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Review

Progress in tuberculosis vaccine development and 
host-directed therapies—a state of the art review
Stefan H E Kaufmann, Christoph Lange, Martin Rao, Kithiganahalli N Balaji, Michael Lotze, Marco Schito, Alimuddin I Zumla, Markus Maeurer

Tuberculosis continues to kill 1·4 million people annually. During the past 5 years, an alarming increase in the 
number of patients with multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis has been noted, 
particularly in eastern Europe, Asia, and southern Africa. Treatment outcomes with available treatment regimens for 
drug-resistant tuberculosis are poor. Although substantial progress in drug development for tuberculosis has been 
made, scientifi c progress towards development of interventions for prevention and improvement of drug treatment 
outcomes have lagged behind. Innovative interventions are therefore needed to combat the growing pandemic of 
multidrug-resistant and extensively drug-resistant tuberculosis. Novel adjunct treatments are needed to accomplish 
improved cure rates for multidrug-resistant and extensively drug-resistant tuberculosis. A novel, safe, widely 
applicable, and more eff ective vaccine against tuberculosis is also desperately sought to achieve disease control. The 
quest to develop a universally protective vaccine for tuberculosis continues. So far, research and development of 
tuberculosis vaccines has resulted in almost 20 candidates at diff erent stages of the clinical trial pipeline. Host-
directed therapies are now being developed to refocus the anti-Mycobacterium tuberculosis-directed immune responses 
towards the host; a strategy that could be especially benefi cial for patients with multidrug-resistant tuberculosis or 
extensively drug-resistant tuberculosis. As we are running short of canonical tuberculosis drugs, more attention 
should be given to host-directed preventive and therapeutic intervention measures.

Introduction
At present, the development of new drugs for the 
treatment of tuberculosis does not keep pace with the 
develop ment of Mycobacterium tuberculosis drug 
resistance. Evidently, innovative interventions are needed 
to combat the emerging pandemic of multidrug-resistant 
tuberculosis and extensively drug-resistant tuberculosis. 
At present, research and development of tuberculosis 
vaccines is fi nanced via global fi nancial investments in 
the order of US$100 million per year.1 Investment in 
preclinical research and development has yielded almost 
20 vaccine candidates for tuberculosis—most of which 
still remain at diff erent stages of the clinical trial pipeline 
with few dropouts. Moreover, several new candidates are 
ready to enter the pipeline soon. The development of 
most vaccine candidates is jointly sponsored by the 
public sector with the aim to advance the research and 
development of tuberculosis vaccines, with substantial 
contributions from private companies.

The BCG vaccine, which is extensively used as part of 
the Expanded Program on Immunisation, prevents 
against only severe forms of childhood tuberculosis, and 
does not protect against the most prevalent form of this 
disease, pulmonary tuberculosis, in all age groups.2 
Thus, an improved vaccine against tuberculosis is 
desperately needed. Preclinical research and development 
can benefi t from research in related specialties—notably, 
with regards to the development of novel adjuvants and 
vectors. New vaccine candidates are being created in 
other specialties with new vectors such as simian 
adenovirus, cytomegalovirus, and lympho cytic chorio-
meningitis virus.3 Although research and development 
for a universally protective tuberculosis vaccine 
continues, novel host-directed therapies might be helpful 
to augment biologically relevant host immune responses; 

a strategy that could be particularly benefi cial for patients 
with multidrug-resistant and extensively drug-resistant 
tuberculosis. This Review discusses advances and 
progress being made in host-directed interventions, 
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Key messages

• Tuberculosis continues to kill 1·4 million people annually, 
and numbers of patients with drug-resistant tuberculosis 
have increased alarmingly

• A novel, safe, widely applicable and more eff ective vaccine 
against tuberculosis is needed for disease control

• Vaccine research and development for tuberculosis has 
brought forward almost 20 vaccine candidates, many of 
which are at diff erent stages of the clinical trial pipeline

• Vaccines for tuberculosis can be classifi ed according to 
their target population; therapeutic or preventive 
vaccines; composition (ie, killed mycobacteria, viable 
recombinant mycobacteria, viral-vectored and adjuvanted 
subunit vaccines); time of administration (pre-exposure 
and postexposure vaccines), and according to BCG (ie, 
replacement and heterologous prime-boost vaccines)

• Host-directed therapies aim to eliminate Mycobacterium 
tuberculosis in the host—eg, by augmenting focused, 
clinically eff ective anti-M tuberculosis-directed immune 
responses, or by limiting non-productive, tissue-damaging 
infl ammation in tuberculosis, a strategy that could be 
particularly benefi cial for patients with drug-resistant 
tuberculosis

• Host-directed therapies contain diff erent groups of 
compounds, including cytokines and so-called repurposed 
drugs, that target biologically and clinically relevant 
checkpoints in anti-M tuberculosis-directed host response 
pathways

http://crossmark.crossref.org/dialog/?doi=10.1016/S2213-2600(14)70033-5&domain=pdf
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including the clinical trial pipeline for new tuberculosis 
vaccines and therapeutic concepts targeting host defense 
mechanisms to improve treatment outcomes.

Immune orchestration against M tuberculosis
Tuberculosis is primarily a pulmonary disease; the 
respiratory tract serves as port of entry and the lung as 
the prime organ of disease manifestation.4,5 At the site of 
M tuberculosis infection, granulomas are formed. 
Protection against and pathogenesis of tuberculosis are 
cell mediated,6,7 primarily comprising T lymphocytes and 

mononuclear phagocytes focused on granulomas 
(fi gure 1). Granulomas are composed of diff erent 
T-lymphocyte subsets and diff erent myeloid cell types, 
which, within the granuloma, stay in close and dynamic 
contact. As long as these granulomas are confi ned and 
well structured, they successfully contain M tuberculosis 
without major harm to the aff ected organ.8 Once the 
lesion liquefi es and becomes caseous, tissue damage 
prevails and M tuberculosis can no longer be restrained.8 
CD4+ T cells, which produce T helper 1 (Th1) cytokines—
notably, interferon γ and tumour necrosis factor α 

Pulmonary tuberculosis
Granuloma containing M tuberculosis-infected

macrophages and dendritic cells surrounded by 
incoming macrophages, dendritic cells, T cells, 

and B cells, interspersed with neutrophils

In macrophages and dendritic cells,
M tuberculosis resides in a phagosome and 
can actively block fusion with the lysosome

Upon contact with histone deacetylase 
inhibitors such as valproic acid and vorinostat, 

the activity of HDACs is inhibited, allowing 
for histone acetylation by HATs

Subsequently, gene transcription is enhanced 
and leads to initiation of xenophagy. 

The M tuberculosis-containing phagosome 
fuses with the lysosome and succumbs to 

killing by lysosomal hydrolytic enzymes

Xenophagy contributes to improved antigen 
processing and presentation, and production 

of proinflammatory cytokines, which 
activate the adaptive immune system—

ie, antimycobacterial T cells and perhaps B cells
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Figure 1: Physiology of Mycobacterium tuberculosis antigen processing and presention
Histone deacetylase inhibition (by valproic acid and vorinostat) might contribute to immunological control of M tuberculosis infection.
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(TNFα) are considered major mediators of protective 
immunity.6,7 During the early stage of the immune 
response against tuberculosis, Th17 cells, which among 
other functions regulate neutrophils, participate in 
protection.9 However, because of the detrimental role of 
neutrophils in chronic infl ammation, including in 
tuberculosis, the Th17 response needs to be tightly 
regulated to avoid pathological sequelae.10

It is likely that additional cells and mediators contribute 
to protection, including CD8+ T cells.11,12 CD8+ T cells not 
only produce similar cytokines as CD4+ T cells, but also 
have cytolytic activities13 that can directly harm 
M tuberculosis.14 Unconventional T cells (γδ T cells, CD1-
restricted T cells, mucosal-associated invariant T cells)15–17 
and a broad array of soluble mediators18 contribute to 
orchestration of anti-M tuberculosis-directed immune 
responses. After antigen-specifi c priming, the 
conventional CD4+ and CD8+ T cells fi rst become 
T eff ector cells that orchestrate early host defence, and 
then mature into T-memory cells that coordinate 
coexpression of multiple cytokines. These T-memory 
cells orchestrate protection in solid granulomas. 
Antimycobacterial properties are activated in 
mononuclear phagocytes, which thus assume the 
capacity to control M tuberculosis.6,7 However, the 
pathogen is not eliminated and persists in these 
phagocytes in an altered metabolic activity state over long 
periods.19 This scenario occurs in solid granulomas 
during latent M tuberculosis infection.

