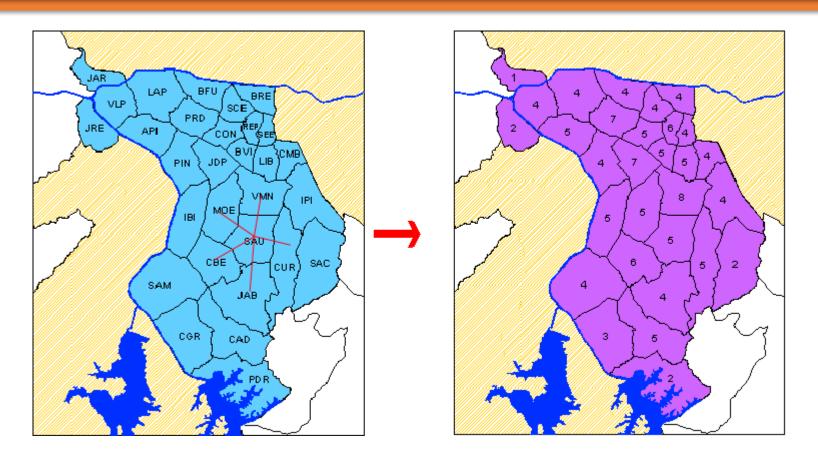


Vetores: classificação por atributo

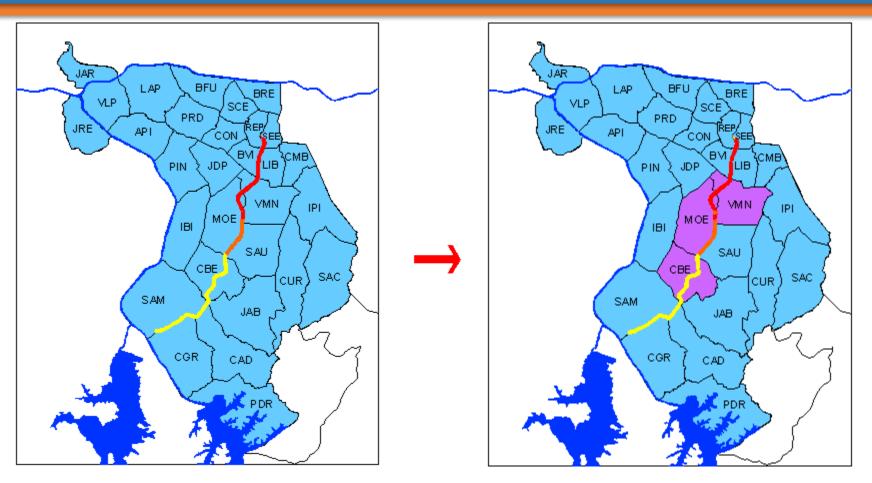
Divisão de objetos geográficos em categorias, segundo um conjunto de condições e critérios.


Operação: classificação dos distritos municipais por classe de densidade populacional.

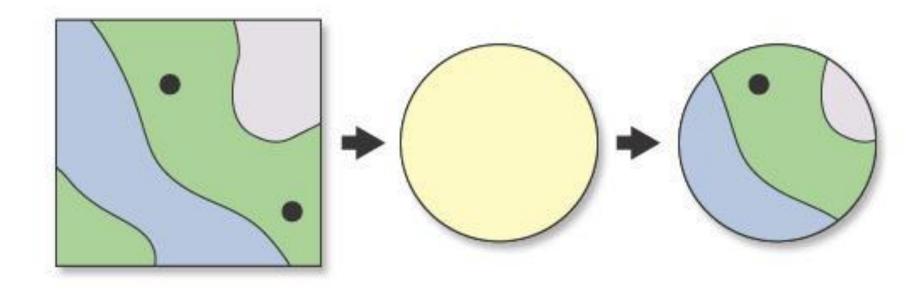
Vetores: seleção por atributo e adjacência

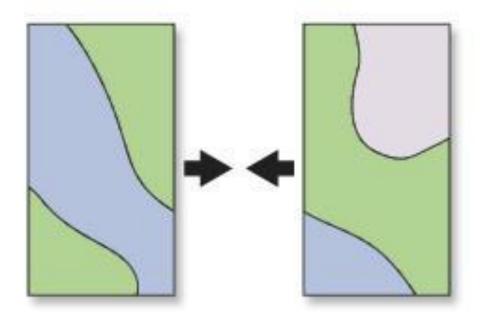

Operação: seleção de todos os distritos municipais adjacentes ao Distrito Vila Mariana.

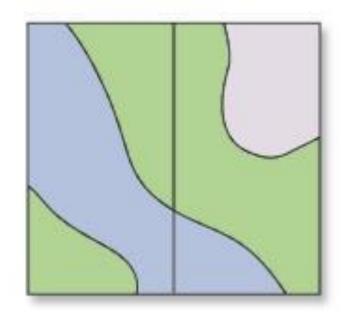
Vetores: seleção por adjacência


Determinação do número de distritos vizinhos para cada distrito municipal SAL=5

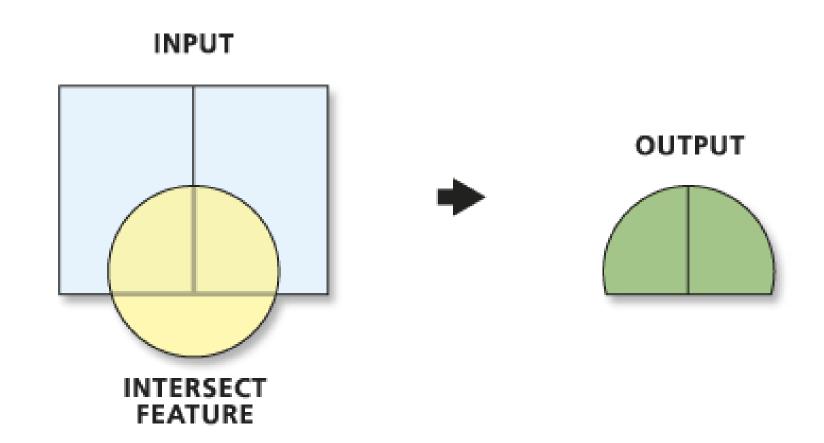
Vetores: seleção por atributo e continência


Operação: seleção de todos os distritos municipais que contêm trechos do eixo viário formado pelas Avenidas 23 de Maio/Rubem Berta/ Washington Luís.

