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useful. Black 1958 is the source that began the formal study of committee
decisions.

The structure-induced equilibrium model has generated a large literature,
Historically, the notable papers are Shepsle 1979, Shepsle and Weingast 1987,
and Weingast 1989. Hammond and Miller (1987) use this approach to analyze
the organization of Congress given in the U.S constitution.

The model of bargaining in legislatures by Baron and Ferejohn (1989) has
led to a set of papers analyzing the distributive effects of congressional policies
(Baron 1989a, 1991b).

The third model of congressional structure is informational; it is presented
in Chapter Eight. Krehbiel 1991 is the place to begin; Gilligan and Krehbiel
(1987, 1989, 1990) present their models of an informative committee struc-
ture. Huber (1992) uses models of congressional rules to explain differences
between the legislatures of France and the United States.

The other institutions of Congress have also been modeled. Calvert (1987)
uses the Chain Store Paradox (see Chapter Nine) to analyze legislative leader-
ship. McKelvey and Riezman (1992) explain why legislators use the seniority
system to distribute committee positions. Austen-Smith (1990) and Austen-
Smith and Riker (1987, 1990) present models of legislative debate based on
signaling theory. Sullivan (1990) presents a simple model of bargaining be-
tween the president and the Congress. The section on models of burcaucracy
and administration in Chapter Nine of this book includes models of legislative-
agency relations. These models analyze congressional oversight and control of
agencies.

Ainsworth and Sened (1993) and Austen-Smith (1993) present models of
lobbying as an information source for legislators. Austen-Smith (1992) con-
siders how legislative constituencies could restrict sophisticated votes in both
chambers of congress.

V

Chapter Six
Beliefs and Perfect Bayesian
Equilibria

Perfect Bayesian equilibrium unites a new concept, beliefs, with strategies to
create a more powerful idea of equilibrium. So far, equilibria have been com-
binations of strategies that are best replies to one another. Chapter Five added
the idea that best replies should be judged off the equilibrium path as well as
on it. Backwards induction and subgame perfection provided one way to judge
best replies off the equilibrium path. But information sets with multiple nodes
often frustrate those techniques. Because we cannot do a backwards induction
through information sets with multiple nodes, backwards induction is power-
less to deal with many games. Subgame perfection can help in some of these
cases but not all.

Information sets with multiple nodes reflect a player’s inability to verify the
node it is located at when it must choose. It cannot determine the consequences
of its moves because of this uncertainty. When a player chooses at an informa-
tion set with multiple nodes, it uses what information it has about which node
it is likely to be at when it chooses. We represent these judgments about what
has happened with conditional probabilities. A player thinks to itself, What is
the probability that [ am at the top node in this information set given that 1
must make a move from this information set?

These conditional probabilities on the nodes of an information set with mul-
tiple nodes are called beliefs. They summarize a player’s judgment about what
has probably happened up to that point in the game. Beliefs express the like-
lihood that the moving player is at each node in such an information set. We
use beliefs to calculate a player’s expected utility for each action from an in-
formation set with multiple nodes. For each action, we weigh the utility of the
outcome that results from that action from each node in the information set by
the probability the player is at that node.

Not just any probabilities can be considered rational beliefs in the context
of a particular equilibrium. Beliefs should reflect what the players know about
the game and the common conjecture they hold about the strategies they are
playing. They capture the moving player’s hypotheses about the history of play
that led to this information set. A player’s beliefs reproduce what it believes
the other players are likely to have done before it must move.

Further, we assume that players make optimal use of the information avail-
able to them. We model how players use information to revise their beliefs with
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Bayes's Theorem from probability theory. When #clors are uncertain, they use
new information to update their belicfs about underlying states of the world.
Rarely is new information decisive for judging the stite of the world. Instead,
it shifts the player's judgment about the likelihood of different states. Bayes’s
Theorem explains how new information should be used to update beliefs about
undetlying states of the world. 1t weighs the ability of the new evidence to
discriminate among different states and the strength of prior beliefs to arrive
at updated beliefs.

The states in a game are all th

the game. If a player knew what moves
which node it is at when it must move. When it cannot verify what moves

have been made, it uses the other players’ equilibrium strategies 10 judge
at which node it is likely to be. A player updates is beliefs by combining
what it can observe with the likelihood in the equilibrium that the other play-
ers” would make each possible move. Bayes's Theorem is the formal tool
for this updating. Rational beliefs, then, depend on the players’ strategies.
Along the equilibrium path, the beliefs should be calculated from the known
probabilities of chance moves and the players’ strategies by means of Bayes’s
Theorem.

A perfect Bayesian eq

e moves that have been made earlier in
had been made, it could determine

uilibrium consists of beliefs and strategics that support
one another in equilibrium. Given the beliefs pnd the other players” strategies,
each player’s strategy is optimal at every node in the game and all beliefs are
consistent with the equilibrium strategies along the equilibrium path.

