Rethinking coverage testing measures
by taking into account
the relevance of covered entities

Antonia Bertolino Breno Miranda
ISTI - CNR University of Pisa / ISTI - CNR

ICMC - $ao Carlos (USP) Sept. 16 2016

Abstract

The talk will introduce a novel approach to measure coverage in software
testing, aimed at focusing test resources on the most “relevant” program
parts. The intuitive idea is that depending on the specific testing context,
reaching full coverage might not be always a meaningful target, because
not all available entities are necessarily of interest in any context. With
reference to some generic user-related constraints, we introduce the
notion of a "testing scope" to refer to a subset of the input domain that is
delimited by those constraints. Then we introduce a revised definition of
test coverage, referred to as "scope-based test coverage", targetting
relevant, or "in-scope", entities. In other words, we propose, as simple as it
may sound, to change the denominator of the traditional coverage
equation to count only those entities that are relevant in the given testing
scope. Clearly, the challenge is how to properly define scope so that scope-
based coverage can be automated. We have instantiated scope-based
coverage in different contexts, including code reuse and reliability testing.

It's a small world
ml 1 J

recife

Sao Carlos

b

This talk is about Software Testing
i.e.:

» the dynamic verification of the behavior of
a program

* on a finite set of test cases

 suitably selected from the (in practice
infinite) input domain

 against the expected behavior

Above is my comprehensive definition of software testing, in Software Testing ch.

of the SWEBOK Guide (2001 and following editions)

16/09/16

Software Testing has many limits

You can never test a program exhaustively
(only exhausted things are time and
money ...)
cannot test every valid input or every
execution path;
and, even worse, cannot test every
invalid input.

You can never know whether you have just
found the last fault

Software Testing has many limits

‘Program testing can be
used to show the
presence of bugs, but
never to show their
absence!”

Edsger W. Dijkstra
(1930-2002)

16/09/16

16/09/16

Research seeks provably
effective strategies and
tools to overcome / mitigate
software testing limits

Coverage Testing

Coverage Criteria

A set of entities to be covered
Is defined, and a program is not
considered to be adequately
tested until all entities have
been executed

A set of entities to be covered
Is defined, and a program is not
considered to be adequately
tested until all entities have

been executed
(and validated against an oracle)

16/09/16

E -
'

Al

Decide whhen to stop
testing

Guide testers in enhancing
their test suites

16/09/16

COVERAGE MEASURE:

OF COVERED ENTITIES
OF AVAILABLE ENTITIES

Branch and statement
coverage are accepted

TeStlng foday as the minimum

Tech- -
% mandatory testing
nlﬂues requirement.

In case | haven’t made myself clear, leaving
untested code in a system is stupid, shortsighted
and irresponsible.

16/09/16

oid get_triangle_type(int a, int b, int c) {

|s aiming at full
coverage always
meaningful?

The Triangle Calculator

}
else if (a ==b || b==c || a==2¢c) {
printf("Isosceles Triangle. \n");

if b == 18 -
e b o ¢ Triangle Calculator
printf("Equilateral Triangle. \n");
)le / 60

}
else { Angle E 60
printf("Scalene Triangle. \n");

else {

printf("Triangle formation not possible\n");
}

main(int argc, char *argv[]) {
int a, b, c;

sscanf(argv[1], "%d", &a);
sscanf(argv[2], "%d", &b);
sscanf(argv[3], "%d", &c);

get_triangle_type(a, b, c);

16/09/16

16/09/16

The Triangle Galculator

oid get_triangle_type(int a, int b, int c) {

A e L A S Triangle Calculator
printf("Equilateral Triangle. \n");

}
else if (a ==b || b==c || a==2c) {
printf("Isosceles Triangle. \n"); /\ngle A 70
}
else { Angle B 80

printf("Scalene Triangle. \n");

Angle C 45

else {
printf("Triangle formation not possible\n");

)

fint main(int argc, char *argv[]) {
int a, b, c;

sscanf(argv[1], "%d", &a);
sscanf(argv[2], "%d", &b);
sscanf(argv[3], "%d", &c);

get_triangle_type(a, b, c);

COVERAGE MEASUR®

OF COVERED
OF AVAILAE

.