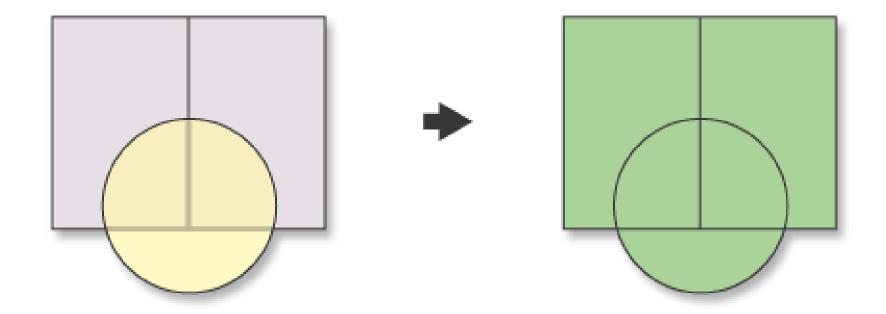

Vetores: Overlay & Clip



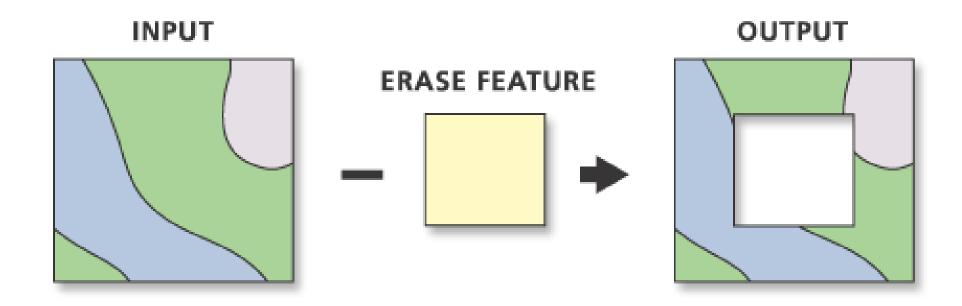
Vetores: Overlay & Marge



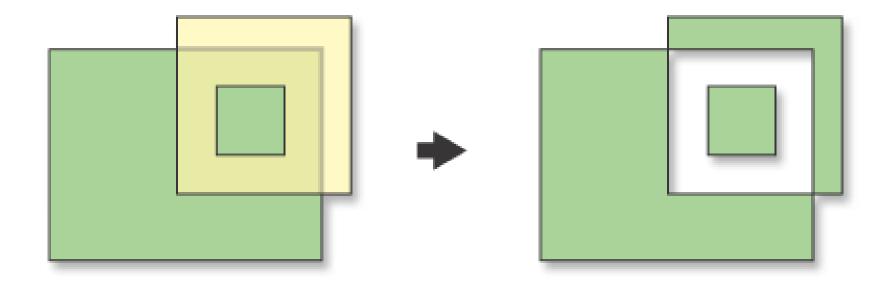
Vetores: Overlay & Intersect



Vetores: Overlay & Union



Vetores: Overlay & Erase



Vetores: Overlay & Symmetrical Difference

Modelos de Dados Geográficos

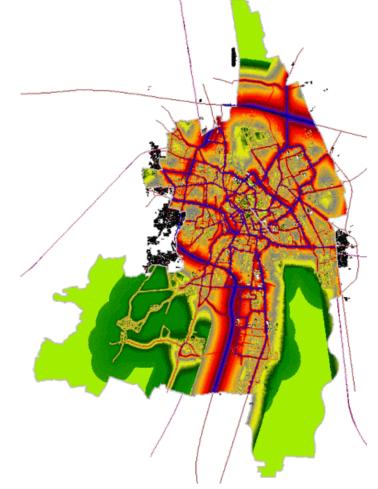
Matriz: tipicamente tem um único atributo associado a cada célula (x, y, z).

• Operações em um única matriz ou em múltiplas.

Álgebra de Mapas (Tomlin, 1983):

- Processo de combinação de mapas para matrizes de tamanhos idênticos coregistradas.
- Combinação: operações booleanas ou aritméticas.

Operações: locais, focais, zonais e globais.



Algebra de Mapas

Álgebra de Mapas (Tomlin, 1983):

- Combinação: operações booleanas ou aritméticas.
- Adição de matrizes: cada célula representa o nível de ruído (L) devido a uma fonte particular, como por ex: A: estradas, B: aviões. O nível total de ruído:
- L = A+B+C+...
- Extensão: álgebras de mapas multidimensionais (tempo), restrição: processamento.

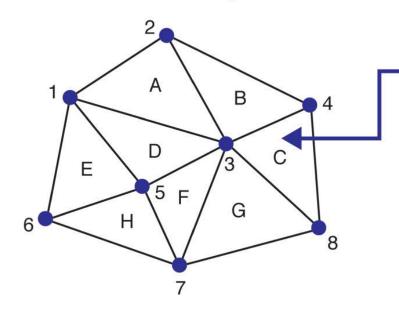
Noise map, Augsburg

Source: Smith et al. 2015: Accon & DataKustnik GmbH, Germany

Operações

Operações: locais, focais, zonais e globais.

- Locais: estatística univariada (média, máx, min, etc.), incluindo operações de reclassificação e seleção.
- Focais: análise de vizinhos imediatos em células regulares.
- Zonais: análise de vizinhos a partir de zonas irregulares pré-definidas.
- Globais: envolve toda a matriz, ex: matriz de custo de distância.



TIN: Triangular Irregular Network

A TIN is a topologic data structure that manages information about the nodes that comprise each triangle and the neighbors to each triangle

Triangle	Node list	Neighbors
Α	1, 2, 3	-, B, D
В	2, 4, 3	-, C, A
C	4, 8, 3	-, G, B
D	1, 3, 5	A, F, E
Е	1, 5, 6	D, H, -
F	3, 7, 5	G, H, D
G	3, 8, 7	C, -, F
Н	5, 7, 6	F, -, E

Triangles always have three nodes and usually have three neighboring triangles. Triangles on the periphery of the TIN can have one or two neighbors.

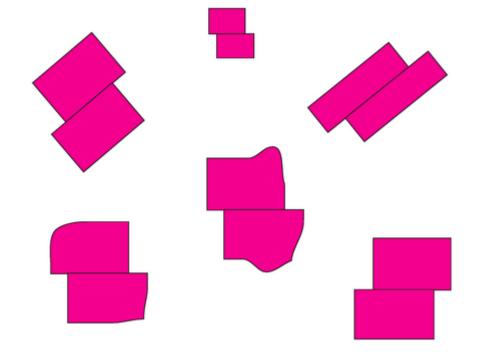
TIN: Triangular Irregular Network

Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER/GDEM)

Topologia

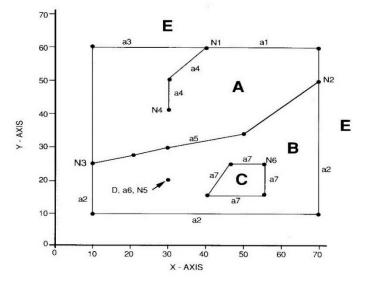
Em matemática, uma propriedade é dita como topológica se resiste à "distorções":

- Dimensionalidade: a distinção entre pontos, linhas, áreas e volume
- Adjacência: tocar
- Conectividade: ligação entre ruas
- Continência: ponto dentro de uma área



Topologia

 Duas áreas com fronteiras em comum, ainda que ocorram distorções na forma das áreas, estas continuarão em contato.



Topologia

 O computador depende de definições explícitas de como as feições estão relacionadas entre si;

 Estudo das propriedades geométricas que não variam mediante uma deformação (proximidade, vizinhança)

SPATIAL DATA ENCODING

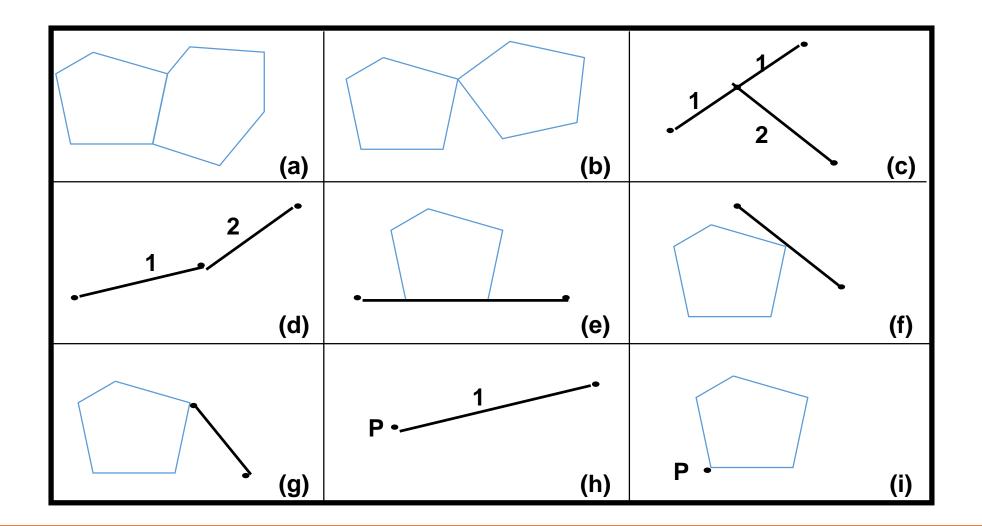
POLYGON	ARCS
Α	a1, a5, a3
B C	a2, a5, 0, a6, 0, a7 a7
D E	a6 area outside
	map coverage