The addition of beliefs reinforces the ti¢ bewween game theory and deci-
sion theary. Expected utility caleulations mode! decisions in the sequence of
the game. Beliefs add a concept that seems very natural for analyzing games.
We can analyze how beliels and actions ure related in equilibrium. We can
trace how actians change betiels and how beliefs lead to actions in a perfect
Bayesian equilibrium, Beliefs provide
crs deal with incomplete information iind inc

an intuitive way to discuss how play-
orporate a form of learning into a

ame.
The difficulty of the material steps up here. Like most of game theory, the

mathematics arc not difficult, generally requiring just algebra. But careful

1o the mathematics is required here even though the ideas are quite
simple and intuitive. Translating those ideas into a careful formal argument
requires close tion to the math il details: Caleulations of both ex-
pected wtility and Bayesian updating are necessary (0 find equilibrin. These
calculations are not difficult, but there is no substitute for them, Further, strate:
gic logic can be complex. Figuring out the equation that expresses the correct
strategic calculation is often more difficult than solving that equation. Formil

solutions arc necessary here precisely because intuition alone i3 often WIoNE:
{ shape our intitiof:

The discipline of formalization is necded to strugture any
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Worki .
tives :II:S ;:I;:zfshrg::::s::urr;ud:h. compels us 1o think carefully about the incen
b ce and what strategies can best achi i i
Thiscl o e ! st achieve their goals.
sentil F(:I:ul.lt];:l:x%l:‘h bv reviewing Bayes's Theorem. Bayes's TEI‘wurt:m ises-
TG lnjE. ! heliels ina pcrfu_ct Bayesian equilibrium. | follow Bil).'l.'s-"i
b bl an ?mnp_lu of Bayesian decision theory, the preference for hi.
and Bil}'i:ci'il:s 1:‘Jn. e decision theary links expected utility ‘-'HJCUhItiOIE;
o I\;: l_pd.:lmg af beliefs to see how new information can change d
i s bt e il o Sl 15
erie esian equilibrium next. The ¢ el : '
drawn from nucloar deterronce, cxt. The chapter ends with an example

Bayes’s Theorem*

222:30[1}: are often gnCel’tain about the consequences of their actions, We re
(hé W0|~|(je“:[‘lélm~erm<ln[y by _subjec[ive probabilitics over the msslbl;:' *I'llcr::-:l"
“ke“ho()d. . efc lpx opﬁfbflltles represent a decider’s degree of belief allu.ml‘lhi:
o Inors‘;ickle;i},lfitfllle]ntdsta}g. The higher the subjective probability of a
) s the dec . T P t
"y ider to believe that state is the true state of the
Thes iefs s ¢ i
Sm[eoffhl;evl‘:efisdsgould 'change as a decider gains new information about the
o orf - Sometimes, that information may convince the decider about
the true S dﬁ(]i of the wqud‘ If event E can happen only when A is the state uf
fhe » Bu,[ n:cv (')b;ervmg E is sufficient to conclude that A is the state (;f t}(l)e
5 mnformation rarely allows such stron i
" ! ows E g conclusions. Typica
ingevlzr;!’l;)ll'ltl.d f)ccur under several different states of the world witl):pclici;lflti}‘,’
give;; ea‘chl ;)(l)es:gclors use the probabilities of an observed event’s occurrinlg-
ssible state to update their probabiliti :
. possible : 1pd probabilities about the stat
im‘;nu;l;'he ﬁubjecuve pl(zbabllmes of each state before considcralioneo(;rn[eh\s
mnsid;: r;o]::o .:Irc] I«.]:allefl prior (or initial) beliefs (or probabilities). Updatin
i su:m e T!;:-mr beliefs um_] the probabilities that the event will occu%
o - The updated beliels are called posterior beliefs (or prob-
o (;[h.ers chfvcr!ts are more likely under some states of the world than
s. Observing an event provides information i
‘ : S that ases iefs
db(éutlst%tes of the world where it is more likely to occur, ereases beliels
wﬂ:’; l:;icare cl(’)‘nd.monal probabilities. Let A be a state of the world and B a
X - . . .
M (]:crt':u‘shl_ht.yr of B given A, written p(B[A), specifies the likelihood
Pl I glt:-i: ;'.hnt A s the stute of the world. Bayes's Theorem uses
al probabilities of events given st ‘ :
P given states to deduce the conditional
" states given events, For instanc
p S| . For Instance, the latt i
Hional probability of A given B, writien p(A]B) pter ol be the con-

*This secti G iti
1s section uses conditional probabilities.
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H { states of
Theorem (Bayes’s Theorem): Let (A}, be the set o §

the world, and B an event. Then

p(ADP(BIA)

_  pladeBo.
PAID) = R oBIAD

F reviated
If there are only (wo statcs of the world, A and not A (abbreviate

~ A), the above formula simplifies to

I
PAIB) = STXpBIA) + p(-AIpBI-A)

Baves's Theorem determines the posterior p'mbnhllll:_.r“ui i :;ugdbzi :iﬂ?:g

el bubility that both the event and the state wi nclc K4 viding
'!allng sl II ity that the event will oceur regardless of state (deter -
feye pan ?l ';: all states). An event, B in the formula, chanlg’cz .tf)fe ie s[
E’)’ suT;:"‘:ﬁdl:;ﬁ}ng state of the world, A in Ihc‘ formula, bec“s::si:ar:] :;zﬂt
‘::?t:: producc different probabilitics of the event’s 0CCurming.

: i zeur unider
the state of the world by observing evenls that are more likely 1o oceuru

s, If ¢ is equally Jikely under all states, prior
one. EHlle .[Ranc: 1‘1:(]11:“;:‘ :;:e: ]:J‘Il}:ci:?:; ':;chm:. Events with grealer dsl.;ﬁg;
2;:;2::: :)fogahiiity given each state discriminate more effectively across
states ||m:n 'T‘;z:isc:t:':ﬁ:::s"dci}:iﬁﬁlﬁz; the deﬁnitior.l of a cong; El;(.)irj:ll g;o(i
.mgigc:-ﬁe probability of A given B, written plAIB), ISB ;hz:m p&:l . I;r: tﬁliur e
and 1 divided by the probability of B, p(A and BY/p(B). The p iy o
P : n(A)p(BJA), from the definition of the cumiiuun_al prof el
i z_lml # pém{)(: p(,:\ and BY/p(A). The probability of B is the sn-r? o e
X swm?lf\'. ?(llm (A and B) oceur and that [(not A) nr}d B) cccur.‘l the‘_n I:hl:sc
Pﬂ.'t.m.bl. t'°f‘ p(:\) (BA) and p(~AIp(B|~A), rcspcct'lvely‘ Su.bs-l'.lu ‘: gﬂyc%
:?::Ii;::;;i?::s inlapthe conditional probability of A given B gives us