The fi ne regulatory mechanisms between various 
components of the immune system needed for protection 
against M tuberculosis are mainly understood on the 
surface, but remain undefi ned. Importantly, dysregulation 
of this fi ne balance results in loss of an organised structure 
of the lesion. As a result, M tuberculosis reverts into a highly 
replicative stage, leading to caseous lesions that expand 
and cause major lung damage, which is characteristic of 
active tuber culosis.8,19,20 Tight regulation of diff erent 
immune mechanisms needs to be viewed in a spatio-
temporal framework: some elements such as Th17 cells 
are protective in early, but pathogenic in late, stages of 
tuberculosis.9,10 Similarly, regulated activation of mono-
nuclear phagocytes within solid granulomas promotes 
M tuberculosis containment, whereas their uncontrolled 
activation and lysis of phagocytes results in necrosis and 
later in caseation of granulomas, which severely damage 
the aff ected organ.8,19,20

Primarily, current vaccine development assumes that 
viable M tuberculosis are present in granulomas, and thus 
is aimed towards preventing progression to tuberculosis 
disease after primary infection. Although epidemiological 
evidence suggests that M tuberculosis can occasionally be 
eradicated in infected individuals,21 the underlying 
mechanisms for this eradication remain elusive. 
Strategies for vaccine research and development are 
focused on the mimicking and modifi cation of immune 
mechanisms operative during latent M tuberculosis 

infection, which contains M tuberculosis and prevents 
active tuberculosis disease, but fails to achieve sterile 
eradication of the bacteria.22,23 Next generation vaccines, 
intended to prevent or eradicate M tuberculosis infection, 
would not only require improved knowledge about 
immune mechanisms induced during natural infection, 
but also about alternative immune mechanisms that 
perform better than does naturally induced immunity.24

Host-directed therapies
At fi rst glance, vaccination and therapy seem to be two 
unrelated topics. About 120 years ago, Robert Koch25 
attempted to combine both themes by vaccinating 
patients with tuberculosis with tuberculin; his eff orts, 
however, were met with failure. Tuberculosis vaccines 
aim to induce long-lasting immune responses that would 
eliminate or eff ectively contain M tuberculosis upon 
encounter. These (adaptive) immune responses are 
thought to be proinfl ammatory and Th1 T cell oriented. 
M tuberculosis resides intracellularly within phagosomal 
compartments in professional antigen-presenting cells—
notably, macrophages and dendritic cells—and in non-
professional antigen-presenting cells—eg, epithelial and 
fat cells.19,26–29 Host-directed therapies target host 
pathways and aim to shorten the duration of standard 
drug treatments against tuberculosis, restrict damage of 
overt (pulmonary) infl ammation, and possibly reduce the 
risk for reinfection with M tuberculosis.30

Although host-directed therapies have been hailed as a 
breakthrough for cancer, new concepts and clinically 
relevant trials are needed to achieve similar life-changing 
progress in infectious diseases. Immunotherapeutic 
approaches in tuberculosis have been discussed and 
reviewed in the past,30 both in the advent of drug-resistant 
tuberculosis and with the need to off er alternative 
strategies to induce or expand clinically relevant 
anti-M tuberculosis immune responses. Because of space 
restrictions, we are only able to review a restricted range 
of approaches to host-directed therapies for 
anti-M tuberculosis with a particular focus on drugs or 
compounds that have already been tested in clinical 
phase 1 trials (for adjunct treatment of tuberculosis) or 
so-called repurposed compounds—drugs that have been 
used for other (non-tuberculosis) indications, yet are a 
rational choice based on their method of action and 
tuberculosis immunopathology. The appendix provides 
some additional sections and reading about M tuberculosis 
and HIV co-infection, cytokines in M tuberculosis 
immunotherapy, preclinical models of host-directed 
therapies, and biological intervention with vitamin D.

Immunotherapeutic approaches, such as host-directed 
therapies, require carefully designed clinical protocols 
with biologically relevant biomarkers to gauge the best 
timepoint for immune intervention and to monitor 
response to therapy. Preclinical models can facilitate 
immunotherapeutic eff orts and might help to dissect 
immunological pathways that could be safely and 

See Online for appendix
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successfully exploited in host-directed therapies.31 
Immunotherapeutic approaches often focus on cellular 
immune (adaptive or innate) responses, but other viable 
options include antimicrobial peptides32 or antibody-
based therapies.33,34

Not only do genetic diff erences in the host or pathogen 
shape the quality of immune responses to M tuberculosis,35 
but also genetic variants in immune response elements 
help to orchestrate the quality and quantity of 
anti-M tuberculosis-directed immune responses.36,37 Host-
directed therapies target biologically relevant cellular 
checkpoints with the aim to increase clearance or 
containment of M tuberculosis and—not mutually 
exclusive—to restrict so-called collateral organ damage 
associated with M tuberculosis-induced immune 
responses.

Identifi cation of host mediators that infl uence 
mycobacteria–host crosstalk include host signalling 
pathways and their epigenetic regulation. Studies show 
that microRNAs (miRNA) contribute to regulation of 
host signalling pathways and might therefore help to 
shape the mycobacteria–host crosstalk. Although 
attempts to identify the molecular biomarkers of 
tuberculosis in terms of responsive miRNAs have been 
made,38 the exact mechanisms and regulatory circuits 

that modulate miRNA expression and their functions 
have not been suffi  ciently characterised up to now. For 
the sake of clarity, we segregate host-directed therapies 
into drugs that induce (productive) anti-M tuberculosis-
directed infl ammation and drugs that decrease non-
produc tive (damag ing) infl ammation favouring targeted 
anti-M tuberculosis immune responses (fi gure 2, table 1). 
Some of the compounds or biologicals show either eff ect, 
dependent on the time of administration, dose, or the 
local milieu.

Corticosteroid treatment48 and antiretroviral therapy 
(ART)99 for patients with HIV and tuberculosis co-
infection have long and successful track records in the 
management of tuberculosis. Improved AIDS-free 
survival in patients with tuberculosis can be achieved 
with early ART initiation,100 except for patients with 
tuberculosis meningitis. However, the survival benefi t 
was associated with increased immune reconstitution 
infl ammatory syndrome events.101 This association 
emphasises an important point in the management of 
clinical tuberculosis and particularly HIV and 
M tuberculosis co-infection, a topic not covered by this 
Review. ART aff ects the quality and quantity of 
M tuberculosis-directed immune responses and is 
therefore also a form of host-directed therapy for 

Initiation of inflammation
• Clotrimazole, econazole
• GM-CSF, interleukin 2, 
   interleukin 12, interferon α, 
   interferon γ
• Valproic acid, vorinostat
• Pyrimethamine
• Norfloxacin
• Clofazimine
• Verapamil 

Balanced inflammation
• Antimicrobial peptides
• Pyrazinamide
• Ibuprofen 

Severe inflammation
• Cilostazol, sildenafil
• Acetylsalicylic acid
• Thalidomide
• Imatinib 

Regulation of TNFα, SOCS3, and
VEGF levels; tissue recovery

Autophagy, apoptosis, T-cell 
activation, M tuberculosis clearance

Protective immunity 
and host survival

Figure 2: Overview of selected host-directed therapies for Mycobacterium tuberculosis
Left: Examples of compounds or recombinant cytokines that induce proinfl ammatory reactions aiming to kill or contain M tuberculosis. Diff erent host pathways are 
targeted. Centre: Balanced infl ammation without overt tissue damage helps to contain viable M tuberculosis bacilli, and warrants host survival. Right: Unproductive 
and excessive infl ammation might deteriorate focused anti-M tuberculosis immune responses, resulting in harmful tissue damage and T-cell dysregulation. 
Uncontrolled infl ammation also induces factors which increase M tuberculosis mutation rates owing to error-prone DNA polymerase activity triggered by 
mycobacterial stress response to low pH.39 Excessive host infl ammation drives the selection of M tuberculosis genetic variants. Anti-infl ammatory strategies can help 
to remove the so-called editing function of infl ammation that drives M tuberculosis mutations. Bottom row, centre box: compounds or drugs listed can act either at 
initiation of tuberculosis infl ammation or at a later stage, hence the bidirectionality. Top row: compounds or cytokines that act either early or late in tuberculosis 
infl ammation with the aim to establish protective immune responses in the host via controlled, balanced infl ammatory responses, hence arrows point to the centre 
from both left and right. VEGF=vascular endothelial growth factor. TNFα=tumour necrosis factor α. GM-CSF=granulocyte-macrophage colony-stimulating factor.
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Classification Host biological process or pathway targeted and effects Comment

In use or under clinical evaluation

Thalidomide40–42 Immuno-
modulatory drug

Inhibition of VEGF activity and angiogenesis; downregulation 
of TNFα production

Validated adjunctively in paediatric 
CNS tuberculosis

Clofazimine43–47 DNA-binding 
lipophilic 
riminophenazine

Caspase 3 activation and subsequent induction of 
PARP-mediated apoptosis; release of vesicles containing 
immunomodulatory molecules (cytokines, nucleic acids) and 
antigens

In clinical trials for patients with 
multidrug-resistant tuberculosis and 
extensively drug-resistant 
tuberculosis

Prednisolone, 
dexamethasone48

Corticosteroid Blockade of glucocorticoid receptors, exerting 
immunosuppressive effects—ie, reduces MMP-9 and VEGF 
concentrations in CSF of patients with tuberculosis 
meningitis; exact mechanism of action unknown

Validated adjunctively to standard 
antituberculosis regimens

Vitamin D318,49–52 Secosteroid Activation of vitamin D receptor and downstream production 
of cathelicidin; mediates initiation of interferon γ-mediated 
autophagy

Successful clinical trials 
involving patients with pulmonary 
tuberculosis

Pyrimethamine 
plus sulfadoxine53–56

Antiparasitic/
antiprotozoal

Activation of caspase-dependent and cathepsin B-dependent 
apoptotic pathways

Trialled in patients with multidrug-
resistant tuberculosis

Pyrazinamide57 Antimycobacterial Downregulation of proinflammatory cytokines—ie, TNFα, 
interleukin 6; CCL2 release