->NOT ALI VIITIES MIGHT

OgQ:VERY CONTEXT!
v

16/09/16

Our proposal

RELATIVE COVERAGE

- # OF COVERED ENTITIES
OF AVAKABLE ENTITIES

16/09/16

RELATIVE COVERAGE

OF COVERED ENTITIES
OF IN-SCOPE ENTITIES

l

I.LE., THOSE THAT ARE RELEVANT
IN THE CONTEXT OF USAGE v

Given a program P with entities

E={e, e, ..., e} to be covered,

and given a scope

S (= a subset of Input Domain),

the set of in-scope entities wrt S is

the largest subset E; = {e;, , €, , .-, €; }
from E, such that for any e, in E;

there exists some input in é that covers it

10

16/09/16

RELATIVE COVERAGE

~ # OF COVERED ENTITIES
OF IN-SCOPE ENTITIES

How can we decide
whether a given entity
IS In-scope”?

11

It will depend on the usage

context!

* We introduced three new adequacy
criteria inspired by the idea of relative
coverage

We baptized each of them with specific names for ease of
reference, but all of them are simply different
instantiations of the relative coverage concept

Relevant Coverage

Code entities targeted in the context of
software reuse (source code is available but
cannot be changed)

Social Coverage

Operations covered by similar users, e.g., in
the context of service-oriented architecture
(source code is not available)

= Operational Goverage
Usage profile mapped to code entities in the
context of reliability testing

16/09/16

12

16/09/16

Code entities targeted in the context of
software reuse (source code is available but
cannot be changed)

Social Coverage

Operations covered by similar users, e.g., in
the context of service-oriented architecture
(source code is not available)

= (Operational Coverage
Usage profile mapped to code entities in the
context of reliability testing

g C—3
[& 3
— =
—
Source Input domain In-scope
code information entities

We applied Dynamic Symbolic Execution to
identify those entities (specifically functions,

statements, branches) that are reachable
when the relevant input constraints hold

13

JID: IS5

[mbG:July 7, 2016;14:56]

The Journal of Systems and Software 000 (2016) 1-22

The Journal of Systems and Software

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jss

software reuse

ISTI - CNR. Via G. Moruzzi 1, 56124 Pisa, kkaly

Scope-aided test prioritization, selection and minimization for

Breno Miranda*"*, Antonia Bertolino®
2Dipartimento di Informarica. Universita di Pisa. Largo B. Pontecorve, 3, 56127 Pisa Italy

ARTICLE INFO

ABSTRACT

Artide history:

Received 17 June 2015
Revised 11 February 2016
Accepred 21 June 2016
Available online xxx

Keywords:

In-scope entity

Test case selection

Test case prioritization
‘Test suite minimization
Test of reused code
Testing scope

Software reuse can improve productivity, but does not exempt developers from the need to test the
reused code into the new context. For this purpose, we propose here specific approaches to white-bax
test prioritization, selection and minimization that take into account the reuse context when reordering
or selecting test cases, by leveraging possible constraints delimiting the new input domain scope. Our
scope-aided testing approach aims at detecting those faults that under such constraints would be more
likely triggered in the new reuse context, and is proposed as a boost to existing approaches. Our empir-
ical evaluation shows that in test suite prioritization we can improve the average rate of faults detected
when considering faults that are in scope, while remaining competitive considering all faults; in test case
selection and minimization we can considerably reduce the test suite size, with small to no extra im-
pact on fault detection effectiveness considering both in-scope and all faults. Indeed, in minimization, we
improve the in-scope fault detection effectiveness in all cases.

© 2016 Elsevier Inc. All rights reserved.

Prioritization (Problem)

Prioritization:
to the real numbers R

(T"#T): [f(T') =z £(T")]

Given: A test suite T'; the set PT of permutations of T'; a function f from PT

Problem: Find T' € PT such that VT": (T" € PT) and

16/09/16

14

Average Percentage of Faults Detected (APFD)

Test. Fault
I 2 3 4 5 6 7 8 9 10
A X X
B X X
cC |X X X X X X X
D X
E X X X
Test Case Order: A-B-C-D-E Test Case Order: C-E-B-A-D
100 100 o \
B % = % | 1 1
8 2 | 1 1
3% 3 % | | 1
g Eol A b
Z 60 z 60 | | |
2 50 Zs0| | : ! d
S 40 W = 40 1 1 1
2 30 i 5 30 1 1 1
2 3 e % i 1 1 1
£ 2 / 2|/ l
? s -4 z 0| | APFD = 8446
!§ 10 o1 j AIIDSETE 20|/ 1 1 1
£ g ! l 2o i i |
0 20 40 60 80 100 0 20 40 60 80 100
Percentage of Test Suite Executed Percentage of Test Suite Executed

*Example from: Malishevsky, A. G., Ruthruff, J. R., Rothermel, G., & Elbaum, S. (2006). Cost-
cognizant test case prioritization. University of Nebraska-Lincoln, Techical Report.