NOD	E TOPOLOGY
NODE	ARCS
N1	a1, a3, a4
N2	a1, a2, a5
N3	a2, a3, a5
N4	a4
N5	a6
N6	a7

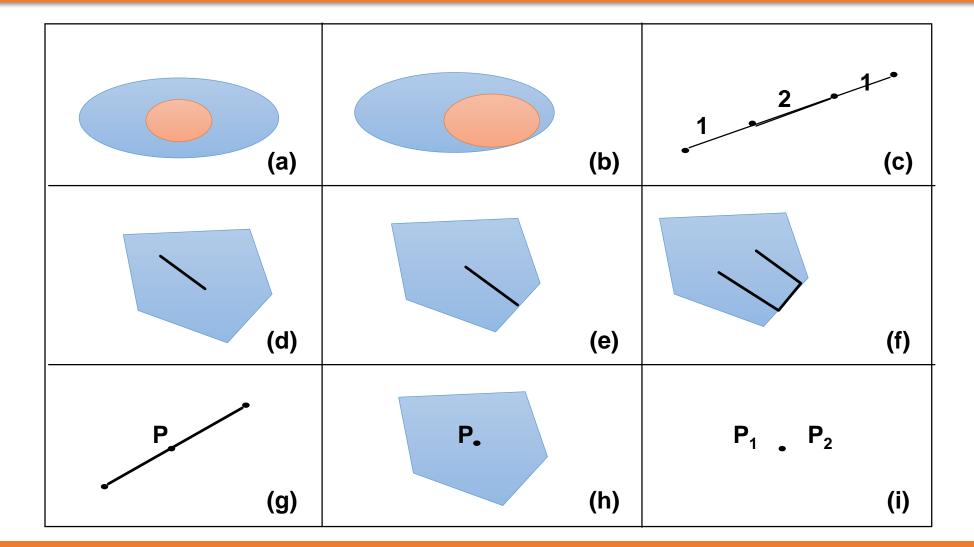
	A. T. A			
ARC	NODE	END NODE	LEFT POLYGON	RIGHT POLYGON
a1	N1	N2	E	А
a2	N2	N3	E	В
аЗ	N3	N1	E	Α
a4	N4	N1	A	Α
a5	N3	N2	A	В
a6	N5	N5	В	В
a7	N6	N6	В	C

	AR	C COORDINATE DATA	
ARC	START X, Y	INTERMEDIATE X, Y	END X, Y
a1	40, 60	70, 60	70, 50
a2	70, 50	70.10; 10.10	10, 25
a3	10, 25	10,60	40, 60
a4	40, 60	30,50	30, 40
a5	10, 25	20,27; 30,30; 50,32	70, 50
a6	30, 20		30, 20
a7	55, 27	55,15; 40,15; 45,27	55, 27

Fonte: JONES, C.B. Geographical information systems and computer cartography


Fonte: LabGEO / EPUSP

Relações Topológicas - Adjacência

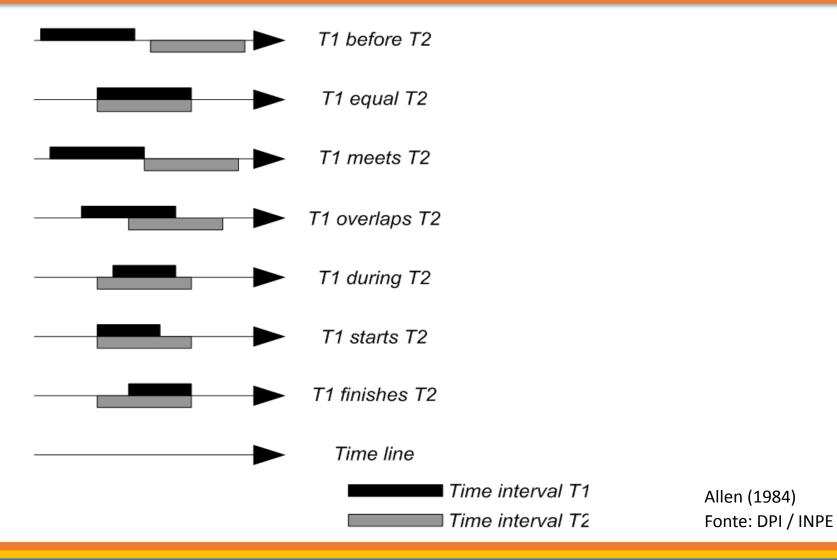


Relações Topológicas – Pertinência

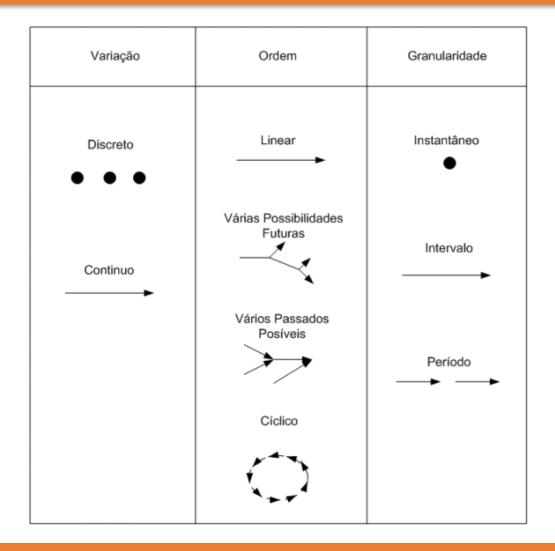
Relacionamentos Espaciais

t1 equal t2	
t1 touch t2	
t1 in/contain t2	
t1 covered/cover t2	
t1 overlap t2	
t1 disjoint t2	

Egenhofer e Golledge (1988)


Fonte: DPI / INPE

Relacionamentos Temporais

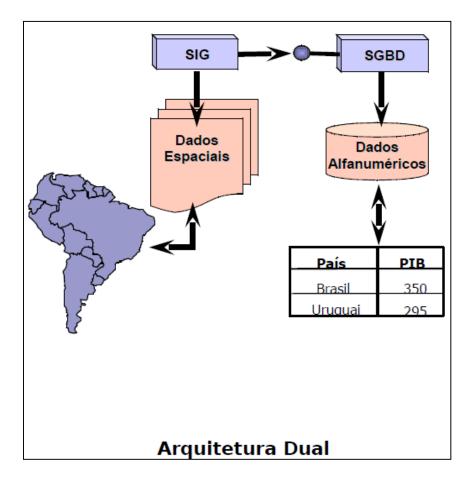


Estruturas Temporais - Síntese

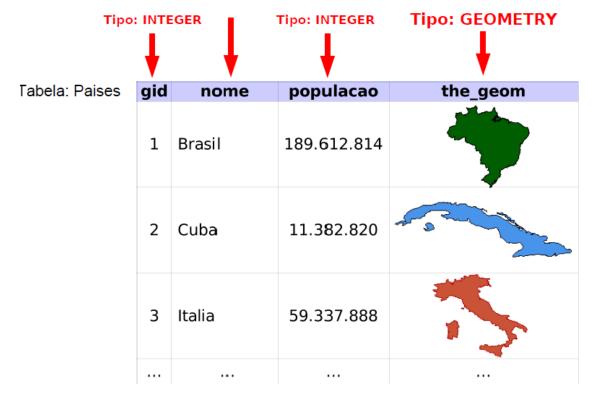
Worboys (1995) Fonte: DPI / INPE

Geocodificação

 A geocodificação de endereço utiliza um algorítimo que associa a distância de numeração de segmentos de vias públicas em um centro de linha.