In use as antituberculosis 
drugs; immunomodulatory activity 
observed in mice

Interferon γ58–62 Recombinant 
human cytokine

Activation of lung macrophages and dendritic cells and 
expression of many interferon γ-induced genes; nitric oxide 
for enhanced mycobacterial killing and robust T-cell 
responses

Successful clinical trials 
involving patients with pulmonary 
tuberculosis

Interleukin 263–66 Recombinant 
human cytokine

T-cell proliferation and activation; production of 
proinflammatory cytokines—ie, interferon γ and TNFα—for 
activation of Mycobacterium tuberculosis-infected 
macrophages and dendritic cells

More pronounced effect in patients 
with multidrug-resistant tuberculosis

Granulocyte-macrophage 
colony-stimulating 
factor67,68

Recombinant 
human cytokine

Differentiation, proliferation, and activation of macrophages 
and dendritic cells; promotes T-cell activation and 
subsequent antimycobacterial immune responses in the lung

Clinical trials in patients with 
pansusceptible tuberculosis

Interferon α69,70 Recombinant 
human cytokine

Involved in innate immune responses to viral infections Clinical trials involving patients with 
multidrug-resistant tuberculosis

Interleukin 1271 Recombinant 
human cytokine

Triggered by M tuberculosis infection to activate innate 
immune responses; augments potent antimycobacterial 
Th1 effector responses

Tried in a patient who failed 
conventional treatment

Under preclinical investigation

Acetylsalicylic acid, 
ibuprofen72–74

Non-steroidal anti-
inflammatory drug

Blockade of arachidonic acid metabolism by inhibition of 
COX-1 and COX-2; eicosanoid level balance and regulation 
of TNFα production; promotes contol of tuberculosis; 
immunopathology and patient survival

In-vivo validation in mice

Imatinib75–80 Tyrosine-kinase 
inhibitor

Failed tyrosine residue phosphorylation on ABL family 
tyrosine kinases leading to intracellular killing of M 
tuberculosis and Mycobacterium marinum in macrophages

In-vivo validation in mice

Cilostazol, sildenafil81,82 Phosphodiesterase 
inhibitor

Hydrolysis of cAMP and cGMP; modulation of NF-κB activity; 
regulation of TNFα levels and reduced lung 
immunopathology to promote host survival

In-vivo validation in mice

Alisporivir, desipramine83 Cyclophilin 
inhibitor

Inhibitory effect on cyclophilin D and acid sphingomyelinase, 
respectively; induces mitochondria-mediated oxidative stress 
in macrophages; killing of intracellular M marinum

In-vivo validation in zebrafish

Promising avenues

Valproic acid, vorinostat84–94 Histone 
deacetylase 
inhibitor

Inhibition of histone deacetylase leading to histone acetylase 
activity and DNA unwinding; enhances gene expression, 
promoting autophagy and improved antigen presentation

In clinical trials for patients with HIV; 
yet to be evaluated for tuberculosis

Clotrimazole, econazole95–98 Cytochrome 
P450 blockers

Modulation of Ca2+ flux-driven K+ channel, subsequently 
increasing K+ efflux from cell cytosol; proautophagic, 
anti-inflammatory and antiapoptotic attributes in 
cardioprotection and neuroprotection

In-vitro antituberculosis 
and proapoptotic activity

VEGF=vascular endothelial growth factor. TNFα=tumour necrosis factor α. CNS=central nervous system. PARP=poly (ADP-ribose) polymerase. CSF=cerebrospinal fl uid. 

Table 1: Repurposed clinically approved drugs for treatment of tuberculosis that target metabolic pathways involved in the host defence against 
M tuberculosis or target M tuberculosis directly
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tuberculosis. The appendix provides information about 
new insights concerning the immune reconstitution 
infl ammatory syndrome and M tuberculosis co-infection.

Autophagy and host-directed therapies
Autophagy is the physiological response to stimuli that 
activate autophagy and related genes (ATG), and is a 
catabolic pathway that leads to destruction of cellular 
components via lysosomal compartments.102 Autophagy 
is relevant to treatment because conventional anti-
tuberculosis drugs work, partly, via regulation of 
autophagy; autophagy plays a part in BCG vaccination; 
and candidate repurposed drugs for antituberculosis 
treatment might work via modulation of host autophagy.

The physiological role of autophagy is multifaceted and 
aims to ensure cellular survival. Infection with 
intracellular pathogens, including M tuberculosis, is a 
stressful event for cells.103 Intracellular survival of the 
bacteria is aff ected by autophagy in several ways; 
M tuberculosis is delivered to lysosomal compartments 
and antimicrobial peptides are produced, including a 
particular set of so-called cryptides—antimicrobial 
peptides generated via proteolysis of endogenous cellular 
proteins.104 M tuberculosis-associated proteins—eg, 
ESAT-6—interfere with maturation of the phagosome 
and inhibit autophagy.105 The IRGM locus, which 
participates in autophagy, is associated with tuberculosis 
risk.106–108 LRG47 gene-deleted mice (the murine 
homologue of IRGM) fail to control M tuberculosis 
infection.109 Genes involved in autophagy109–111 shape the 
course of mycobacterial disease. These autophagy-related 
genes are shared with the genetic predisposition to 
infl ammatory bowel disease.112 A similar association has 
been noted between infl ammatory bowel disease49 and 
variants of the vitamin D receptor-encoding genes 
contributing to M tuberculosis clearance and autophagy,50 
suggesting that the nature of the autophagy-driven 
infl ammatory host response is an important factor in the 
clinical presentation of tuberculosis.

Autophagy contributes to the downregulation of 
infl ammatory responses including production of 
interleukin 1β and interleukin 18.104,113 Starvation and a 
Th1-geared cytokine milieu promote M tuberculosis 
killing by autophagy,114,115 suggesting that therapeutic, 
targeted activation of the autophagic pathway helps to kill 
M tuberculosis bacilli in the host. Autophagy has been 
shown to be instrumental in the mediation of 
antitubercular activity in standard antituberculosis 
treatment with conventional antibiotics.116

Treatments to target overt infl ammatory responses 
have shown clinical benefi ts, particularly for tuberculosis 
meningitis.48,117 Phosphodiesterase inhibitors72,73,118 and 
thalidomide (anti-TNFα eff ects) have been tested in 
safety trials; however, the thalidomide study was 
terminated because of adverse events.40 Although TNFα 
antagonists are contraindicated for individuals who are 
latently infected with tuberculosis, drugs such as 

etanercept or infl iximab are eff ective as adjunctive 
therapy in animal models.119,120 In an open-label, non-
randomised study with autologous mesenchymal stromal 
cells, Skrahin and colleagues121 showed that cellular 
treatment to reduce non-productive infl ammation in 
patients with multidrug-resistant tuberculosis or 
extensively drug-resistant tuberculosis is safe and might 
help to restore focused, anti-M tuberculosis reactivity.

Autophagy is a crucial component of innate and 
adaptive immune responses, antigen processing and 
presentation—particularly within the MHC class II 
antigen compartments122—and the subsequent shaping 
of antigen-specifi c adaptive cellular immune 
responses.123–125 Deletion of ATG5 in murine studies 
confi rmed the role of autophagy in M tuberculosis 
infection: ATG5– mice show increased susceptibility to 
tuberculosis.104 However, experimental evidence suggests 
the presence of autophagy evasive strategies during 
mycobacterial infection.126 M tuberculosis stimulates the 
class I phosphatidylinositol 3-kinase mammalian target 
of rapamycin (mTOR) pathway that negatively regulates 
several autophagy-related genes.127

Recent investigations identifi ed host factors used by 
M tuberculosis to restrict autophagy. Host signalling 
cascades responsive to M tuberculosis such as Wnt and 
sonic hedgehog pathways induce eicosanoids, 
lipoxygenases and lipoxins, that downregulate interferon 
γ-mediated autophagy.128 Epigenetic regulation of these 
signalling pathways, by miR-155 and miR-31, facilitates 
evasion of autophagy by mycobacteria. Several other 
studies show the crucial roles of miRNAs during 
M tuberculosis infection. miR-29s, for example, suppresses 
interferon γ production by targeting inter feron γ mRNA.129 
miR-125b blocks TNFα biosynthesis,130 whereas miR-99b 
negatively regulates production of proinfl ammatory 
cytokines.131 miR-223 is diff erentially upregulated in 
patients with tuberculosis versus healthy controls.132,133 
Studies in mice showed that miR-223 directly regulates 
the chemokines, CXCL2 and CCL3, and the 
proinfl ammatory cytokine interleukin 6.132 In this way, 
miR-223 controls neutrophil development134 and their 
infl ux into the M tuberculosis-infected lung.132 Exacerbated 
neutrophil activation and infl ux causes severe damage in 
mice infected with M tuberculosis with deleted miR-223. 
Thus, miR-223 is a promising target for host-directed 
RNA-based therapy. M tuberculosis-induced miRNAs and 
host signalling pathways are promising candidates to 
design new targets for host-directed therapies.