Theorem.

down wants to rid baseball of all

Examiple: Commissioner Crack -

5 s i drug testing. A particular )
pluycrzcu::::?gc::;ﬁ‘l;hg;;gmn:; of the time, but gives a f alséspg; :
E]Fug te. a l;n;u.r lests positive even though that player 1S o
ms:; :111.:"*) fu percent of the time. IT 10 percent of all pl|ay2|r» W‘-w
:';}ugs. wlg;:\l is the probability that a randomly selected play

sl 3
tests positive is using drugs?
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Let D signity that a player uses drugs, ~D signify that a player does not use
drugs, and + signify that a player had a positive lest result. We want (o know
p(D|+), the probability that a player uscs drugs given that that player has (ested
positive.

p(D)p(+|D) €9
Di+)= —— POPRGID) 9
p(D[+) PDP(+ID) + p(~DIp(+[~D) — (1)) + (O.D)

..

Thete is a 50 percent chance that a player testing positive has used drugs,

Example: In o certain city, 30 percent of the people are conser-
vatives, S0 percent are liberals, and 20 percent are independents,
Records show that in the latest election, 65 pereent of the conserva-
tives, 82 percent of the liberals, and 50 percent of the independents
vored. If a person in the city is selected wt tandom and it is learned
that he or she did not vote in the last election, what Is the [robability
that he or she is a liberal?

We want to know p(L|~v), where L signifies that the voter is a liberal and
~v significs that he or she did not vote,

plp(~v|L)

Li~v) =

p(L{~v) PECIPE=VIT) + pLIp(~VIL) + p(Dp(~v]l)
(.5)(.18) 18

Exercise 6.1: A bag contains a thousand coins. One of (he coins
is hadly leaded, so that it comes up heads 2 of the time. A coin is
drawn at random. What is the probability that it is the loaded coin
il is flipped and turns up heads without fail

a) three times in a row?
b) (en times in a row?

¢) lwenty limes in a row?

In game theary, the states are the other players® strategies, und the events
are the moves observed. 17 one player knows another player's strategy, it cian
I'”_Udicl all of the other player's future moves Cup 1o any randomization through
"Mxed strategics). A player's moves can reveal it strnegy to the other play-
T8, Mixed strategies lead 1o partial, rather than total, revelation of stratepy,
Other players can use the information in the observed moves to infer the
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BYS ¢ just their own
Those other players can then adjust [ W
i ! is the I tool used 1o model this
Aratepies in response. Bayes's Theorem |‘s_|ln. formal tool used 1o
:tpr?lta‘}%{.g ina gall::?c, Each player has an initial pmb?bll ;ly dist ]rlhlutl;(;; c::;: 1{':::
! ilegics its beliefs about what th X
other players' pure strategies that reflects 1 o2 dbuut WIE i
i ility for each action at each node (pure st
Each strategy specifies a probubility ‘ { sz ks
ies gl ilities d | for ench action). After ubserving am ¥y
gies give probabilities of Oand | 1 h S O
«r plaver, a player uses its prior belicls, the set of poss 5 i
EL‘;tl.t’rﬂl’}h:urnm}:o Z:lcuialc new probabilities for cach strategy of the moving

player.

strategy of the firsi players:

The Preference for Biased Information . —
Bayesian decision theory gives us a way to explore how mfurn:alaon_ b ctﬁ
choices. Does new information changed decider’s ch]n:lncc rmn: the ;:j:T cul:::; h:
Athou i ation’ »s"s Theorem allows us 16 W 5
ake without that information? Bayes's iy gpaon iho.d

:;dc'r"r, subjective probability distribution and thus d;;cn;lpu if ::I‘(;e;:?;::
es : wstion in this section, the choice an 2
hanges. | explore o related question in U ! . ; -
f:nt sfurccs of[;‘inforruation. Given a choice amonlg_pn?s;lblc sources o{ mfctrmuf
tion, which source is most likely 10 affect a decision? llf ‘t]:sr?:lli;f‘:o‘g;iz oi*;
information i . which sources should be consulted: The hest : !
et hift one’s decision from what would be chosen

he one that is most likely to s ¢ hot would b ct
:nbll".w absence of new information. The following model is a simplification of

Calvert 1985,

Consider the position of a decider choosing between IwWo Courses of action,

A, and Ag, in the face of uncertainty about the dcs‘imbility of each mur::lc of
aclli-.m The actual desirability of cach course of aj:tl_;o‘n' d;n:let!r:gi;:;r;f ::‘;c
i 1s el The decider's payofl is the dest
respectively, is cither O or 1. ! . ; ; iy
i is 5 chosen, The nctual vilues
shosen action: Xy if Ay is chosen or X2 il Az s chos ¢ S
:hoand X3 are !‘.D‘l observed by the decider, I.n:alcu‘d.l it can consult an adwlspr
v-:hu pmfjuccs a recommendation about the desirability of cach coursie of action
« on the actual desirability of cach. o . i
b"?rc}.‘c decider believes x; is bewer before receiving any ad\;l\:‘.i \T;: ;crg::;zn:
isi ider's slic B that A is more likely e
this in the decider's prior wmfs.lltu:iicvcs i i
i “I'his bias is best thought of as the decider’'s exist!
desirable sutcome than Az. This bins is best thoug ofasthe b
beliel that Ay is more effective than As. This bius may be an ugde;s:‘rlmtﬁ
that Ay is generally a betier option than Az, Extensive e_xpuncml.e N e
options in prior settings could create :iucl:l an undummpmq%_ If §\In;c Ao
thought of us a blind prejudice of the decider. The decider’s initia

as Tollows:

|
eI
e

pix; =1 = p(x; =0) =

[Ty

plxa = 1) =1 plxy = 0} =

PERFECT BAYESIAN EQUILIBRIA 167

 Anadvisor can provide a “good” or “bud" recommendation for each alterna-
tive after observing its true desirability, Advisors are not strategic actors. An
advisor produces recommendations based on the desirability of an action and a
huilt~i|_1 bias, e, it has in favor of Ay and against As. Any advisor makies some
crrors in its recommendations. Advisors sometimes say that an option is “bad™
whenx; = | and that itis “good” when x; = Ofori = 1.2, Formally, we hilve
the following probabilities for recommendations:

(

il

p(A| goodx; = 1)

1) =

It

BT

) P(A| goodlx; = 0) = (1)*
)u p(A, good'xz —0) = (%)u

I

p(A; good|x,

The probabilities of bad recommendations are 1 — (probability of a good rec-
ommendation).

The patameter a gives an advisor's bias in favor of A, and agninst As, IF
o = 1, the advisor gives neutral recommendations. The probability of u "gu-nu"
recommendation by an unbinsed udvisor is § and the probability ol a “bad™
recommendation is { As e > | increases, the advisor is more likely to say
|h;|t_ Ay is “good” regardless of the true value of x, and less likely to say that
A is good.” However, biased advisors are honest in the sense that they are
more likely 1o say an option A is “good” when % = 1 than when x; = 0 for
both optians,

We want to know what action the decider selects after receiving advice from
the different advisors. 1f collecting advice is costly, then the decider benefits
{rom advice only when that advice convinces il to change its decision. We
compare the advice rom two possible advisors, one unbiased and one biased
in favor of Ay, For each possible piece of advice, we calculate the decider’s
updated distribution of the cfficacy of cach action. It chooses the action with
the higher expected outcome,

(?onsider the unbiased advisor first. If the unbiased advisor recommends that
A1 is “good,” we calculate the decider’s posterior probabilities for x;. Bayes's
Theorem is used as follows to calculate these posterior probabilities;

p(xi = 1A good)
= pixi = DpA goodlx, = 1)
Pl = 1)p(A; goodlx; = 1) + p(x; = 0)p(A, goodfx, = 0)
GH b s

th. P‘llobzlbilily that x| = 0 given that the unbiascd advisor rccommends that
118 "good” is | — (the probability above) = %

pcr[{”‘h the postcriQr probability distribution, we calculate the decider’s ex—

ation for choosing A, afler recciving a “good” recommendation. We sum
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ccurring after the

the value of each possible outcome by the probability of its 0
d”:

decider receives the unbiased advisor’s recommendation that A, is “gool

E(A1|A; good) = px) = 1|Ay good)x; + p(xy = 0jA| good)x,

4 ! 4
oo~
h action alter receiving

We caleulate the decider’s expectation for choosing eic
each possible recommendation about that action in paratlel fashion. Caleulate
the posterior distribution after receiving each recommendation, and use those

probabilities to calculate an expected value. These
follows:

three expectations are as

E(AJA; bad) = 1 E(Az|Az good) = 1 E(AjJA;bad) = §
2 2 5

Exercise 6.2: Verify that each of the three expectations above is
correct.

e decider can choose only one course of action, it always chooses
Ay ts expected utility for choosing A, is always at least as great as that
for choosing Az, even if the neutral advisor advises that A, is “bad” and
Ay “good.” If advice is costly, the decider should never consult the neutral
advisor. Advice from the neutral advisor never leads the decider to change
its chosen action from its prior belief. Why pay for advice that makes no

difference?
But what about the bia

Because U

sed advisor? Let a = 2. Once again, we calculate
the decider’s expectation for cach course of aclion after receiving each type
of recommendation from the biased advisor. For a “g00d” recommendation for
A, we have the following calculation far the decider’s belief about the efficacy

of Aj:
p(x; = 1|A; good)
& plx; = DplA; goodixy = 1) B
|’(*| = UPU\| gl)ﬂ(llM = I]+p(xl = []}NAI EUD(IEX] =)
G 22y,
T 2y(2)s Tt — T
G5 + (G2 2/2+1

With this probability, we can calculate the decider’s expected utility for choos-

ing A after it receives a “good” recommendation:
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E(AI]A| good) = p(x; = 1]A, good)x; + p(x; = O[A; good)x,

(22 I
<2ﬁ+ 1)(1)+(2ﬁ+ 1>(0) - 255%1 =74

For a good r: i
g ecommendation for Ay, the calculation is similar, as follows:

1|A5 good)

= pixz = Lp(As good|x, = 1)

P(x2 = Dp(Az goodixz = 1)+ p(xz = 0)p(As goudjx; = 0)
(H(3)? 2

px2

80

E(A2|A; good) = p(x; = 1|A; good)x; + p(xa = 0JA, bad)x,
=30 +Hho =2

Ihefol]owmgresultsaleIoundb carrying out the calculations fo: € Ie; 1-
Yy 'ying out the calculation T the remai

E(A|A| bad) = M =~ 46
3V3-2.2-1

and
E(A,|A; bad) = 25_1

Exercise 6.3: Verif each o
LALILISE 0.0 th i
oy y that each of the two expectations above is cor-