SIG's e BANCOS DE DADOS



^{*} Sistema de Banco de Dados Espaciais (SBDE)

Arquitetura Integrada

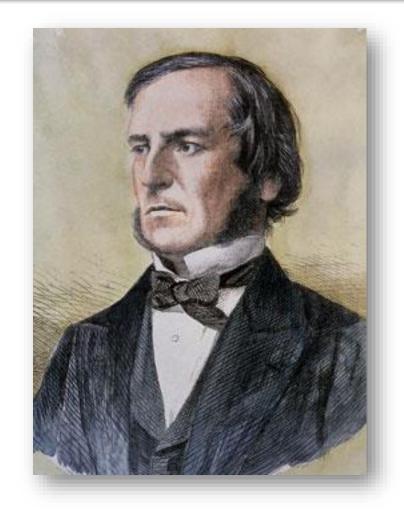
• Um Sistema de Banco de Dados Espaciais (SBDE) é um Sistema de Banco de Dados com recursos para tratar dados espaciais.

Fonte: Juliana Kolling

Fontes Externas de Dados

- Contribuição voluntária, Coleta colaborativa
- Geoportais
- Infraestrutura de Dados Espaciais

- Desafio: os dados são adequados para meu propósito?
 - Formato (Padrões ISO / OGC etc) ETL
 - Sistema de referência
 - Metadados (qualidade, procedência, etc)



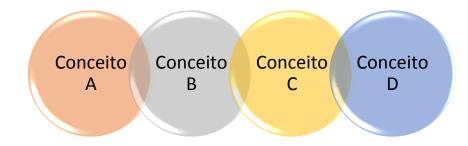
Modelagem Espacial baseado em Abordagem Supervisionada

Lógica Booleana

- **George Boole** (1815-1864) filósofo e matemático britânico;
- 1848: The Calculus of Logic;
- Aplicação da matemática às operações mentais do raciocínio humano - definição da "álgebra booleana".

Lógica Booleana

Conceitos

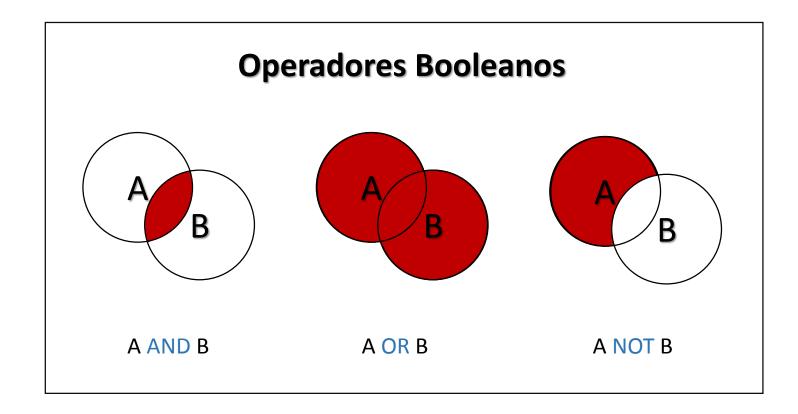

- Cada expressão ou variável poderá apresentar apenas um dos seguintes valores:
 - Verdadeiro (V);
 - Falso (F).
- Adaptações ao conjunto de valores:

```
{Falso, Verdadeiro} - raciocínio humano
```

{Desligado, Ligado} - circuitos de chaveamento

{0, 1} - sistema binário

{OV, +5V} - eletrônica digital



Lógica Booleana

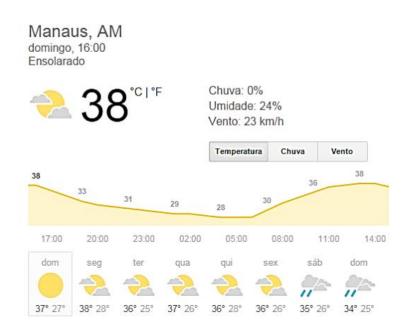
Operações e Operadores

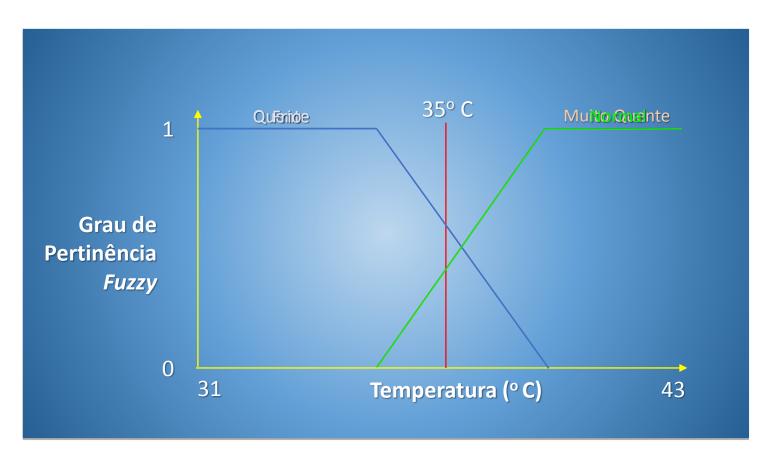
- Conjunto de Operações:
 - complementação
 - multiplicação lógica
 - adição lógica

Modelagem Espacial baseado em Abordagem Supervisionada

Lógica Fuzzy, Difusa ou Nebulosa

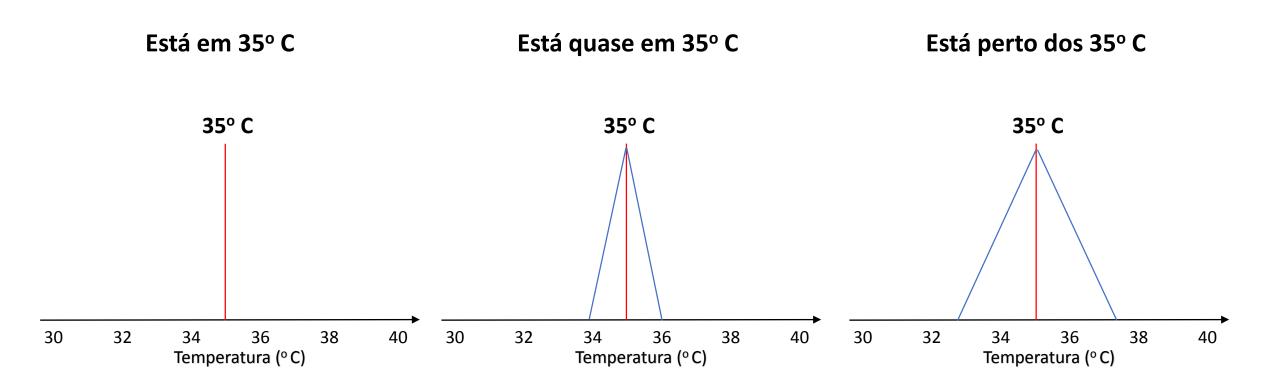
- Surgimento: **Lofti A. Zadeh** em 1965 (matemático, engenheiro eletrônico e cientista da computação estadunidense nascido no Azerbaijão).
 - estudar o aspecto vago da informação;
 - em 1978 desenvolveu a "Teoria das Possibilidades", menos restrita que a noção de probabilidade;
 - ligar os recursos da linguística com a inteligência humana, já que muitos conceitos são melhor definidos por palavras do que pela matemática.
- A técnica se baseia em graus de pertinência (verdade).
 - Valores limitantes [0 e 1];
 - Diversos estágios de verdade entre 0 e 1.





Do que trata a Lógica Fuzzy?

Como está a temperatura lá fora?



Conceito de Número Fuzzy

Formas de descrição da temperatura

Do que trata a Lógica Fuzzy?

Usa termos **intuitivos**, **linguísticos** para construir modelos **robustos** sobre **sistemas complexos** encontrados na vida real.

Conceitos

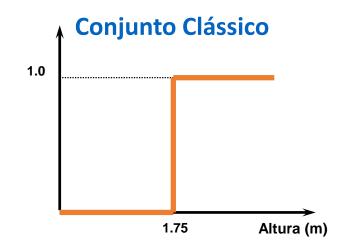
A *Lógica Fuzzy* ensina os computadores a tomar decisões semelhantes às humanas em um mundo de incertezas.