Host-directed pathways: controlling 
immunopathology and favouring M tuberculosis 
clearance
Establishment of fi ne-tuned immune responses plays a 
key part in improvement of clinical outcomes of 
tuberculosis. Additionally, the increasing need for new 
chemotherapeutic interventions has encouraged 
investiture of much eff ort into repurposing clinically 
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approved drugs targeting biological pathways involved in 
the host defence against M tuberculosis. This section 
discusses pharmacological and biological interventions 
of immunologically relevant indications that might 
contribute to eff ective management for tuberculosis in 
the form of adjunct therapies.

Pharmacological interventions  
cAMP regulation
Many intracellular pathways in both prokaryotes and 
eukaryotes require participation of the second messenger 
cAMP. Immunologically, cAMP can suppress innate 
immune mechanisms via downregulation of phagocytic 
function, cytokine release (ie, TNFα and interleukin 12), 
and generation of reactive oxygen and nitrogen 
intermediates, among others.135 A virulence characteristic 
of M tuberculosis is to increase cytosolic concentrations of 
cAMP in macrophages to promote intracellular 
survival.136 Synthesis of biochemically active cAMP 
requires two enzymatic processes; the fi rst implemented 
by adenylate cyclases, and the second by phospho-
diesterases. Phosphodiesterase inhibitors such as 
cilostazol and sildenafi l are currently used for treatment 
of vascular diseases and erectile dysfunction, respectively. 
Coadministration of cilostazol (phospho diesterase 
inhibitor type 3) and sildenafi l (phos pho  diesterase 
inhibitor type 5) with isoniazid, rifampicin, and pyra-
zinamide for treatment of M tuberculosis-infected mice 
shortens the course of anti tuberculosis therapy by 
1 month, augmenting reduced lung immunopathology 
and quicker bacterial clearance.81,82 The absence of 
negative drug–drug inter actions between the standard 
antituberculosis regimen and phosphodiesterase I might 
warrant clinical trials in the near future.

Eicosanoid pathway
Arachidonic acid metabolism propels the release of 
biochemical lipid mediators called eicosanoids—ie, 
lipoxin A4, leukotriene B4, and prostaglandin E2—in the 
onset of infl ammation-induced fever. Acetylsalicylic acid, 
the active ingredient in aspirin, is an eff ective antagonist 
of cyclooxygenase 1 and cyclooxygenase 2. Through its 
inhibition of cyclooxygenase activity, the breakdown of 
arachidonic acid is perturbed and the downstream 
release of eicosanoids is blocked. As a result, TNFα 
production is halted, which directly dampens 
infl ammation. However, should this event be totally 
abrogated, the host is rendered hypersusceptible to 
infection with intracellular pathogens such as 
M tuberculosis. Contrastingly, too much TNFα-driven 
infl ammation in response to infection can lead to host 
cell necrosis, causing severe tissue damage and death.83,137 
Fine tuning the lipoxin A4–leukotriene B4 balance 
regulates TNFα concentrations in tissue and prolongs 
patient survival, a feat that might be achieved with 
acetylsalicylic acid administration alongside anti-
tuberculosis drugs.72

Tyrosine kinase pathways
ABL family kinases are involved in several important 
biological processes ranging from physiological cell 
maintenance to T-cell receptor-mediated T-cell activation. 
In the case of chronic myelogenous leukaemia and 
gastrointestinal stromal tumours, chromosomal fusion 
between the ABL and the BCR genes eventually leads to 
expression of an aberrant protein, BCR–ABL, that causes 
cancer.138 Imatinib is an effi  cacious BCR–ABL tyrosine 
kinase inhibitor that has been clinically used since 2001 
for the treatment of chronic myelogenous leukaemia and 
gastrointestinal stromal tumours.75,139 With the chronic 
myelogenous leukaemia cell line K562, imatinib was 
shown to exert its eff ects by inducing caspase 3-mediated 
and caspase 9-mediated apoptosis in cells expressing the 
BCR–ABL fusion protein.76

A few years after the drug was licensed for use, 
imatinib was reported to abrogate T-cell function by 
disrupting T-cell receptor-mediated activation of T cells 
and subsequent interleukin 2 production, a process 
requiring ABL kinase activity.140 Imatinib ameliorated 
rheumatoid arthritis-associated pathology in four 
patients via unknown mechanisms, although 
infl ammation-induced symptoms were reduced.77,141 The 
anti-infl ammatory properties of imatinib were 
substantiated by studies showing its ability to 
downregulate TNFα production by hepatocytes and in a 
mouse model of arthritis.78,79 A more recent study 
suggested a protective role for imatinib in tuberculosis. 
Treatment of M tuberculosis-infected mice with imatinib 
led to reduced pulmonary bacterial burden.80 This eff ect 
was further boosted when imatinib was coadministered 
with rifampicin, suggesting positive synergism between 
the two drugs in tuberculosis treatment.80 This 
accentuates the immunomodulatory role of imatinib 
and could be useful to dampen hyperinfl ammation in 
tuberculosis.

Histone modifi cation and gene transcription
Histone modifi cation is a pivotal epigenetic strategy to 
control gene expression. As such, acetylation of lysine 
residues on histone ε amino tails by histone acetylases 
promotes chromatin unwinding and enhanced gene 
transcription.84 This process can be reversed by histone 
deacetylases, and a balance between activities of 
histone acetylases and histone deacetylases secures 
genetic stability. Herein, histone deacetylase inhibitors 
qualify as potent immunomodulators owing to their 
ability to orchestrate a range of cellular processes 
including autophagy and apoptosis.84–86 FDA-approved 
histone deacetylase inhibitors comprising, but not 
restricted to, valproic acid, romidopsin, and vorinostat 
are used for the treatment of psychiatric and 
neurological disorders, such as depression and 
epilepsy, and more recently, cutaneous T-cell 
lymphoma.87 Additional histone deacetylase inhibitors 
are undergoing clinical investigation for various 
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cancers including melanomas, glioblastomas, and 
other solid tumours associated with increased MHC 
expression and presentation of nominal target epitopes 
to antigen-specifi c T cells.88 Valproic acid and vorinostat 
were shown to trigger the expression of HIV genes in 
latently-infected human T cells, leading to viral 
replication, improved effi  cacy of ART, and immune 
attack by autologous CD8+ T cells due to high antigen 
turnover.89–92 Collectively, these fi ndings prompted 
clinical trials investigating combination therapy of 
valproic acid or vorinostat with ART in individuals 
positive for HIV.93,94

The pleiotropic, immunomodulatory eff ects of histone 
deacetylase inhibitors might help to enhance intracellular 
killing of M tuberculosis and antigen processing and 
presentation. Collectively, more effi  cient T cell priming 
and a diff erent quality of the ensuing antituberculosis 
immune response might take place (fi gure 1).

Apoptotic cell death
Studies have shown the immunomodulatory facets of the 
antileprotic drug clofazimine. Clofazimine induces 
caspase 3-dependent apoptosis in THP-1-derived 
macrophages, and has been assessed in the context of 
adjunctive therapy for patients with drug-sensitive or 
multidrug-resistant tuberculosis with much success.43,44

In a clinical study in the Ivory Coast, prophylactic 
coadministration of the combination antimalarial drug 
sulfadoxine-pyrimethamine and isoniazid to HIV-sero-
positive individuals who had recently recovered from 
pulmonary tuberculosis improved their health status and 
aided better clinical management of an eventual episode 
of active tuberculosis than did isoniazid monotherapy.53 
This improvement could be attributed to the 
proinfl ammatory properties of pyrimethamine. Human 
melanoma and rodent pituitary adenoma cells treated 
with pyrimethamine succumb to caspase-mediated 
apoptotic activity and subsequent cell death.54,55 Pyri-
methamine also eff ectively blocks STAT3,56 which has 
been associated with MMP1-driven immunopathology 
and tissue destruction in patients with tuberculosis.142 
Timely blockage of STAT-3 might therefore benefi t 
clinical outcomes in tuberculosis treatment.

Anti-infl ammatory regulation
New light has been shed on the fi rst-line antituberculosis 
drug pyrazinamide, which might act as a double-edged 
sword by simultaneously exerting antimycobacterial 
eff ects, while downregulating infl ammatory responses 
mediated by TNFα, interleukin 1β, interleukin 6, and 
CCL2.57 The anti-infl ammatory eff ect of pyrazinamide 
might be instrumental in abatement of excessive 
immunopathology in the host during severe disease.

Thalidomide, another antileprotic drug, possesses anti-
infl ammatory properties, as opposed to clofazimine, by 
reducing TNFα concentrations albeit with an increase in 
interferon γ, interleukin 2, and interleukin 12 

concentrations, which share protective attributes in 
tuberculosis.41 An analogue of thalidomide, lenalidomide, 
produced similar fi nding in rabbits with CNS 
tuberculosis; cerebrospinal fl uid from these animals 
contained reduced amounts of TNFα compared with 
controls.42 Thalidomide has been used to treat childhood 
CNS tuberculosis, which is refractory to standard 
antituberculosis regimens with unlicensed use.143

Anti-infl ammatory drugs might also exhibit direct 
eff ects on M tuberculosis. The non-steroidal anti-
infl ammatory drug compound ibuprofen, among other 
propanoate-based compounds, displayed potent 
bactericidal activity against replicating and non-
replicating M tuberculosis and multidrug-resistant isolates 
in a high-throughput in-vitro drug screen.74 This 
observation was substantiated in mice with severe 
tuberculosis disease that showed improved survival and 
decreased immunopathology after receiving ibuprofen 
without previous exposure to antituberculosis drugs,73 
thus endowing the drug with a dual role in tuberculosis.