The biased advisor can produce decisive advi

I S . sive ce. The decider wi s¢
\:‘}Ii elru;::; t;;a:;l z;:lv::au_r says Ay is “bud™ and A; is gof:c“!ltlic“;:llrllf;oz;
e hci:lll[:I)flfig for (depending on its price). This result may seem
i CI_.: Iv:.\nr.lx may be those who share the same biases n:s' the
bl b[:::t ilﬁam.;n‘d'wc‘c is fo surm_qnd yourself with advisors who share
oy (Ii\'(‘:t\nunl r r.;a.n s0me integrity. The intition belind this result is
e g‘cumsc 'i‘h t:lz!ll sources ullml‘nrm:uion when they know the bi-
el ;mlikcl # : L iased source is more useful thun the neutral source
vt y o say that Ay is “bad” and As is “good.” When it does,
s beliefs about the value of both options shift dramatically, 11)‘1‘;:'
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recommendation is sufficient to overwhelm :t_xe |nm§.l \zms grjhf ::::::du}:r:;l
favor of Ay and cause it 1o choose Az, Beeause Imc busm.r.l_n. mu‘h weiym b
dugces such u recot lution, that recommendation curm:-.a mm.‘ ".En“ls
the eyes of the decider, The neutral SOUFCE, in @ sense, .eacn!le.lln;\) n;l::fu ::suci;
The decider discounts ils mcummcndnnon:s for Az and against ; \ .c i,m: ool
signals are common. Those recommendations from the lkful;‘u :fu:l;ud oplliun
ficiemly {requent that they fail to convince the de;:ldcrlh?\l 1 m_‘;_murﬁt:im“
compared 10 Ag. The amount of information sm:h signals convey is ins
1o overcome the decider’s existing bias in favor 11:; :\;b ) o
is result is particularly interesting | i S 0 somme 15 se.
Ps:g::;;;:lca! sf:tl:lies show that iqdividuats uljn:n rely n:| saun.csl..tt;t; II\I:::::;,J
tion that share the individual’s hm.sm;—l‘)chuvmr wl’_um: ‘tln-i;ﬁ b 'Irr-ninm.:'l
Some have argued that bolstering is evidence that indivic I.!.ifs il L.tlim.‘ onal
because “rational” actors should look Ifnr ncfltrai _sou{ccs-ul' ||:| [TItnmm m sim:
model suggests that the rationul selection of |nf0m}nlmn.snu(;1._ca isn in.“ ihcir
ple. Biased sources may often be the hest vgu:rﬁ:; I:]L:Zut?g[:d::c& :f,nil g
fases is a clear signal to change actions. uring : War, $
:Li;iisc lt Pn:sidcit Johnson that Senator Fulbright was Iu]:upcr.:nz:clll::I I::c] .;T&r.
Consequently, Fulbright's opposition to the w:lrlcamcd litt c\»ggj; ma o
son. But when Robert McNamara carmc oulra:‘;m::re; {:II]“:; ;:‘u:l ::“g cﬁ;ﬂ: g _loh% .
i sition by an original “hawk™ in favor of the war had i 81 0 16
:a!;r‘:f::::l\:::lun{ion of Em war, OF course. this observation rcqulr_ais that L!u; Illl::zﬂ
source must retuin some honesty, A flunky who always provides an op
i he options is useless. o ) ) -
rc\;:ei\: :[\: :leaﬁ' how g 1 is the preference for biased |n|‘ur|11:||llnn.;[}'lt:':;
result depends upon the specific assumplions of this mmllc:l,. Cﬂtmgl‘rfu;cvcr
of the details of the model makes |hc‘unhmsud source pu.&m [ ¥ frnn;
the intuition does seem general, Consider sources u'lfh i i:h:!.s n}a[:}; o5
the decider’s preexisting ju(lgmc_,-m. When you knowl i s«{un.e_ |T |ro i
is opposed to your own inclination, you expect lpc mur_\,lc_:_m n:'n sl
ammendations against your bias. One should rationally (.I‘M.'CIU crl RS
dations from such a source; it is biased. Any unusual rct_ur_n:uc;il‘ u (Tndiﬁd-
1hat source merely reinforces your confidence in your c_:xlsung.; t m{hau ik
uils may be quite rational when they select sources _ol‘ |n.rnni?.um[1| T et
theit own binses. Only those sources can produge evidence that wi
them to change their position on the options.

Perfect Bayesian Equilibria

] G e . eABU”‘Ol
Subgame perfection forces players Lo be rational in every 5gbgd‘1:n
cvery move begins a proper subgame, and subgame perfection ¢a
the rationality of behavior at such moves. For example,

not judge
no proper subgame
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can begin at an information set that includes more than one node. A player
could make a noncredible threat at that information set and use that threat to
deter the other player at a preceding node. How can we judge whether moves
at such information sets are rational?

Perfect Bayesian equilibrium resolves this problem by introducing the con-
cept of beliefs. When a player reaches a singleton information sel, it knows
the entire history of the game to that point, It decides which move is optimal
by using the other players’ strategies to predict their future moves, and thus
predict the outcome of cach possible move. It caloulates its expected wtility for
cach available move to choose its move. When a player reaches an information
sel with multiple nodes, its optimal move often viries with the node reached.
A move may be optimal from one node but not from another, We cannot be
certain which niove is optimal from that information set because we do not
know ar which node the player is,

Beliefs solve this problem by allowing us 1o weigh the different nodes in
‘am information set, and then caleulate the player’s expected utility from that
information set. A player's beliefs are represented by a probability distribution
over the nodes in an information set, For a given information set, they specify
the prabability that the player is at each node if the information set is reached,
The player’s expected wility for ench available move is caleulated by using
these probuabilities. We weigh the expected utility of cach available action from
citchnode in the information set by the player’s belief that it is at that node, and
then sum across all nodes in the information set. A player chooses the action
that maximizes its expected utility.