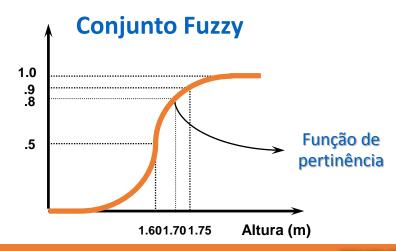
"O quanto mais de perto se olha para um problema do mundo real, mais o difusor se torna a solução."

(Zadeh, 1973)

Como funciona a Lógica Fuzzy?

- Como um computador pode desenvolver uma análise fuzzy?
 - pela parametrização fuzzy.
- Técnica baseada em graus de pertinência ou verdade.
 - valores 0 e 1 ficam nas extremidades;
- inclui os vários estados de verdade entre 0 e 1. (digital, descontínuo).

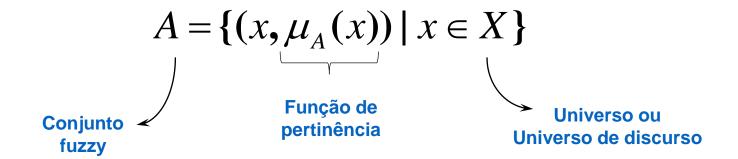




Lógica Fuzzy: Conjuntos e Funções

Pertinência Fuzzy (Fuzzy Membership)

- Na teoria dos conjuntos nebulosos existe um grau de pertinência de cada elemento a um determinado conjunto;
- Conjuntos com limites imprecisos;
- Fuzzificação é a conversão de paradigmas matemáticos clássicos a um conjunto de pertinência linguística (analógico, contínuo);
- **Defuzzificação** é o retorno ao conjunto matemático clássico.



Lógica Fuzzy: Definição matemática

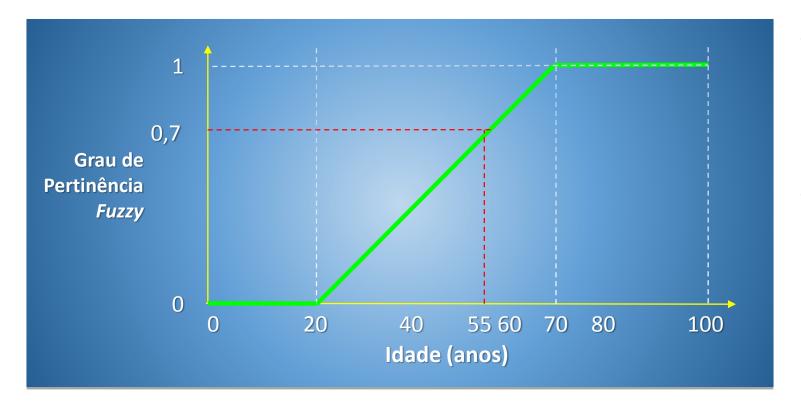
Pertinência Fuzzy (Fuzzy Membership)

Um conjunto fuzzy A em X é expresso como um conjunto de pares ordenados:

Um conjunto fuzzy é totalmente caracterizado por sua função de pertinência.

Lógica Fuzzy e Variáveis linguísticas

- Variáveis linguísticas apresentam valores que não dizem respeito a números, mas a palavras ou frases na linguagem natural (Altura = alto);
- Qualquer valor linguístico pode ser representado por um conjunto fuzzy;
- Algumas variáveis linguísticas do conjunto "ALTO" com qualificadores:
- muito ALTO
- um tanto ALTO
- ligeiramente ALTO
- positivamente não muito ALTO



Lógica Fuzzy e Variáveis linguísticas

 Ex: Como fuzzyficar uma população com idade distribuída entre 0 – 100 anos?

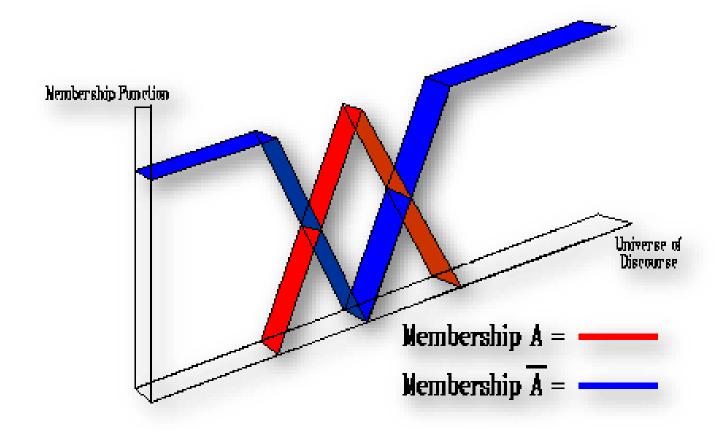
- Variáveis linguísticas possibilitam que a linguagem da modelagem fuzzy expresse semântica usada por especialistas.
- Exemplo:

if "tempo.contribuição" is
LONGO

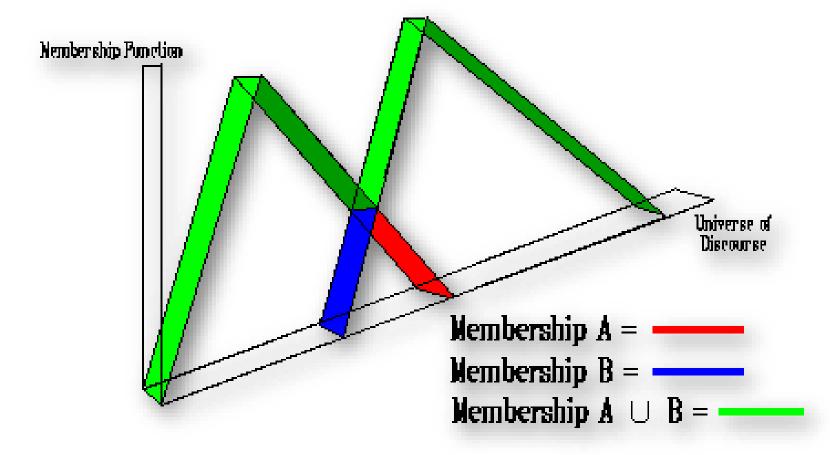
then salário de aposentadoria is
ALTO

Funções de Pertinência Fuzzy

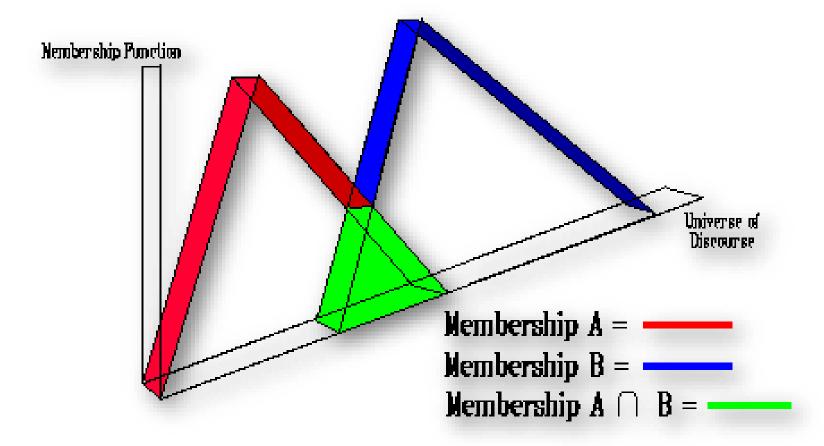
Triangular	Retangular	Trapezoidal	Gaussiana	Sigmóide


- Quantidade de funções: experiência do usuário;
- Número de funções de pertinência: ~ 2 a 7;
- Formato das funções de pertinência: varia com as necessidades do usuário;
- Precisão do sistema: relacionado ao grau de superposição entre as funções de pertinência;
- Caso haja dados experimentais, torna-se possível a utilização de sistemas neuro-fuzzy para geração automática de funções de pertinência;
- Funções de pertinência devem abranger todo o universo de discurso da variável analisada.