The glucocorticoid receptor agonists prednisolone and 
dexamethasone are synthetic corticosteroids used for the 
treatment of a variety of immunological disorders, 
including arthritis, asthma, and leukaemia. Additionally, 
both drugs have been trialled in the treatment of 
tuberculosis meningitis, wherein decreased matrix 
metalloproteinase 9 and vascular endothelial factor 
concentrations were observed in the cerebrospinal fl uid 
of treated patients.144 The overall effi  cacy of prednisolone 
and dexamethasone was manifested in improved survival 
in treated patients with tuberculous meningitis; up to 
17% reduction in mortality across 41 clinical trials 
between 1960 and 2012.48

SOCS3, a suppressor of cytokine signalling, has been 
reported to maintain an antiapoptotic state in human 
psoriatic keratinocytes by inhibiting deactivation of the 
PI3K/AKT pathway, and its depletion led to 
interferon γ/TNFα-induced cell death.145 Pertinent to 
tuberculosis, SOCS3 expression in human T cells 
elevates interleukin 17 production, whilst reducing T-cell 
proliferation, thus increasing host susceptibility to 
severe tuberculosis.146 By contrast, recent studies in mice 
showed that SOCS3 helps to fi ne-tune inter-
feron γ-mediated control of M tuberculosis infection 
contributed by CD4+ T cells.147 Although mice that did 
not express SOCS3 were able to mount a strong γδ T 
cell-driven interleukin 17 response in the lung after 
M tuberculosis challenge, they generally showed reduced 
survival. Thus, guided, temporal regulation of SOCS3 
activity might contribute to controlled and eff ective 
antituberculosis immune responses.

Modulation of ion effl  ux
Clotrimazole and econazole, two over-the-counter 
antifungals used for treatment of skin infection, were also 
shown to inhibit growth of M tuberculosis in culture.148,149 
Notably, clotrimazole, via inhibition of cytochrome P450, 
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increases Ca²+ current-induced K+ effl  ux from the cell 
cytosol in a range of rodent and human cell types.95–98 
Econazole has also been shown to exert this eff ect.150 In 
this regard, K+ effl  ux is the cardinal mechanism that 
activates the NALP3-infl ammasome as a means of early 
control of M tuberculosis replication in macrophages.151 
Nonetheless, re-establishment of the pharmacokinetics of 
these drugs is crucial for combination therapy with 
standard antituberculosis regimen.

Antimicrobial peptides
Antimicrobial peptides are highly active molecules 
located in prokaryotes and eukaryotes, which constitute 
an important component of the mammalian innate 
immune system. Although most antimicrobial peptides 
target the cell membrane of bacteria, DNA replication 
and protein synthesis can also be disrupted. Cytokine 
signalling in many cell types governs the production of 
antimicrobial peptides, which engage a variety of 
strategies leading to bacterial lysis.152,153 With regard to 
tuberculosis, the immunomodulatory antimicrobial 
peptide cathelicidin (also known as LL-37), whose 
expression is regulated by vitamin D receptor signalling 
seems to constitute the major mechanism by which 
vitamin D3 mediates killing of intracellular M tuberculosis 
in macrophages.

Mannose-capped lipoarabinomannan and phos phatidyl-
myo-inositol mannoside, both of which are M tuberculosis 
cell wall components, can trigger production of hepcidin—
another immunomodulatory antimicrobial peptide 
possessing direct antimycobacterial activity.154 Hepcidin is 
produced mainly by hepatocytes and plays a major part in 
physiological iron homoeostasis.155

Other antimicrobial peptides with antituberculosis 
properties include the vitamin D-dependent human 
β defensin 2, which is produced mainly by epithelial 
cells,156 CD8+ T cell and NK cell-derived granulysin,157,158 
and lipocalin 2, which is secreted by macrophages and 
epithelial cells,159 although this list is not exhaustive. 
Because infl ammation is the key trigger for production of 
antimicrobial peptides, regulation of signalling governed 
by soluble immunomodulators—ie, interferon γ, soluble 
CD40 ligand, TNFα, CXCL9, and interleukin 6—might 
contribute to antimicrobial peptide-mediated clearance of 
intracellular M tuberculosis.

Biological interventions with recombinant 
cytokines
Adjunctive therapy with a range of proinfl ammatory 
human cytokines has been explored to augment the 
Th1 immune response in human beings with 
tuberculosis, particularly in patients with advanced 
stages of disease or multidrug-resistant tuberculosis or 
extensively drug-resistant tuberculosis. Because of the 
small number of patients treated with cytokine 
therapies and the paucity of placebo-controlled 
randomised clinical trials, the full potential of cytokine 

therapies for the treatment of tuberculosis is unclear at 
this stage. Of note, the timing of cytokine administration 
in tuberculosis disease, dose, and mode of admini-
stration (inhalation, subcutaneous, or intra muscular) 
might infer clinically and biologically relevant 
diff erences in the method of action, and subsequently, 
clinical outcomes. Dosing and application modus are 
therefore covered in detail in this section of the Review.

We do not discuss potential adjunct therapy with 
monoclonal antibodies that would target central 
immunological checkpoints in tuberculosis—eg, so-
called anergic T cells in patients with tuberculosis160—
expressing so-called exhaustion markers (eg, Tim-3, 
LAG-3, CD40L).161 Some exhaustion marker-positive 
T cells have been shown to be activated T cells directed at 
M tuberculosis: Tim-3+ T cells that exhibited increased 
immune eff ector functions defi ned by production of 
Th1 or Th22 cytokines along with cytotoxic T lymphocytes 
eff ector molecules. In a preclinical model,162 these Tim-3+ 
T cells eff ectively restricted the growth of M tuberculosis 
in infected macrophages, most likely via binding of Tim-
3 to the ligand galectin 9 (expressed by M tuberculosis-
infected macrophages), which in turn inhibits expansion 
of eff ector Th1 cells to prevent further tissue 
infl ammation.163 Similarly, anti-PDCD1 treatment is 
eff ective in a murine model of tuberculosis164 and 
blockage of PDCD1, an inhibitory receptor expressed by 
T cells, has been shown to overcome immune resistance 
in patients with malignant diseases,165 and proved to be 
safe. The advent of therapeutic monoclonal antibodies in 
malignant disease might therefore pave the way for 
application of these reagents as a host-directed therapy 
for treatment of patients with tuberculosis.

Treatment of patients with tuberculosis with biological 
compounds might also need to take into account the 
nutritional status166 of the patients, because systemic 
metabolic changes aff ect the developmental profi le of 
proinfl ammatory or anti-infl ammatory immune cell 
subsets, including regulatory T cells and memory 
immune formation in CD8+ T cells. Thus, drugs 
modulating cellular glycolysis or oxidative phospho-
rylation, and so-called starvation signals,167 contribute to 
immune cell plasticity. Metabolic diff erences are able to 
dictate whether immune cells will become 
proinfl ammatory Th17 or regulatory T cells.168 The diverse 
clinical outcome of treatment of patients with 
tuberculosis with recombinant cytokines might therefore 
not only indicate a diff erent disease status, or a diff erent 
genetic background of the individual, but also diff erences 
in cellular metabolism associated with concomitant 
treatment of concurrent other communicable and non-
communicable diseases. This situation emphasises the 
complexity (and potential risks) of host-directed therapies 
in patients with tuberculosis. Up to now, biologically 
robust markers that would allow selection of patients 
who would benefi t most from biological therapy have not 
yet been determined, but are urgently needed.
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Interferon γ
In an open-label pilot study, fi ve patients with multidrug-
resistant tuberculosis received nebulised recombinant 
interferon γ three times per week (each dose 500 μg) over 
4 weeks with good clinical and microbiological 
improvement, and only minor adverse events such as 
cough and muscle aches.58 In another open-label trial, 
aerosolised interferon γ at a dose of 2 million units three 
times per week was also given as adjunctive therapy to 
six patients with multidrug-resistant tuberculosis after 
treatment failure, while they continued on identical 
antituberculosis chemotherapy.59 All patients tolerated 
the adjunctive treatment well. Although fi ve of six 
patients had radiological improvement after aerosolised 
interferon γ adjunctive therapy, no patients had sputum 
smear conversion.