Beliefs for an information set capture the players’ hypatheses about the cur-
rent state of the game. Beliefs are requited 1o be consistent with equilibrium
strategies wherever possible. On the equilibrium path, belicfs are the proba-
bilities each node will be reached in the equilibrium. Off the equilibrium path,
belicts reflect hypoth about what defections from the equilibrium led 1o
those nodes. Beliefs reflect judgments about both the outcomes of prior, bt
still seeret, chance moves and prior, yet unknown, strategy choices of the other
players. The players use one another’s Strategies (o predict the consequences
of their own moves in any form of equilibrium, A player’s judgments about the
other players' strategices are captured in its beliefs and moves, Perfect Bayesian
equilibria, then, create a symbiatic relationship between strategies and beliefs;
in equilibrium, siritegics are optimal given the beliefs. and the beliefs are con-
sistent with the strategies.

Before formalizing this notion of equilibrium, I present an example of how
beliefs can address the rationality of moves in games with information sets
Wwith multiple nodes.

Example: Consider the game in Figure 6.1 from Selten 1975. One
Nash equilibrium of this game is (Dsa;L). Each player’s move is a




CHAPTER SIX

(4,4,0)

0,0,1)
(3.2,2)

(0,0,0)

Figure 6.1 Selten’s Game

best reply on the equilibrium path. 11 Player 2 will pl:l‘y 2\[ ‘am’I I’I;;I::':)::
3 will play L, then Player | prefers Do A B |}r$=dui.c\ H pulyo. o
1 for him, whereas A gives him a payoffof 1. 1 Pluycr | 1: :;\ K
Player 2's move is off the equilibrium path. In a Nash I.I‘.|n; it uum:
any move off the cquilibrium path is a best reply. Plnyt.rl I‘I l-sr::m:;
is optimal for her if Player 1 plays D. Then Player 3 m‘ ur‘i' Lt“,
move, and she will be ather lower |1::de, L produces a payolf of 2
or Player 3, while £ produces O for her.
lm({.nl:ll :r::cr ‘PT:’:;:cr 2'51 position in this Nash cquilibrium, 1T Plu'yci 2
has to make @ move, then Player 1 must have !’l]:t}‘cd A. PI}I}:;:r ’i't
move should be based solely on her expectation ﬁhilj'l.ll |N‘:i'.“.' X
move. If Player 3 plays L with pmbubzh?y greater than ;,-.Ill'l.u‘k.r 2
should play d instead of a. Bul (DiehiL) is not & Nash chmlilm\:rn,:
Player | wants to change his strategy from D 1o Al lcjmhng e;y _:]
1o change from £ to R, and so on. However, Player 2 never ;Im ny;‘ .c
in (Dy:L), so playing a is Iﬂli(l'ﬂil! asa h‘hllﬁh‘l'.‘l|lll'|.lbl'll.ll'.ll. hu'yg;u
perfection does not eliminate this C{illllllhl'il.lm because l!ul g.m’:i
fragment starting at Player 2's move is not it subgame—it breaxs
Player 3’s information set.

* )
‘The other Nash equilibrium to this game is{A‘.a?{pL‘(l = PVS'IL.WIIh P< 3
I’In?:l:: 3 eredibly threatens Players 1 and 2by playing R to rcﬁ‘ l!u.m tlt} 513111};3
and # in this equilibrium, These s\rntcglcs_fpnn i N:Iﬁh)L‘QI.Il i rm:?. o
2 plays i and Player 3 plays L with probability p < . Player I pre ci?l’la .
A secures him a payolf of 1, while D Icu;ls toa |xa§oll‘f nf Ip rm !u:]. o ipl:.u
plays A and Player 3 plays R with Pl’(‘ll)-'lbl!l(‘)' p< q.ais PI..|yer..'. 5 : Y;}ﬁ R
Her move is now on the cquililsriu}m llm'lhi (.h:;nsmlg ?’iﬁ:‘.jbs“}::;o [\::'iwﬂ' R
ile d eives her a payoff of 4p, which is less than L. o 37 e 7

m::‘l-i;:riun path; “I'hgn Players 1 and 2 phtly A -.ug] 43. P,'".fc.r 3 riever makes
move. Any move by Player 3 can be part of i Nash {'.‘]:"'I" trl;nnl soiiacil
Players | and 2 can callaborate 10 take udvantage of i Izl);.r, ‘.» ;'u.m A

edge of their moves in this game. 1f they can convince Player 3 10 piy
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the hope of obtaining the (3,2,2) outcome, they can exploit Player 3’s inability
to verify their moves and play A and d, leading to the (4,4,0) outcome, Con-
sequently, Player 3 must play it safe by playing R, which keeps Players 1 and
2 honest. All three players are hurt by Player 3’s lack of information. If we
break Player 3’s information set so that Player 3 can verify the prior moves of
Players 1 and 2, this game has a Pareto-superior solution to the second Nash
equilibrium.

Exercise 6.4: Verify that (D;a;R,L) is a subgame-perfect equilib-
rium for the game in Figure 6.1 if Player 3’s information set is
broken into separate nodes. (Note: The strategy above gives Player
3’s moves for both nodes—R at the upper node and L at the lower
node.)

The (D:a;L) equilibrium solves the information problem by allowing Player
2 to make a noncredible commitment to play a to Player 3. But Players | and
2 have an incentive to undermine that commitment, and Player 3 cannot ver-
ify that they have honored or broken that commitment. Why should Player 3
believe Player 2’s commitment? To capture the intuition here, we introduce
the concept of beliefs. We can then calculate how Player 3’s beliefs about the
moves of Players 1 and 2 drive her own move.

Definition: A set of beliefs, ., for a game is a set of probability
distributions with one distribution for each information set in the
game.