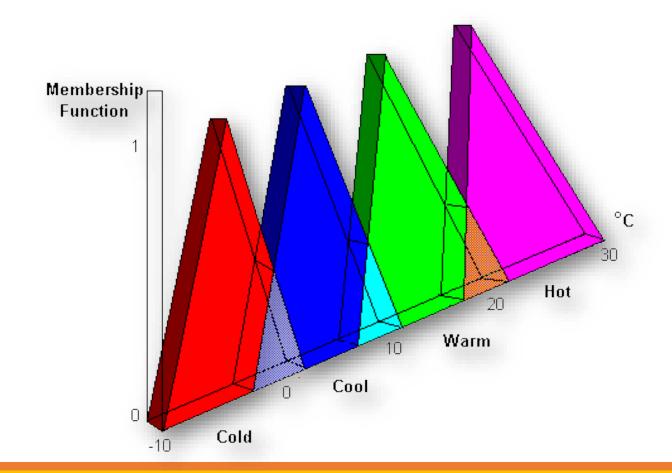
Conjuntos geradores de funções



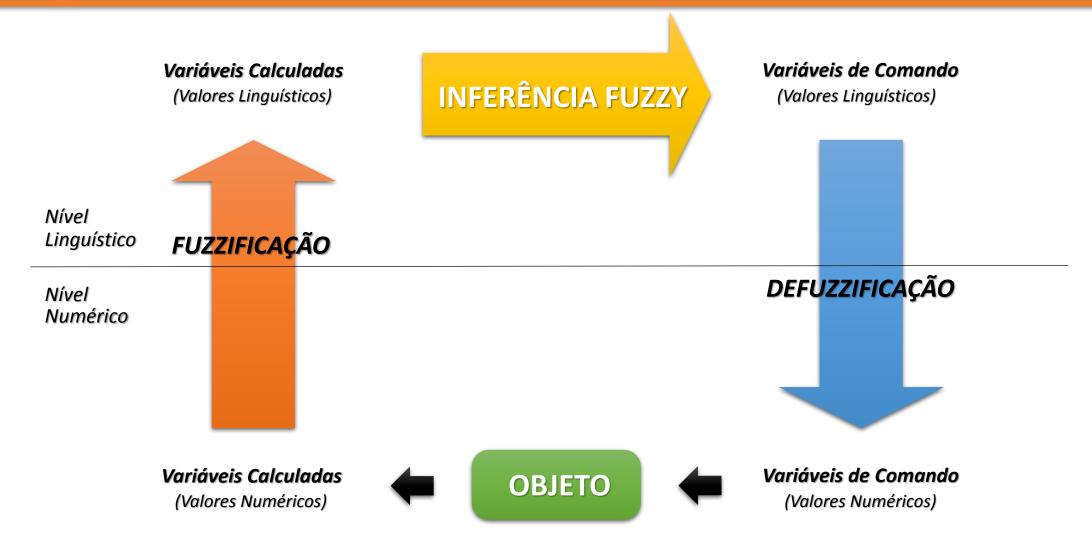
União entre os conjuntos



Interseção entre os conjuntos



Conjuntos fuzzy para caracterizar a temperatura de um ambiente

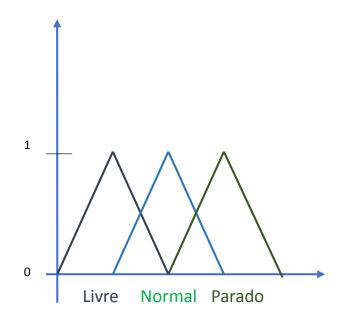


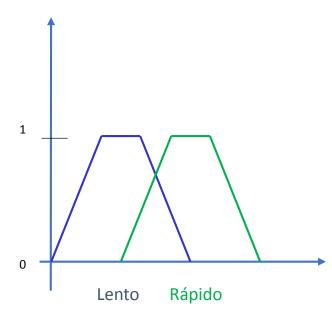
Etapas do Raciocínio Fuzzy

Fuzzificação

- Etapa pela qual os valores numéricos são transformados em graus de pertinência para um determinado valor linguístico;
- Envolve as seguintes sub-etapas:
 - Análise do Problema
 - Definição das Variáveis
 - Definição das Funções de pertinência
 - Criação das Regiões

Cada valor de entrada terá um grau de pertinência em cada um dos conjuntos difusos.
 A classe e a quantidade das funções de pertinência usadas em um sistema dependem de fatores tais como: precisão, estabilidade, facilidade de implementação etc.




Fuzzificação

Exemplos de variáveis de trânsito

Função Triangular

Função Trapezoidal

Fuzzificação

"SE condição ENTÃO conclusão, com variáveis linguísticas (fuzzy)"

Exemplo:

- Se a velocidade dos carros é baixa* então o trânsito é lento;
- Se a velocidade dos carros é média* então o trânsito regular;
- Se a velocidade dos carros é alta* então o trânsito livre.

^{*} Medidas relativas à velocidade da via.

Fuzzificação em Processamento Digital de Imagens

FUZZYFICAÇÃO

 Domínio Fuzzy

 0,0
 0,5
 0,5

 0,8
 1,0
 0,2

 0,5
 0,0
 0,9

Valor de Pertinência

Inferência *Fuzzy*: avaliar as regras

- Cada antecedente "if" tem um grau de pertinência. A ação da regra "then" representa a saída nebulosa da regra.
- Durante a avaliação das regras, a intensidade da saída é calculada com base nos valores dos antecedentes e então indicadas pelas saídas nebulosas da regra.

Inferência *Fuzzy*: agregar as regras

- São as técnicas utilizadas na obtenção de um conjunto difuso de saída "x" a partir da inferência nas regras.
- Determinam quanto a condição de cada regra será satisfeita.
- Para cada variável fuzzy de saída, considera o resultado de todas as regras. Por exemplo, considerando a pertinência máxima das regras para cada valor da variável.

Deffuzificação

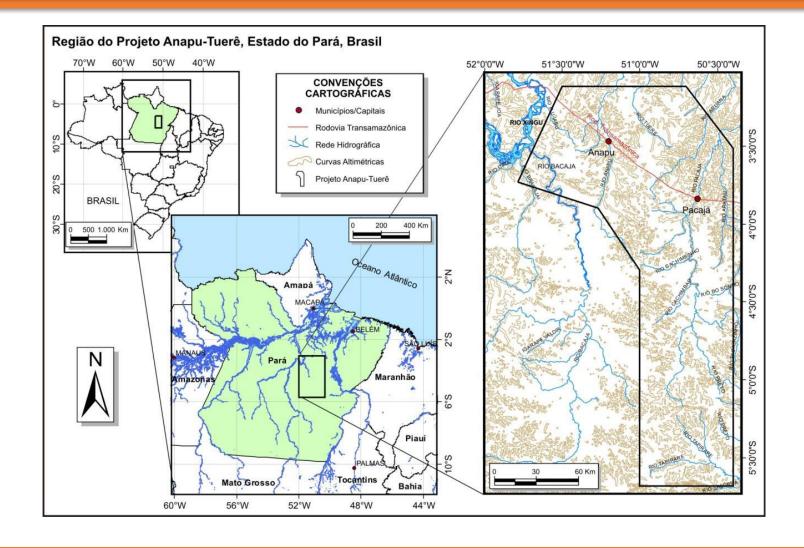
- Consiste na avaliação das diversas respostas fornecidas pelas regras lógicas e atribuição de um número à saída.
- Esse número é que dirá "o que é mais pertinente de se fazer", bem como "com que grau".

Operadores de Combinação *Fuzzy*

As variáveis resultantes, após fuzzificadas são, comumente, agrupadas por "operadores de combinação fuzzy".