In a clinical trial of 89 patients with cavitary pulmonary 
tuberculosis, patients received either nebulised 
recombinant interferon γ1β or subcutaneous application 
of recombinant interferon γ1β at a dose and treatment 
interval of 200 μg three times per week over 4 months in 
addition to directly observed treatment (DOTS) or DOTS 
alone.60 Nebulised adjunctive treatment with recombinant 
interferon γ1β resulted in reduction of concentrations of 
infl ammatory cytokines interleukin 1β, interleukin 6, 
interleukin 8, and interleukin 10 in 24 h BAL 
supernatants; an accompanied signifi cant diff erence in 
the rate of M tuberculosis clearance from the sputum 
smear at 4 weeks compared with DOTS or DOTS with 
subcutaneous recombinant interferon γ1β was also 
observed (p=0·03). Four severe adverse events observed 
during the study were considered by the Data Safety 
Management Board to be unrelated to the treatment.60

A systematic review61 from 2011 on the role of 
adjunctive therapy with interferon γ for the treatment of 
pulmonary tuberculosis includes eight studies from 
China, of which one is a randomised controlled trial. 
Meta-analysis of trials with aerosolised interferon γ at 
doses of 1–5 million units three times weekly over 
2–4 months showed statistical benefi ts on sputum 
conversion after 1, 2, 3, and 6 months and at the end of 
treatment.61 No patients interrupted therapy because of 
adverse events.

Intramuscular adjunctive application of interferon γ at 
a dose of 10 million units daily for 1 month followed by 
three times weekly for 6 months in addition to 
individualised antituberculosis drug treatment was well 
tolerated, and resulted in treatment success in seven of 
eight patients with drug-resistant tuberculosis.62 
Treatment results were better than those for historical 
controls. In a meta-analysis61 of three additional trials 
from China, in which adjunctive application of 1 million 
units of interferon γ were administered intramuscularly 
three times per week over 2–4 months, signifi cant 
benefi ts on sputum conversion by 2 months were 
observed; the eff ect was, however, less prominent than 
with aerosolised adjunctive interferon γ therapy.

In summary, these results suggest that adjunctive 
therapy with aerosolised interferon γ is safe and could be 
eff ective for patients with non-sputum conversion, 
especially with multidrug-resistant tuberculosis and 
extensively drug-resistant tuberculosis. The aerosolised 
route of administration seems to be better than the 
intramuscular administration; however, additional 
placebo-controlled studies with large numbers of patients 
are needed before defi nitive conclusions can be drawn.

Granulocyte-macrophage colony-stimulating factor 
(GM-CSF)
GM-CSF is a cytokine that augments the proliferation of 
macrophages and granulocytes and has been explored in 
a clinical phase 2 trial with 31 patients against placebo as 
adjunctive therapy for patients with pansusceptible 
pulmonary tuberculosis.67 In this study, GM-CSF was 
administered at a dose of 125 mg/m² body surface twice 
per week for 4 weeks. The clinical outcomes were similar 
in the GM-CSF and placebo groups, and no diff erence in 
sputum culture conversion was observed at the end of 
the fourth week of treatment. GM-CSF has been widely 
used as therapy for patients with cancer, either as a sole 
reagent or as a vaccine adjuvant. However, a recent study 
suggests that caution needs to be exercised because 
GM-CSF could subsequently lead to immune 
suppression and negatively aff ect disease outcome.68

Interferon α
Adjunctive treatment with interferon α in addition to 
second-line antituberculosis therapy has been explored for 
patients with multidrug-resistant tuberculosis. In an 
open-label trial, aerosolised human interferon α was given 
at doses of 3 million units each, three times a week for 
9 weeks, to seven patients with multidrug-resistant 
tuberculosis, who were not responding to a second-line 
therapy.69 The combined therapy was well tolerated and 
only muscle aches were observed in one patient. All 
patients showed clinical and microbiological improve-
ments during the course of the aerosol treatment; 
however, the eff ect was not sustained when interferon α 
treatment was discontinued. In an open-label clinical 
phase 2 study, 3 million units of recombinant inter-
feron α2β were administered subcutaneously every week 
for 12 weeks together with second line antituberculosis 
therapy to patients with multidrug-resistant tuberculosis. 
Only two of fi ve patients had a benefi cial clinical course 
after therapy.70 Based on the results of these preliminary 
fi ndings, adjunctive immunotherapy with interferon α 
does not seem to be a promising treatment option for 
patients with tuberculosis.

Interleukin 2
Augmentation of the host’s immune response in patients 
with tuberculosis by adjunctive therapy with interleukin 2 
has been explored in several clinical trials with confl icting 
results. Intradermal injection of 12·5 μg twice daily over 
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30 days of human recombinant interleukin 2 was safe and 
seemed to be eff ective to achieve conversion to a sputum-
negative smear in an open label non-randomised trial 
with 20 patients, including patients with multidrug-
resistant tuberculosis.63,64 Daily administration was better 
to achieve sputum conversion than was pulsed therapy.65 
However, a randomised, placebo-controlled, double-
blinded trial assessed adjuvant therapy with 
interferon 2 in 110 patients with sputum smear-positive, 
pan drug-susceptible tuberculosis, and could not confi rm 
the results from the preliminary studies.66 Although 
additional treatment with 0·225 million units of 
recombinant interleukin 2 twice daily during the fi rst 
30 days of treatment was safe, sputum culture conversion 
was delayed after 1 or 2 months.66 After these results, in 
the past 10 years, no trials have explored the use of 
interleukin 2 as an adjunctive therapy for tuberculosis.

Possibly, the route of administration and dose might 
need reassessment for treatment of patients with 
tuberculosis. Low success rate has been argued to be 
because of the induction of regulatory T cells, whereas 
conventional antigen-specifi c T cells might not have been 
able to respond adequately. Studies have confi rmed this 
notion; patients with chronic graft versus host disease 
who did not respond to glucocorticoid therapy received 
daily low-dose subcutaneous interleukin 2 (0·3 × 10⁶, 
1 × 10⁶, or 3 × 10⁶ IU per square meter of body-surface 
area) for 8 weeks.169 The numbers of CD4+ regulatory 
T cells increased in the patients given interleukin 2 with a 
peak median value at 4 weeks (p<0·001) after treatment 
initiation, without aff ecting conventional CD4+ T cell 
counts. Low dose interleukin 2 therapy promotes immune 
tolerance, whereas conventional interleukin 2 therapy 
rescues T cells from apoptosis, and induces thymic 
output and T cell proliferation.170

Interleukin 12
Interleukin 12 is essential for protective immunity against 
M tuberculosis in human beings; however, only one case 
report describes experimental treatment of a patient with 
pulmonary tuberculosis who did not respond to 
conventional therapy despite DOTS.71 Adjuvant treatment 
with 300 ng/kg bodyweight interleukin 12 administered 
subcutaneously twice weekly over 3 months signifi cantly 
improved the clinical condition of this patient. Tuberculosis 
relapsed on termination of adjunctive interleukin 12 
treatment and cure was achieved only after reapplication of 
interleukin 12 for a further 5 months. Table 2 and the 
appendix show other candidate cytokines—eg, 
interleukin 7—that have been assessed clinically in other 
diseases, or in animal models, within the frame of 
tuberculosis immunotherapy and host-targeted therapies.

Biological intervention with vitamin D
Vitamin D (1,25-dihydroxyvitamin D) defi ciency has been 
associated with increased risk of tuberculosis.171 The 
exact mechanisms have not been determined, but 

vitamin D seems to eff ect the gene transcription of 
antimicrobial peptides DEFB4/HBD2 and cathelicidin.172 
New studies suggest that vitamin D induces 
interleukin 1β, which leads to reduction of the burden of 
M tuberculosis, via interaction of the NLRP3/caspase 1 
infl ammasome in infected cells.51 Vitamin D therapy can 
therefore be deemed a form of host-targeted therapy; 
clinical trials are discussed in greater detail in the 
appendix.

Vaccine candidates in clinical trials
Vaccine candidates can be segregated into diff erent groups 
based on the following criteria: 1) according to their target 
population, either therapeutic or preventive vaccines; 2) 
according to their composition, preparations of killed 
mycobacteria, viable recombinant mycobacteria, or viral-
vectored and adjuvanted subunit vaccines; 3) according to 
time of administration with regards to natural infection 
with M tuberculosis, pre-exposure or postexposure 
vaccines; and 4) according to their relation to the 
conventional BCG vaccine, either BCG replacement or 
heterologous prime–boost vaccines. Figure 3 shows 
important vaccine candidates according to their target 
population and time of administration, and will be 
discussed here.

Therapeutic vaccines target patients with severe forms 
of tuberculosis in adjunct to chemotherapy—notably, in 
cases of multidrug-resistant tuberculosis, extensively 
drug-resistant tuberculosis, or M tuberculosis and HIV co-
infection.174 The vaccines include RUTI, a semi-purifi ed 
preparation of M tuberculosis grown under stress to 
induce expression of relevant stress or dormancy 
antigens;175 killed preparations of Mycobacterium vaccae, 
an atypical mycobacterial species;176–178 and killed 
Mycobacterium indicus pranii, which was originally 
developed as an antileprosy vaccine, but retrospective 
data analysis showed its potential to provide benefi t 
against tuberculosis.179

Preventive pre-exposure vaccines are intended to 
replace BCG because of increased effi  cacy or safety, or 
both, for the target newborn, and hence are given before 
exposure to natural infection with M tuberculosis.180 These 
vaccines include recombinant BCG mutants, such as 
VPM1002,181 and recombinant M tuberculosis double-
deletion mutants, such as MTBVAC.182 VPM1002 
(rBCGΔUreC::hly), developed by Max Planck Institute 
for Infection Biology, Berlin, Germany, expresses 
listeriolysin (Hly) from Listeria monocytogenes. Deletion 
of urease C (UreC) allows for acidifi cation of the 
phagosome in which the vaccine resides and therefore 
provides an optimal pH for biological activity of 
listeriolysin, facilitating perforation of the phagosomal 
membrane.183 Because of the proline, glutamic acid, 
serine, and threonine (PEST) sequence, listeriolysin is 
rapidly degraded once it arrives in the cytosol.184 This 
vaccine is both safer and more effi  cacious than is parental 
BCG in preclinical models. The recombinant 
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M tuberculosis double-deletion mutant MTBVAC 
developed by the University of Zaragoza, Zaragoza, 
Spain, is defi cient in the transcription factor PhoP and in 
FadD26, thus fulfi lling the demand of the WHO for two 
independent mutations in M tuberculosis-based 
constructs to prohibit reversion to wildtype.185 PhoP 
regulates expression of numerous genes involved in 
virulence and persistence of M tuberculosis, whereas 
FadD26 is a crucial enzyme in glycolipid cell-wall 
synthesis.