Selection and Minimization (Problem]

Selection:

Given: A program P; and a test suite T

Problem: Find a subset of T, T', such that testing P with T' preserves some
desired property of testing P with T

Minimization:
Given: A program P; a test suite T; a set of entities € = {ey, ..., e, } that must
be exercised to provide the desired test coverage of P; and subsets of T: {T4,...,T,}.

each one associated with one of the e; such that any of the test cases t; € T; can be
used to test e;

Problem: Find a representative set T' of test cases from T that satisfies all
e; €&

16/09/16

15

Test Suite Reduction and Impact on Fault Detection Capability

test cases in the reduced test suite

Reduction = (1) x 100%

test cases in the original test suite

faults detected by the reduced test suite
4 faults detected by the original test suite

Impact = (1) x 100%

Study Subjects

Test

Sub. Ver. LoC Suite

* grep (5 versions): command-line grep "i 2323 }gg
e . grep V2 9987 g
utility that searches for lines cob V3 10194 199
matching a given regular grep vd 10143 199

expression in the provided file(s) gi‘l’ﬁ ol 12());21 ig?

gzip v2 5083 195

* gzip (5 versions): application gdp v3 5095 195
. . gzip vd 5233 195

used for file compression and wip vh 5745 195
decompression sed vl 5486 360
sed v2 9867 360

. . sed v3 7146 360

* sed (7 versions): stream editor sed vA TOS6 363
that performs basic text Bed IS RIS 398 SRNS0

sed v6 13413 370
sed v7 14456 370
Total: 146391 4523

transformations on an input stream

16/09/16

16

Testing Scopes (example)

pT Lllllllll*l

It is used, within a
bigger system, for
compressing files only

It is used by an online
service only for
decompressing the
files submitted by the
service’s users

It is used for
compressing whole
directories recursively

test suite

techniques

» Applied traditional prioritization, selection,
and minimization techniques on the object’s

» Applied our scope-aided prioritization, scope-
aided selection, and scope-aided
minimization on top of the traditional

» Evaluated the performance of the scope-
aided approach when compared to the
original techniques

16/09/16

17

Prioritization Study

RQ1.1: how does scope-aided prioritization
compare with original (not scope-aided)
prioritization with respect to fault detection
rate when considering in-scope faults?

RQ1.2: how does scope-aided prioritization
compare with original (not scope-aided)
prioritization with respect to fault detection
rate when considering all faulis?

In-scope Faults

* In-scope fault. A fault that may manifest
itself as a failure under the scope inputs
subset.

16/09/16

18

Prioritization Study

RQ1.1: Rate of Faults Detected (in-scope faults)

Average APFD.. (and coefficient of variation) when considering different
prioritization approaches and different coverage criteria

Function Statement Branch
Approach original b;icc)llzz_ original ZCiC()IIZ‘il_ original S:aci(ZIIc)‘ 3_
Total 77.0 035 87.60.14) 75.6031) 81.0(024) 74.2(034) 80.6 (0.24)
Additional 92.1 007y 92.3007) 94.100.06 94.90.05 94.7 005 95.5©0.04)
Similarity 83.6 (0.18) 87.3(0.10) 86.1(0.13) 88.1(0.08) 86.4(0.12) 88.5 (0.06)
Search-based 89.8 (0.08) 90.20.08) 91.60.06) 90.2(0.08 91.60.05 90.20.08)
Average: 85.7 89.4 86.8 88.5 86.7 88.7

Prioritization Study

RQ1.1: Rate of Faults Detected (in-scope faults)

Average APFD_. (and coefficient of variation) when considering different
fractions of the prioritized suites

Coverage Fraction: 75% Fraction: 50% Fraction: 25%
criterion original scope- original scope- original scope-
rigina aided rigina aided rigina aided
Function 88.0 (0.13) 88.6(0.11) 87.6(0.13) 88.2(0.10) 85.0(0.13) 85.1 (0.10)
Statement 88.9(0.11) 88.8(0.12) 86.20.13) 87.9(0.10) 84.4(0.13) 86.2 (0.09)
Branch 89.0 010y 88.3(0.13) 87.9(0.10) 87.3(0.12) 85.1(0.10) 86.4 (0.09)
Average: 88.6 88.6 87.2 87.8 84.8 85.9