Beliefs allow us to calculate expected utilities for each possible choice in a
game. A belief for a given node is the conditional probability that the node is
reached if the information set containing the node is reached during play of the
game. Subgame perfection allows us to examine the rationality of moves within
proper subgames but is powerless in the face of an information set that cannot
be divided into a proper subgame. A set of beliefs specifies for each information
set the probability that the player is at a given node in the information set for
every node in the information set. Beliefs at a singleton information set must
equal 1 by the laws of probability. For an information set with multiple nodes,
the sum of the probabilities of all nodes in that information set must be 1. A
player’s expected utility is calculated by weighing its expected utility for each
action at every node in the information set by the actor’s belief that it is at that
node. Actors then maximize expected utility at every information set, using
their beliefs.

Example: Return to the game in Figure 6.1 and examine the ra-
tionality of the Nash equilibrium (D;a;L). Assume that Player 3's
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belief that she is at her upper node is % and her belief that she is
at her lower node is L. The beliefs of Players 1 and ‘2 are hoth |
because they have only singleton informal'!on sets. For i’lay-;l-r 3,
calculate expected utilities for each move given the above beliefs:
u(Play L) = (30 + ()©2) =
u(Play R) = (5)(1) + (1)(0) =
Player 3 is indifferent between L and R and any mixed strategy of
the two given these beliefs. Here, we choose the pure strategy L.
Player 3 prefers £ to R whenever her belief that she |RI:lI the I0\_w‘cr
node if her information set is reached is greater than ., There is a
wide range of beliefs for which Player 3 prefers LioR. o
One of the advantages of beliefs is that we can now check the mtma};_uh!yi 5'-1‘
any move in a candidate equilibrium, including those that are 1\01. cnmamu‘ in
A |;ropcr subgame. Player 2's move of & was prn!11-:|n:_|uc_bc_l'urc. |mwlklwe t.ilj[!
check whether that move is rational, The technique is similar lu‘l)ui..kwf!r ,.
induction. We trace the likely consequences of each of I’Iluycr 2 ‘s’avml‘nl.:rl‘t.
moves, and then calculate the expeeted utility of each. If Fl’lﬂ)'l.‘l al chm{m:
a, she receives a payoff of 1. If she chooses d, Player 3 will choose -f." and
Player 2 receives a payoff of 4. Clearly, Player 2 prefers d toa. Thi:ls ais not ;:
rational move once beliefs allow us to carry out backwards induction throug
i alion seis. )
ulr;??lnycr I, the utilitics of playing A and D are ! and 3.,ruspccl!vclw (I.trt-‘
call that Player 2 plays a in the candidate equilibrium.) I Inygr i § m;:;n |;
rational given the ather players’ moyes n .'hc candidate {x_]u|i:.t-1ru‘ml:':.j .Jlli.:u
1's beliefs, like Player 27, arc imelevant in calculating his t;xpcua utility
because his information set is a singleton. However, Player 2 pnlct‘czs dtoa
once beliefs allow us to perform a backwards |nduclmn_fron! all mfr:rmnuun
sets. Adding beliefs for Player 3 did not change lllc‘ rationulity _uf ln.: r!m\tci.
Instead, this addition ullowed us to see that Player 2% move was n?l | .J.!lun.li
Beliefs permit us to evaluate all moves using expected utility caleulations.
now define “rationality” with beliefs.
Definition: A pair of beliefs and strategies is sequuntiflll_v ratio-
nal iff from each information set, the moving p_laycr 5 slm!egy
maximizes its expected utility for the remainder of the game given
its beliefs and all players’ strategies.
Exercise 6.5: Verify that (A;a;R) is sequentially rational for the
EH: in Figure 6.1 for any set of beliefs where .Player‘ 3 places at
least probability § that she is at her upper node if her information
set is reached.

We can describe the idea behind beliefs intuitively. A player who is unZ[ees
tain about prior moves (i.e., at an information set with multiple nodes) creates

[RINSEWIN]
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hypotheses about those prior moves. I say hypotheses here because the beliefs
for one information set may involve speculation about prior, unobserved moves
by several players, including moves by Chance. Player 3’s beliefs at such a
point depend upon conjectures about what both of the other players have done.
These hypotheses could assert that one particular node has been reached in the
information set. The beliefs then must place probability 1 on a node in the in-
formation set. They might assume that one of several nodes has been reached.
Beliefs summarize what the player thinks has happened in the game before the
current information set.

What beliefs are reasonable in the context of a given equilibrium? The be-
liefs should be based on the chance moves in the game and the other players’
moves in the equilibrium whenever possible. Bayes’s Theorem provides the
mechanism for updating probabilities, and beliefs are just sets of conditional
probabilities across the nodes of different information sets. The hypotheses a
player uses to determine its beliefs should be based on the expectation of equi-
librium behavior by the other players. As in Nash equilibrium, we assume that
the players share a common conjecture that they are playing their equilibrium
strategies. The players (and we) can calculate the probability that each node
is reached from those equilibrium strategies. At a minimum, the beliefs must
equal these conditional probabilities along the equilibrium path. Otherwise,
the players’ beliefs would diverge from their expectations about one another’s
behavior.

Example: Return yet again to the game in Figure 6.1. What beliefs
does the (D;a;L) equilibrivm produce for Player 3? We calculate
the chance that her upper node is reached given that her informa-
tion set is reached in this equilibrium. Player 3’s upper node is
reached if Player 1 plays A and then Player 2 plays d; her lower
node is reached if Player 1 plays D. Denote “Player 3’s upper node
reached” by 3’s un and “Player 3’s information set reached” by 3’s
inf. We use Bayes’s Theorem to calculate the probability that
Player 3’s upper node is reached if her information set is reached
as follows:

p(A, d)p(3’sinf|A, d)
p(A, d)p(3’sinflA, d) + p(D)p(3’sinf|D)
B 0X(1) N
T o)D) + (DD

Player 3 should not believe that she is at her upper node if her
information set is reached; she must believe that she is at the lower
node. When Player 1 plays D and Player 2 is committed to playing
a, the only way Player 3’s information set can be reached is her
lower node.

p(3’sunf3’sinf) =
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we can caloulate beliefs. But we cannot make
such a caleulation when a player must make a decision at an information set
that has probability zero in an equilibrium. Instead, we allow the players 1o
create a plausible hypothesis 10 explain what has happened, Something that
should not happen in equilibrium hias happened, and the players need some
hypothesis o explam the defection. Using this hypothesis, each player can
maximize its expected utility and continue pliying. For now, we place minimal
restrictions on such hypotheses.