The heterologous booster vaccines are either viral 
vectors expressing M tuberculosis antigens or formulations 
of M tuberculosis antigens in adjuvants. The MVA85A/
Aeras-485 vaccine developed by the University of Oxford, 
Oxford, UK, is composed of a modifi ed vaccinia Ankara 
(MVA) construct expressing the immunodominant 
antigen shared between BCG and M tuberculosis, antigen 
Ag85A (encoded by Rv3804).186 The vaccine is intended 
for pre-exposure administration in infants and 
postexposure administration in adults. The vaccine has 

completed a phase 2b effi  cacy trial, but unfortunately 
without positive outcome;186 the vaccine given as boost of 
BCG prime failed to confer better protection than did 
BCG prime alone in infants that were vaccinated. 
Moreover, increases in the frequency of M tuberculosis-
specifi c interferon γ-producing mononuclear cells; 
frequency of M tuberculosis-specifi c CD4+ T cells 
producing interferon γ, interleukin 2, and TNFα; and 
frequency of M tuberculosis-specifi c Th17 T cells were 
observed in the group of children that were vaccinated 
with a heterologous boost on top of BCG compared with 
control group vaccinated with BCG alone, and thus failed 
to function as measurable correlates of immune 
protection.186

At present, two human adenovirus-based vaccines are 
passing through the clinical trial vaccine pipeline; Ad5 
developed by McMaster University, Hamilton, Canada, 
only expresses Ag85A (Rv3804), whereas Crucell Ad35/
Aeras-402, coexpresses a total of three antigens—namely 
Ag85A (Rv3804), Ag85B (Rv1886), and TB10·4 

Biological eff ects Treatment details References

Interleukin 24 Expression promotes CD8+ T-cell priming, interferon γ 
secretion, and antituberculosis activity

Vaccination with DNA-encoding human interleukin 
24 on day of M tuberculosis infection and 7 days pi

Ma et al (2011) 

Interleukin 22 Administration promotes T-regulatory cell decrease, 
antigen-specifi c T-cell expansion

2 ng recombinant interleukin 22 with α-NK1.1 Dhiman et al (2012)

Interleukin 22 Administration reduced M tuberculosis intracellular 
replication

10 ng/ml recombinant interleukin 22 in cell culture Dhiman et al (2014)

SOCS1 Early inhibition improved interferon γ-dependent 
antituberculosis activity; SOCS1-defi cient mice 
succumbed to hyperinfl ammation 4 wpi

SOCS1-defi ciency/conditional silencing in mice Carow et al (2011)

Interleukin 17 Blockade reduced lung pathology after M tuberculosis 
infection followed by triple BCG vaccination of mice

100 μg α-interleukin 17 Cruz et al (2010)

Interleukin 11 Blockade abrogated early pulmonary infl ammation in 
tuberculosis-susceptible mice

50 μg α-interleukin 11 in IFA; 1 day before 
infection and 2, 14, 17, 20, and 22 days pi

Kapina et al (2011)

Interleukin 10 Dampens interleukin 17-associated immunopathology Neutrophil-derived interleukin 10 in chronic 
BCG infection of mice

Doz et al (2013)

Interleukin 10 Involved in maintenance of granuloma integrity, in 
equilibrium with TNFα concentrations

In-silico modelling Cilfone et al (2013)

Interleukin 10 Blockade induces multinucleate giant cell formation; 
implications in granuloma formation

Addition of 5 μg/mL α-interleukin 10 to PBMC 
culture

Shrivastava et al (2013)

Interleukin 10 Blockade reduced pathology in lungs and spleen 350 μg α-interleukin 10R weekly; 250 μg α-CD20 
every other week

Torrado et al (2013)

Interleukin 10 Blockade reduced M tuberculosis replication in lungs 
and spleen of susceptible and resistant mice

1 mg before BCG vaccination; 0·35 mg weekly for 
6 weeks

Pitt et al (2013)

Interleukin 10 Early blockade improved Th1 responses Addition of 15 μg/mL α interferon 10R to cell culture Jeyanathan et al (2013)

Interleukin 4 Blockade reduced lung pathology and M tuberculosis 
replication, enhanced granuloma area, NO, and lung 
chemokine levels

500 μg α-interleukin 4 administered 5 wpi (2nd week 
post HR treatment) with 100 000 U recombinant 
interferon γ and 37 μg α-Acr

Buccheri et al (2009)

Interleukin 4 Blockade promoted 40x reduced bacterial proliferation 
up to 8 weeks in lungs and spleen

500 μg α-interleukin 4 administered 3 wpi with 
10 000 U recombinant interferon γ and 50 μg α-Acr

Buccheri et al (2007)

TGFβ Blockade with LAP increased mycobactericidal activity in 
the lung and mediastinal lymph nodes

12·5 μg rLAP at infection and 14 days pi Wilkinson et al (2000)

TGFβ Blockade increased DHEA levels, leading to activation of 
antimycobacterial Th1 responses

Addition of 61 μg/mL α-TGFβ to forskolin-containing 
adrenal cell culture

D’Attilio et al (2012)

See appendix for the full references. pi=postinfection. IFA=incomplete Freund’s adjuvant. TNFα=tumour necrosis factor α. wpi=weeks postinfection. PBMC=peripheral blood 
mononuclear cells. Acr=tuberculosis α-crystallin. NO=nitric oxide. LAP=latency-associated protein. DHEA=dehydroepiandrosterone. TGFβ=transforming growth factor β.

Table 2: Examples of promising host-directed therapies under preclinical evaluation
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(Rv0288).187,188 Both vaccines could be candidates for 
postexposure vaccination. A crucial issue with these 
vaccines is the high prevalence of antiadenovirus 
antibodies—notably to Ad5—in healthy individuals in 
tuberculosis-endemic areas, which could aff ect effi  cacy 
of adenovirus-based vaccines. Furthermore, adenovirus 
5-based vaccines against HIV have caused increased 
infection rates and exacerbated risks of AIDS, and have 
thus stimulated discussions as to whether adenovirus-
based vaccines should be further pursued against any 
type of disease (including tuberculosis) in areas with 
high HIV incidences.189–191

The M72 vaccine developed by GlaxoSmithKline in 
Rixensart, Belgium, comprising two antigens shared by 
M tuberculosis and BCG (Rv1196 and Rv0125) in the 
adjuvant AS01E (a liposome-based mix of the saposin 

QS21 and the Toll-like receptor 4 ligand monophosphoryl 
lipid A) is intended for use as a pre-exposure and 
postexposure vaccine.192

The Hybrid 1 (H1) and Hyvac 4/Aeras-404 (H4) vaccines 
developed by Statens Serum Institutet, Copenhagen, 
Denmark, are composed of Ag85B (Rv1886) combined 
with ESAT-6 (Rv3875) or TB10·4 (Rv0288), 
respectively.193,194 Ag85B is shared by M tuberculosis and 
BCG, whereas ESAT-6 and TB10·4 are present in 
M tuberculosis, but absent in BCG. This shift from ESAT-6 
to TB10·4 was made to avoid cross-reactivity between 
M tuberculosis infection and vaccination, because ESAT-6 
is also present as an antigen in diagnostic tests for 
M tuberculosis infection (both active and latent 
tuberculosis).195 H4 is likely to replace H1 in the future. 
Both antigens are adjuvanted by IC31® (comprising a 
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Figure 3: Diff erent types of vaccination protocols in the context of immunity to tuberculosis
(A) Pre-exposure vaccines are given before M tuberculosis infection generally to newborn babies or infants and are intended to prevent active tuberculosis. These 
vaccines are either replacements to BCG, such as VPM1002 or MTBVAC, or heterologous boost vaccines given after BCG prime such as MVA85A or H4 vaccines. 
Infection with M tuberculosis causes the stimulation of CD4+ and CD8+ T cells and both contribute to protection. (B) Postexposure vaccines are intended to prevent 
tuberculosis, but are given to already infected individuals, typically adolescents and adults. Present candidates are all heterologous prime-boost vaccines including the 
viral-vectored MVA85A and protein–adjuvant formulations, such as M72, H56, and ID93. CD4+ T cells, which produce type 1 cytokines, activate increased 
antimycobacterial capacities in mononuclear phagocytes. Helper T (Th) 17 cells that produce interleukin 17, which attracts and activate neutrophils probably also 
contribute to protection at an early stage. CD8+ T cells produce a similar cytokine pattern as CD4+ T cells, thus activating antimycobacterial capacities in mononuclear 
phagocytes, and in addition, secrete cytolytic molecules, which can directly kill M tuberculosis. These mechanisms are crucial for protective immunity against 
tuberculosis. (C) Therapeutic vaccines are given in adjunct to chemotherapy to patients with active tuberculosis—typically those patients with further complications 
such as multidrug-resistance or HIV and tuberculosis co-infection. Therapeutic vaccines include Mycobacterium indicus pranii and RUTI. Protection is the result of 
complex interactions between diff erent immune mechanisms. Perturbation of the protective immune response through co-infection with HIV, helminths, 
environmental mycobacteria, or endogenous regulatory immune mechanisms that suppress protective immunity, result in progression to active tuberculosis disease. 
Adapted from Ottenhoff  and Kaufmann,173 with permission. Teff =T eff ector cells. TGFβ=transforming growth factor β. Th1=T helper 1 lymphoctes. Th17=T helper 17 
lymphocytes. TM=T memory cells. TNF=tumour necrosis factor. Treg=T regulatory cells.