 OR (união) Max (PF₁, PF₂) generoso, otimista 	$Max[\mu(x)_i]$
 AND (interseção) Min (PF₁, PF₂) restritivo, conservador 	$Min[\mu(x)_i]$
PRODUTOPF₁ x PF₂redutivo	$\Pi_{i=1}^n \mu(x)_i$
 SOMA 1 -[(1 - PF₁) x (1 - PF₂)] Redutivo 	$1 - \prod_{i=1}^{n} [1 - \mu(x)_i]$
 GAMMA SOMA^γ x PRODUTO (1 - γ) γ perto de 1, expansivo γ perto de 0, redutivo 	$(1 - \prod_{i=1}^{n} [1 - \mu(x)_i])^{\gamma} x (1 - \prod_{i=1}^{n} [1 - \mu(x)_i])^{(1-\gamma)}$

Pertinência Fuzzy (PF) Função para o mapa iº

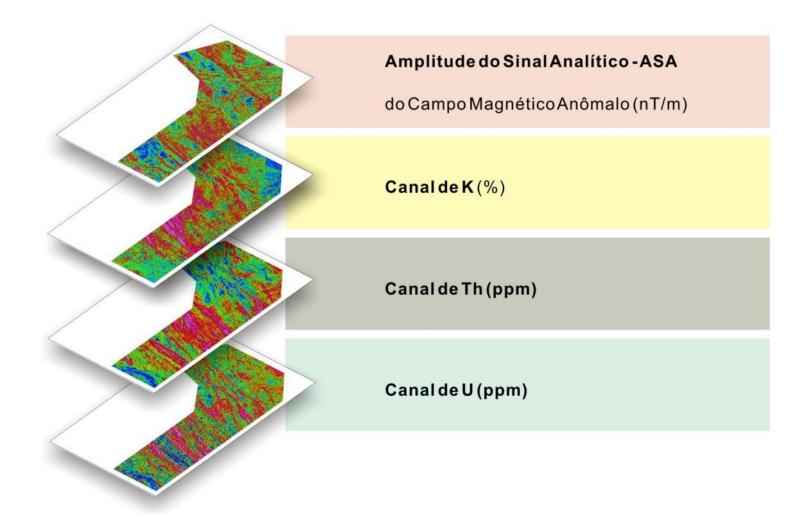

Dados Aerogeofísicos: modelo espacial baseado em Lógica Fuzzy voltado ao Mapeamento Geológico e à Prospecção Mineral

Cleyton Carneiro (capítulo da tese de doutorado)

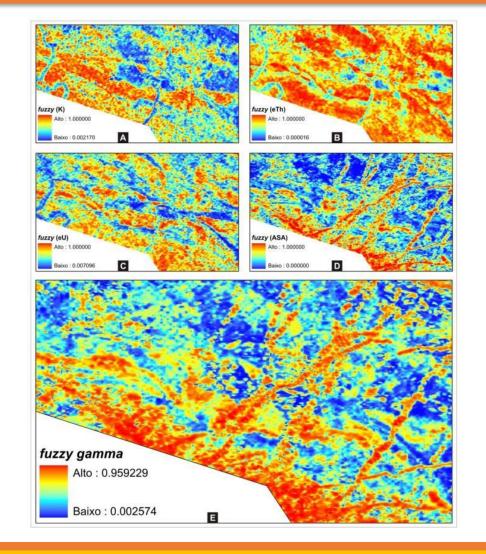
Concentrações médias de radioelementos em diferentes classes de rocha. (Adaptada de Killeen 1977)

Classes de rocha	Concentrações médias			
	K (%)	U (ppm)	Th (ppm)	
Extrusivas ácidas	3,1	4,1	11,9	
Intrusivas ácidas	3,4	4,5	25,7	
Extrusivas intermediárias	1,1	1,1	2,4	
Intrusivas intermediárias	2,1	3,2	12,2	
Extrusivas básicas	0,7	0,8	2,2	
Intrusivas básicas	0,8	0,8	2,3	
Ultrabásicas	0,3	0,3	1,4	
Extrusivas intermediárias alcalifeldspáticas	6,5	29,7	133,9	
Intrusivas intermediárias alcalifeldspáticas	4,2	55,8	132,6	
Extrusivas básicas alcalifeldspáticas	1,9	2,4	8,2	
Intrusivas básicas alcalifeldspáticas	1,8	2,3	8,4	
Rochas sedimentares químicas*	0,6	3,6	14,9	
Carbonáticas	0,3	2,0	1,3	
Sedimentares detríticas	1,5	4,8	12,4	
Ígneas metamórficas	2,5	4,0	14,8	
Sedimentares metamórficas	2,1	3,0	12,0	

^{*} incluem as carbonáticas



 P/ rochas máficas e ultramáficas com alto gradiente magnético:

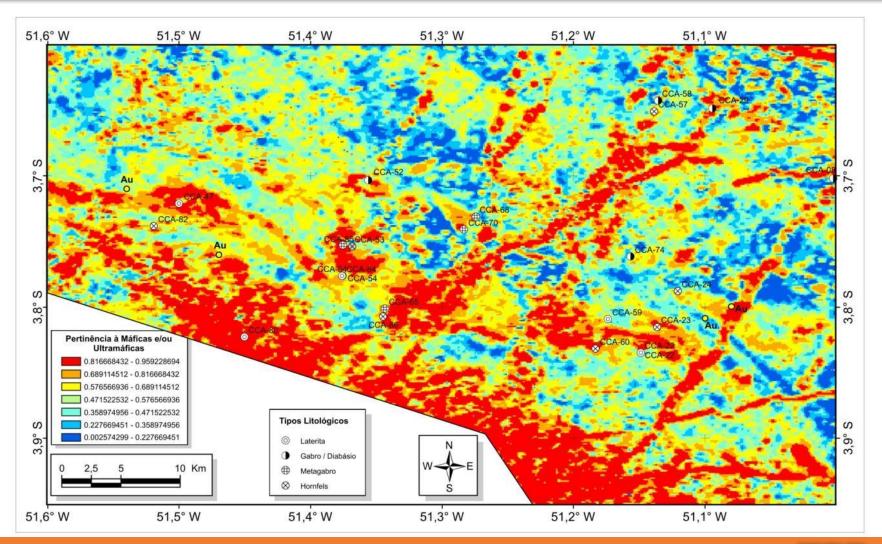


Variáveis -> fuzzificadas no intervalo entre [0,1]

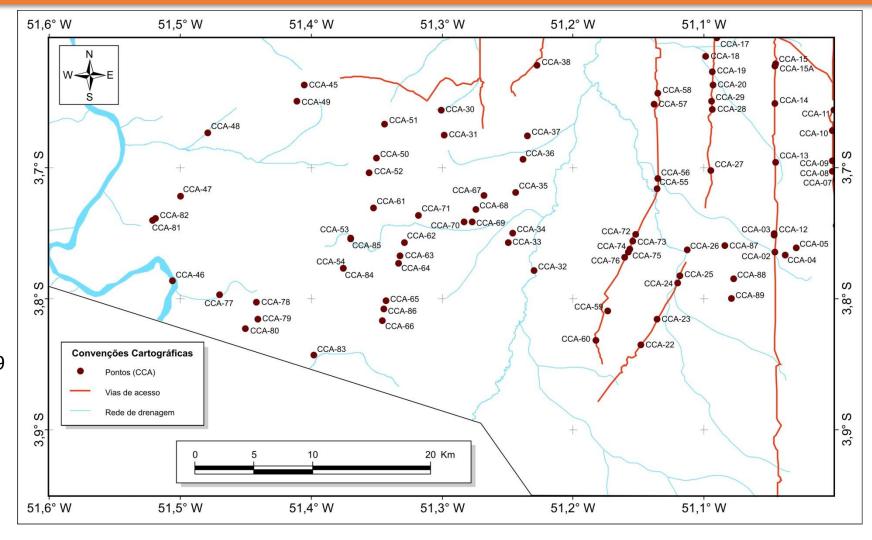
Alta pertinência fuzzy

- baixos valores dos canais gama: K, Th e U
- altos valores do gradiente magnetométrico: Amplitude do Sinal Analítico

Os dados gerados foram integrados pelo operador fuzzy gamma.