16/09/16

19

16/09/16

Prioritization Study

RQ1.2: Rate of Faults Detected (all faults)

Average APFD. (and coefficient of variation) when considering different
prioritization approaches and different coverage criteria

Function Statement Branch
Approach L scope- o scope- o scope-
original aided original aided original aided
Total T4.40219) T8.4(023) | 73.8(0.23) T6.0(0.26) | 70.6 (0.31) T4.7 (0.30)

Additional 92.90.07) 92.6 (0.o7) | 95.50.05) 95.4 (0.04) | 96.2 0.01) 95.9(0.03)
Similarity 84.3(0.11) 86.5 (0.00) | 85.90.08) 85.7(0.10) | 87.0 (0.06) 86.5 (0.10)
Search-based | 91.5 (0.04) 91.6 (0.04) | 93.1(0.00) 91.6 0.04) | 92.80.03) 91.5(0.03)

Average: 85.8 87.3 87.1 87.2 86.6 87.1

Minimization Study

RQ3.1: Test suite reduction: how does scope-
alded minimization compare with the original
one (not scope-aided) in terms of test suite
reduction achieved?

RQ3.2: Impact on fault detection capability:
what is the impact of scope-aided minimization
with respect to the test suite's fault detection
capability when compared to the original (not
scope-aided) minimization and considering
both all faults and in-scope faults?

20

Minimization Study

RQ3.1: Test Suite Reduction

Average test suite reduction (and coefficient of variation) achieved by the
scope-aided minimization and the traditional approach

Subject grep gzip sed
versions o scope- L scope- L scope-
original aided original aided original aided
Vi 77.7% (0.17) 87.4% (0.11) | 91.6% (0.02) 97.3% (0.01) 94.1% (0.04) 97.5% (0.02)
V2 77.7% (0.17) 88.9% (0.09) | 91.8% (0.02) 97.1% (0.02) 93.9% (0.04) 98.1% (0.02)
V3 78.4% (0.16) 88.9% (0.10) | 91.8% (0.02) 97.5% (0.01) 93.8% (0.03) 97.3% (0.02)
V4 78.6% (0.16) 89.2% (0.09) | 91.8% (0.02) 97.4% (0.01) 93.4% (0.04) 97.3% (0.02)
V5 78.6% (0.16) 89.3% (0.09) | 91.8% (0.03) 97.3% (0.02) 93.8% (0.04) 97.2% (0.02)
V6 - - - - 93.8% (0.04) 96.6% (0.03)
V7 - E E - 93.3% (0.04) 97.8% (0.01)
Average: 78.2% 88.7% 91.8% 97.3% 93.7% 97.4%

Impact = (1

Minimization Study

RQ3.2: Impact on Fault Detection Capability

faults detected by the reduced test suite

~ # faults detected by the original test suite

)xlOO%

16/09/16

21

Minimization Study

RQ3.2: Impact on Fault Detection Capability

Impact on fault detection capability for the different coverage criteria when
considering the set of all faults

o
S - _—
g
o _ _
£ ® 7 : —
3 : ;
© - '
Q '
& !
o o :
§ ©
°
2
[
hel
- o
FE T
& :
c '
o |
k) :
g R~ i _
E
o _ P
T T T T T T
original scope-aided original scope-aided original scope-aided
Function Statement Branch

Wilcoxon signed-rank test: median differences are statistically significant, at 5% level, for statement
(p =0.01392) and branch (p = 0.04964), but not for function (p = 0.4014).

Minimization Study

RQ3.2: Impact on Fault Detection Capability

Impact on fault detection capability for the different coverage criteria when
considering the set of in-scope faults

o
S _— _—

60

40

impact on fault detection capability (%)

o — i . — i

T T T T T T
original scope-aided original scope-aided original scope-aided
Function Statement Branch

Wilcoxon signed-rank test: the difference in the median values is statistically significant, at 5% level,
for branch (p = 0.03909), but not for function (p = 0.05116) and statement (p = 0.1595).

16/09/16

22

In summary, scope-aided approach:

* For prioritization:
— Used as a burst to total and additional greedy
heuristics; to similarity-based approach; and to
one search-based technique

— Found the most important faults faster

* For selection and minimization:
— Compared with greedy approaches

— Reduced the test suite size while
maintaining comparable fault detection
capability

= Operational Coverage
Usage profile mapped to code entities in the
context of reliability testing

16/09/16

23

Software Reliability

r Wﬂ Operational Profile: a quantitative

characterization of how a system will
be used.