Review

314 www.thelancet.com/respiratory   Vol 2   April 2014

cationic polypeptide and an oligodeoxynucleotide as the 
Toll-like receptor-9 ligand developed by Intercell).196 H1 
has also been formulated in the adjuvant CAF01 
developed at Statens Serum Institutet, and comprising 
dimethyldioctadecyl-ammonium bromide and trehalose 
6,6‘-dibehenate in a liposome-based adjuvant.197 These 
vaccines are intended for pre-exposure immunisation.

While H1 and H4 are being developed for pre-exposure 
use, the best suited candidate for post-exposure 
immunisation in this group is Hybrid 56/Aeras-456 
(H56) in IC31® adjuvant because this vaccine construct 
includes, in addition to Ag85B and ESAT-6, the antigen 
Rv2660c, which is claimed to be expressed by 
M tuberculosis under starvation or stress conditions, and 
is shared by, but apparently not immunogenic in, BCG.198 
Recent fi ndings, however, have cast doubt as to whether 
Rv2660c can be expressed at all in the host.199 The 
presence of ESAT-6 was deemed acceptable for this 
vaccine because it is intended for postexposure 
vaccination, that is, for individuals who are already 
positive for ESAT-6 antigen because of natural 
M tuberculosis infection.

A recent development is the vaccine ID93 by the 
Infectious Disease Research Institute, Seattle, WA, USA, 
comprising four diff erent antigens—namely, Rv2608, 
Rv3619, Rv3620, and Rv1813—all shared between 
M tuberculosis and BCG; Rv1813 is expressed under 

starvation or stress conditions.200 These four antigens in 
the form of a fusion protein have been adjuvanted by a 
stable emulsion of glucopyranosyl lipid as a Toll-like 
receptor-4 agonist with squalene. Similar to H56, this 
vaccine is intended for postexposure vaccination of 
adolescents and adults.

The tuberculosis vaccine trial pipeline
Phase 1 trials for vaccine candidates of tuberculosis 
are mainly done in adults; fi rst in the geographical 
area of development, and second in a developing 
country with a high prevalence of tuberculosis. The 
primary goal of these trials is safety assessment and, 
generally, fi rst insights into the immunogenicity of 
these candidates are included. Frequently, clinical 
trials comprise both tuberculin skin test (TST)+ and 
TST– individuals, that is, individuals who have had 
previous BCG vaccination or M tuberculosis infection, 
although those patients with M tuberculosis infection 
are generally excluded by additional diagnostic tests 
that can distinguish M tuberculosis infection from BCG 
vaccination.196 Two vaccine candidates are not 
progressing further. First, BCG85-expressing Ag85B 
developed by the University of California Los Angeles, 
Los Angeles, CA, USA, is on hold, although it 
successfully completed phase 1 assessment.201,202 
Second, the phase 1 trial of r-BCG:pfo/Aeras-422 
(NCT01340820) had to be terminated prematurely 
because of severe adverse events—namely, reactivation 
of shingles in some study participants.203,204

Two products (H4 and H56) are being prepared for 
phase 2 trials and several trials are in clinical phase 2 
assessment (H56: NCT01865487 [recruiting]; H4: 
NCT01861730 [recruiting]). In phase 2a, optimum dose, 
route, and safety in the target population are assessed. 
Phase 2a has been completed for the M72 vaccine in 
several target populations including tuberculin skin test 
negative193 and positive205–208 individuals and in HIV 
coinfected study participants.209 M72 is being prepared 
for phase 2b testing. Crucell Ad35/Aeras-402 has been 
revised to phase 2a from phase 2b. The VPM1002 
(rBCGΔUreC::hly) has successfully completed the core 
observation of phase 2a in newborn infants after 
completion of two phase 1 studies in adults.210 Because in 
the phase 2a study, VPM1002 was substituted for BCG in 
one study group, infants will be observed for an 
additional time in phase 2b. MVA85A/Aeras-485 has 
completed phase 2b as a heterologous boost of BCG 
prime in infants without protective effi  cacy,186 and is also 
being tested in a phase 2b study in adults with 
M tuberculosis or HIV infection having successfully 
completed a phase 2a study.

Therapeutic vaccines that were, or are, under clinical 
investigation include the following: RUTI, which 
successfully completed a phase 2a study;175,211 DAR-901, a 
new version of the M vaccae preparation—the previous  
M vaccae vaccine had been tested in a phase 3 trial in 

Search strategy and selection criteria

We searched publications in the English language in PubMed 
and Google Scholar (1940–2013), the Cochrane Library 
(2001–12), and Embase (2001–12) with the terms 
‘‘tuberculosis’’, ‘‘Mycobacterium tuberculosis’’, and ‘‘TB’’, 
combined with ‘‘vaccines’, ‘‘new vaccines’’, ‘‘vaccination’’, 
‘‘immunization’’, ‘‘vaccine safety’’, ‘‘subunit vaccines’’, 
‘‘biomarkers’’, ‘‘vaccine development’’, ‘‘vaccine trials’’, and the 
terms ‘‘host-directed therapy’’ combined with ‘‘TB’’, 
‘‘tuberculosis’’, ‘‘Mycobacterium tuberculosis’’, ‘‘adjunct 
therapy’’, ‘‘adjunct treatment’’, ‘‘drug resistance’’, ‘‘MDR-TB’’, 
‘‘XDR-TB’’, and ‘‘immunotherapy’’. We complimented the 
search with publications from the WHO Global TB 
Department, the International Union Against Tuberculosis 
and Lung Disease, Treatment Action Group, Stop TB 
Partnership, and the George Institute for International Health. 
We also reviewed studies cited by articles identifi ed by this 
search strategy and selected those we identifi ed as relevant. 
We focused on completed and ongoing clinical trials of 
cytokine-based host-directed therapy, and ‘‘repurposed’’ 
drugs or compounds that have already been tested (for other 
clinical indications). Most of the work about M tuberculosis 
infection and autophagy has been generated in preclinical 
models. The appendix describes concepts in M tuberculosis and 
HIV co-infection, cytokines in M tuberculosis immunotherapy, 
preclinical models of host-directed therapies, and  biological 
intervention with vitamin D.
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HIV-positive patients with tuberculosis;177 and 
M indicus pranii, which is already licensed for restricted 
use as tuberculosis therapy in India.179,212 Although the 
clinical benefi t of another M vaccae vaccine produced by 
Anhui Longcom in China (NCT01979900) has been 
questioned after phase 2b, this vaccine remains in the 
clinical development pipeline.176,209 Possibly, some of the 
preventive vaccines—M72, H56, and ID93—will be 
repurposed for tuberculosis therapy in addition to their 
prime aim as postexposure preventive vaccine; a good 
example of the tight link between vaccination and host-
targeted therapies.

Although single vaccine candidates are being clinically 
evaluated, discussions between diff erent vaccine 
developers and interested stakeholders must be initiated 
concerning the launch of combination vaccination 
strategies comprising improved prime and heterologous 
boost vaccine candidates for clinical effi  cacy trials. Worth 
consideration is combining vaccine candidates that have 
already successfully completed phase 2b trials, that is, 
before phase 3 and licensing as part of an adaptive trial 
design. In the specialty of tuberculosis, the approval of 
clinical trials testing combinations of novel drug 
candidates before their individual licensing sets a 
precedent for such an approach.

Future outlook
In the natural course of tuberculosis in most human 
beings, M tuberculosis can be eradicated by way of innate 
immune mechanisms.213 However, our understanding of 
the complexity of human immune defence against 
M tuberculosis is at present too restricted to augment the 
immune response in the right direction for most patients 
who are not naturally cured of the disease to enable 
control of the growth of M tuberculosis and subsequent 
clearance of infection in the absence of drug treatment. 
Recent advances in vaccine development and host-
directed therapies off er promising perspectives to 
continue to explore immunotherapy as a treatment 
option for patients with tuberculosis, especially for 
multidrug-resistant and extensively drug-resistant 
tuberculosis. Substantial investments in research and 
development are still needed to identify adequate 
immune-based interventions that hopefully can in the 
future be used for the prevention and cure of tuberculosis.
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