 Modelo de favorabilidade à ocorrência de rochas máficas e/ou ultramáficas



 Modelo de favorabilidade à ocorrência de rochas máficas e/ou ultramáficas

1ª Campanha: jul-ago/2008

2ª Campanha: jul/2009

Nº total de afloramentos descritos: 89

Rochas máficas e/ou ultramáficas aflorantes na região centro-leste do Domínio Bacajá e seus respectivos valores de pertinência fuzzy. Observa-se em cinza as amostras que tiveram valores de pertinência condizentes com as rochas máficas e/ou ultramáficas.

Afloramento	ASA (nT/m)	CT	K (%)	Th (ppm)	U (ppm)	Pertinência Fuzzy	Rocha
CCA-08	0,202	4,433	1,171	7,315	1,486	0,632	Diabasio
CCA-22	0,115	4,659	0,008	11,875	1,826	0,488	Anfibolito
CCA-23	0,092	1,263	0,109	3,091	0,276	0,722	Anfibolito
CCA-24	0,163	4,088	0,443	7,170	1,249	0,703	Anfibolito
CCA-29	0,541	4,922	0,964	10,306	0,764	0,857	Diabasio
CCA-47	0,218	1,720	0,152	4,046	0,353	0,869	Laterita
CCA-52	0,096	3,003	0,100	5,531	1,734	0,455	Diabasio
CCA-54	0,109	3,205	0,197	8,388	0,886	0,632	Laterita
CCA-57	0,202	3,882	0,505	8,687	0,973	0,778	Anfibolito
CCA-58	0,368	5,615	0,592	11,063	2,589	0,820	Gabro
CCA-60	0,231	3,961	0,104	10,839	1,208	0,808	Anfibolito
CCA-65	0,116	1,413	0,016	3,434	0,516	0,711	Metagabro
CCA-68	0,111	2,257	0,067	2,501	1,174	0,585	Metagabro
CCA-70	0,129	2,245	0,253	5,681	0,044	0,754	Metagabro
CCA-74	0,069	5,158	0,740	11,439	1,459	0,387	Gabro
CCA-80	0,447	2,833	0,013	9,500	0,112	0,942	Laterita
CCA-82	0,116	2,177	0,026	5,101	1,243	0,587	Anfibolito
CCA-85	0,277	6,277	0,494	14,648	1,561	0,821	Metagabro
CCA-86	0,164	0,749	0,133	1,852	0,057	0,853	Anfibolito

- Afloramentos descritos: 89
- Rochas máficas (classificação de campo): 19
- Máficas/ultramáficas coincidentes c/ alta pertinência fuzzy: 16

- Acerto: 84,21%

- Limitações do método: rochas "não máficas" com características geofísicas similares

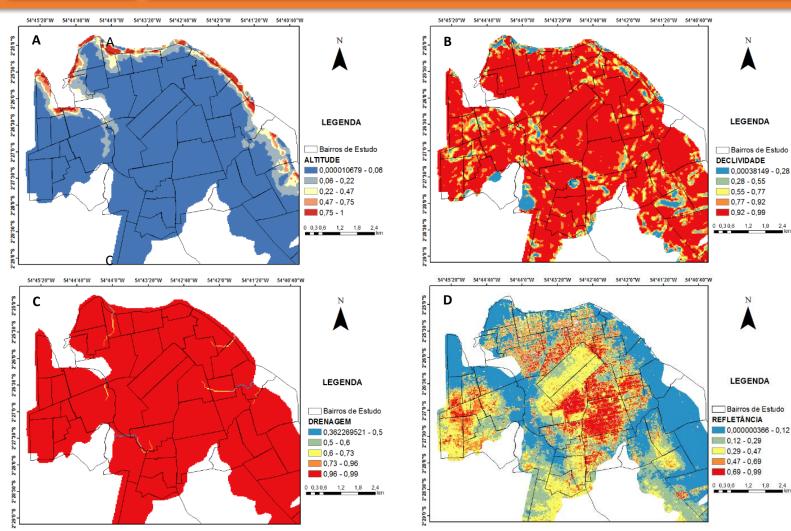
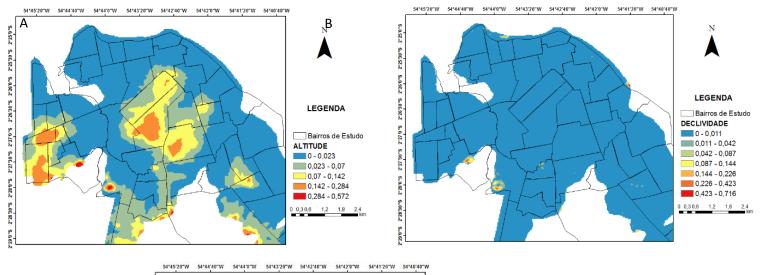
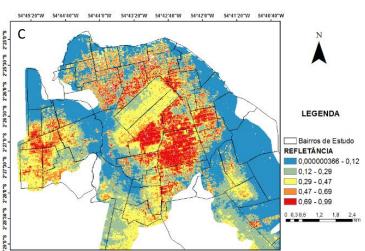
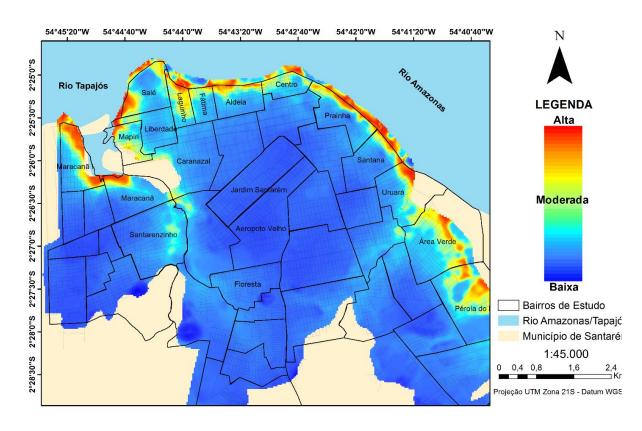

Trabalho desenvolvido pelo estudante Fábio Dourado (UFOPA) em programa de Mobilidade Externa na USP, sob supervisão do Prof. Cleyton Carneiro.

Figura 1 - Área de estudo, sede urbana de Santarém - PA.


Figura 2 - Variáveis para o mapa de *inundação gradual*:


- a) baixos valores de altitude (vermelho);
- b) baixos valores de declividade (vermelho);
- c) alta concentração de rede de drenagem (laranja/azul);
- d) alta refletância de radar para destaque de áreas ocupadas (vermelho).


Figura 3 - Variáveis para o mapa **movimento de massa**:

- a) altos valores de altitude (laranja e vermelho);
- b) alto valores de declividade (laranja e vermelho);
- c) alta refletância (laranja e vermelho).

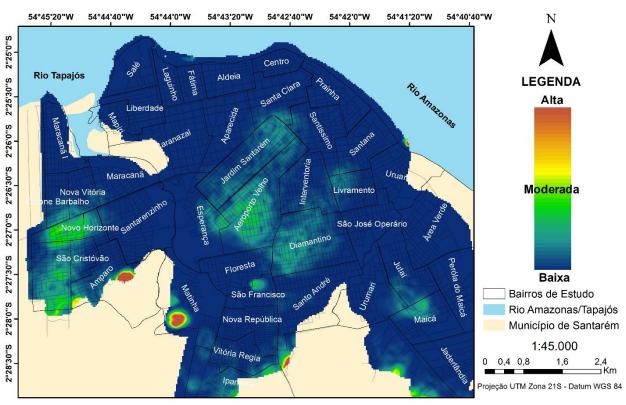


Figura 4 - Mapa de risco a inundação gradual apontando 14 bairros com risco de nível moderado e alto.

Figura 5 - Mapa de risco a movimento de massa apontando 11 bairros com risco de nível moderado e alto.