‘A software-based product's reliability
depends on just how a customer
will use it. Making a good reliability
estimate depends on testing the
product as if it were in the field” [1]

John D. Musa
(1933-2009)

[1] J. D. Musa. Operational profiles in software-reliability engineering. IEEE Software
10:14-32, 1993.

Operational Profile Based Testing

Motivating Scenario

Operational Profiles for a Publication Management System

Occurrence Probability

Operations) _ Sys_tem
Authors Librarians = Administrator
s

Add publication 0.20 0.15 0.0
Browse publications 0.70 0.38 0.0
Add users 0.0 0.15 0.20
Remove users 0.0 0.06 0.10
Set/Update user permissions 0.0 0.06 0.21
Database backup 0.0 0.06 0.42

16/09/16

24

16/09/16

Operational Profile Based Testing

Motivating Scenario

The system
fulfills all my

Authors

0.20
0.70
0.0
0.0
0.0
0.0

Operational Profile Based Testing

Motivating Scenario

It is fairly
reliable!

Librarians

0.15
0.38
0.15
0.06
0.06
0.06

25

Operational Profile Based Testing

Motivating Scenario

... | have a
different
opinion!

System
Administrator
s

0.0
0.0
0.20
0.10

0.21
0.42

Coverage Metrics

Traditional Coverage= # covered entities/# available entities

Relative Coverage= # covered entities/# in—scope entities

16/09/16

26

Branch
ID

Hit

A A O A A A0 N A A A O A

16/09/16

27

Branch

D Hit Count

1 4278
1 10834
1 11623
0 0
1 4876
1 3972
1 10543
1 2187
0 0
1 2267
1 2087
1 1678
0 0
1 5458
1 9876

O D> DS ©® N O NN

Operational profile based testing

We introduce coverage measures
based on program count

~ N\ spectra: i.e., in addition to
\ distinguishing between in-scope
and out-of-scope entities, we also

take into account how much in-
scope entities are exercised

« A program count spectrum rates entities based
on their usage frequency.

16/09/16

28

We considered:

» Branch-count spectrum (BCS)

» Statement-count spectrum (SCS)
* Function-count spectrum (FCS)

And for each case we clustered entities into
3 groups: High, Medium and Low

Branch ID

Frequency
1 11623
2 10834 ngh
3 10543 (W=1 01)
4 9876
5 5458
6 4876 Medium
7 4278 (W=1 00)
8 3972
9 I 2267
10 I 2187 LOW
11 N 2087 (W=1 0-1)
12 I 1678
13 0
14 o
15 0

16/09/16

29

OC — i TiWq
1=1

where:

n = number of importance groups
x; = the rate of covered entities from group
w; = the weight assigned to group 7

Research Questions

RQ1: Does operational coverage provide a
good stopping rule (adequacy criterion) for
operational profile based testing?

RQ2: Is operational coverage useful for
selecting test cases (selection criterion) for
operational profile based testing?

16/09/16

30

16/09/16

Study Subjects

Subject Version LoC # fSaeueI:iSed
grep V3 10124 18
gzip V4 5233 12
sed V2 9867 5

Total: 25224 35

31

Tasks and Procedures

» Carry out operational profile based testing by
selecting the next test case to be run
according to the occurrence probabilities
defined in the customized operational profile

» After each test case is run, we calculate:
1. Traditional coverage
2. Operational coverage
3. The probability of failure for the next test case

Adequacy Study Resuits

RQ1: correlation between coverage and failure probability

Kendall Tau correlation between coverage and the probability that the
next test case will not fail (all entries significant at 99.9% level)

. Branch Statement Function
Subject
trad. oper. trad. oper. trad. oper.
grep 0.37 0.40 0.38 0.41 0.39 0.35
gzip 0.41 0.45 0.44 0.46 0.39 0.44
sed 0.39 0.50 0.40 0.52 0.35 0.47
Correlation Guildford scale
[2]
<04 “low”
>=0.4and <0.7 “moderate”
>=0.7and < 0.9 “high”
>=0.9 “very high”

[2] Joy Paul Guilford, Fundamental statistics in psychology and education. McGraw-Hill, 1942.

16/09/16

32

Does code coverage provide a good stopping rule for
operational profile based testing?

Breno Miranda‘t
*Universita di Pisa
Largo B. Pontecorvo, 3 - 56127

Pisa, Italy
{firstname.lastname}@di.unipi.it

ABSTRACT

We introduce a new coverage measure, called the operational
coverage, which is customized to the usage profile (count
spectrum) of the entities to be covered. Operational cov-
erage is proposed as an adequacy criterion for operational
profile based testing, i.e., to assess the thoroughness of a
black box test suite derived from the operational profile. To
validate the approach we study the correlation between op-
erational coverage of branches, statements, and functions,
and the probability that the next test input will not fail.
On the three subjects considered, we observed a moderate
correlation in all cases (except a low correlation for func-
tion coverage for one subject), and consistently better re-
sults than traditional coverage measure.

Antonia Bertolinot

fISTI - CNR
Via Moruzzi 1 - 56124

) Pisa, ltaly
{firstname.lastname}@isti.cnr.it

necessarily indicate that the latter also yields high effective-
ness. Thus, generating test cases for coverage as a target
may be risky, as warned from many sides (e.g., [15, 22]).

However, coverage measure used as a supplement to other
non-coverage-based testing methods can be an effective tool
[22], for example to decide whether a test suite derived using
another black-box method is adequate.

This paper goes in this direction and investigates the use
of code coverage as a stopping rule for operational
profile based testing.

Operational profile based testing is grounded on the no-
tion that not all faults have the same importance. Depend-
ing on how it will be exercised by the users, a program can
show quite different levels of reliability [14].

On the other side, almost all studies assessing the effec-

16/09/16

33

Tasks and Procedures

» Derive two test suites using the greedy additional
heuristic:

— The first test suite targets all the entities available in the
subject under testing. We refer to it as the traditional test
suite.

— The second one, the operational test suite, targets the
most important entities for the customized operational
profile.

* We then measure:
— The size of the derived test suites
— The remaining failure probability

selection Study Resuits

Test suite reduction (Branch coverage)

40

test suite size
20
|

J——

T T T T T T
traditional operational traditional operational traditional operational

grep gzip sed

Wilcoxon signed-rank test: all the median differences are statistically significant at the 5% level.
p-value < 2.2e-16

16/09/16

34

Selection Study Resuits

Test suite reduction (Statement coverage)

|

T

20

test suite size
15
|

10
|

—_

T T T T T T
traditional operational traditional operational traditional operational

grep gzip sed

p-value < 2.2e-16

Wilcoxon signed-rank test: all the median differences are statistically significant at the 5% level.

14
|

test suite size

T T T T T T
traditional operational traditional operational traditional operational

grep gzip sed

p-value < 2.2e-16

Wilcoxon signed-rank test: all the median differences are statistically significant at the 5% level.

16/09/16

35

Selection Study Resuits

RQ2: Remaining failure probability after test suite execution

Subiect Branch Statement Function
bjec trad. oper. | trad. oper. | trad. oper.
grep 2.720 0.907 | 2.180 0.804 | 7.113 7.815
gzip 0.003 0.063 | 0.056 0.043 | 1.200 0.966
sed 0.205 0.147 | 0.306 0.174 | 15.125 13.682

Average: [0.976 0.372]0.847 0.340 | 7.813 7.488

Wilcoxon signed-rank test: all the median differences are statistically significant at the 5% level.

In summary:

» We defined a coverage criterion for
operational profile based testing

» We proposed a novel method of
measuring code coverage that exploits
program spectra

» We conducted the first study of using
operational coverage for test adequacy
and selection in the context of operational
profile based testing o

16/09/16

36

* This talk aimed at demonstrating the very
idea of “relative coverage”

» The final goal would be —given a test
context- a fully automated solution from
user’s constraints all way down to relative
coverage testing

To keep in mind...

» Relative coverage should not be taken as
an alternative metric for the purpose of
achieving a higher coverage score

* Also, it should not to be taken as an
advice to test “less”

» Good for reliability, not for safety!

16/09/16

37

« The only extra cost added is related to the
identification of the in-scope entities

— It will depend on the method chosen

= Function
—=— Statement
=== Branch

% of in-scope entities identified
9

T T T T T T T T T T 1
0 30 60 920 120 150 180 210 240 270 300

time (seconds)
Average % of in-scope entities identified over time for grep, gzip, and sed when using
dynamic symbolic exploration supported by KLEE

A practical approach, which needs
practitioners’ feedback

* While we have developed some
instantiations, the notion is general and
can be applied in varying contexts

* We would be highly interested in

evaluating the approach with an industrial
partner

16/09/16

38

* Investigate different approaches for the
identification of the in-scope entities

 Investigate the impact of the in-scope
entities on test case generation

— How effective would be a test suite generated
targeting the set of in-scope entities?

16/09/16

39