Along the equilibrium puth,

Definition: A perfect Bayesian equilibrium is a belief-strategy
pairing such that the strategies are sequentially rational given the
beliefs and the beliefs are calculated from the equilibrium strate-
gies by means of Bayes’s Theorem whenever possible.

[ am heing vague deliberately about belicfs off the equilibrium path when

1 say “whengver possible.” Rather than stating technical definitions of what
restrictions are placed on beliefs ofl the cquitibrium path in perfect Bayesian
equilibria, | discuss some of the issucs here, First, the players continue to use
the equilibrium strategies 10 update their beliels after moves off the equilibrium
path, Defection does not lead the players to abandon the common conjecture of
equilibrium behavior. [nstead, they assume that ane defection does not increase
the chance that othier players will phay “irtationally™ off the cquilibrium path.
Second, in games with three or more players, we assume that il one player
defects from its equilibrium sirategy, the other players use (he same conjecture
about its defection. [f they have the same belicfs prior to the defection, they
must have identical beliefs after the defection. Third, players “"cannot signal
what they do not know.” A defection by Player | does not lead Player 2 1o
change her beliefs about what Player 3 has done before 1's defection.

Perfect Bayesian equilibria, like Nash and subgame-perfect equilibria, al
ways exist in mixed strategies.

Theorem: Every finite n-person game has at least one perfect

Bayesian equilibrium in mixed strategies.
“This thearem is true because finite games always have perfect equilibria, and
any perfect equilibrium is also perfect Bayesian,

There is no casy method for finding perfect Bayesian equilibria. 1 find the
best technique is to think about how the game should be played, formulate &
possible equilibrium, and check o see if the strategies are optimul given the
beliefs and the beliefs follow from the siregies along the equilibrivm path.
Backwards induction can be very helpful in seeing what strategies might be
in equilibrium and what beliefs are necdedl 1o sustain them. Alternatively, look
for Nash equilibria, determine what beliefs follow along the equilibrium path.
and see if the strategies are sequentially rational given the beliefs.
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Figure 62 An Example of
Perfect Bayeslan Equilibrium

Example: Fin.d the perfect Bayesian equilibria of the game in Fig-
ure 6.2, §pe01fy a belief-strategy pair for this game as follows:
.(Player 1 s move in the first node, Player 1’s move in the u, el"
information set, Player 1’s move in the lower branch; PlayelP %’s
move: ]flayer 1’s belief that he is at the upper node of l;is informa-
u?n seF in the upper branch if that information set is reached; Player
2's belief that she is at the upper node of her information set)’ Weydo
not need to specify the beliefs for the singleton information 'sets In
genera!, I state strategies in a perfect Bayesian equilibrium bef'ore
the beliefs. _S.tra.tegies are specified using the same notation as for
a Nash equilibrium; Player 1’s complete strategy followed by the
other players’ strategies in order. The players’ beliefs are liste}tlj af-
ter a colon,; the beliefs of each player are separated from those of the
other player(s) by semicolons. Individual moves within a player’s
slrategy and beliefs for each information set within a pla er'y
of ]t;ellefs are separated by commas. prers st
) egin the analysis in the lower branch. Here, we hav,
sic example of subgame perfection. Player 1 WOI.,lld lik;l l: jsglfhse
threat of F' t_o fgrce Player 2 to play d, but the threat is not credi-
ble. In equilibrium, Player 1 must play B at his lower node, and so
Ple}ye[rh2 wants ;;) play u if she is at her lower node. ,

n the upper branch, L is a dominant strate
gardless 9f his beliefs at that information set, }%Z ;(r);fle)ll'?:gr ia Rli-
;l;:)esie:fthls, 1§t p be Player 1’s belief that he is at the upper r]:od)é of
moves:ormanon set. Calculate expected utilities for both possible

u(Play L) = p(3) + (1 — pX1) =1 + 2p;
u(PlayR) =p(1) + 1 —p)(-1) = -1+ 2p

177
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Playing L is better for any possible value of p. Ar_\ticipafing that
Player 1 will play L, Player 2 prefers playing d if she is at the
upper node of her information set.

Now the trick in the game comes in—Player 2 does not know
which node she is at when she must make her decision. She prefers
playing d at the upper node and u at the lower node.IWe look for
beliefs that make Player 2 indifferent between playing u and_d,
allowing her to employ a mixed strategy. Letqbe l?layer 2’s behe_f
she is at the upper node. Then we have the following when she is
indifferent between playing u and d:

u(Play v) = u(Play d);
Q-1+ (1 —g)(4) = g@3) + (1 =)D
3
q=73

Note that Player 2 anticipates Player 1's future moves when :_ahc
calculates her utility for cach move. The consequences of playing
wis the (3.~ 1) outcome from the upper node because Player | w{.ll
play L and the (0.4) outcome from the hylwer node I)f:ca\uﬁc he will
play B. If she chooses d, the outcomes \_wll be (1,3) Imm her upper
node and (2,1) from her lower node. If Player 2 believes she is at
the upper node with probability .} t!tun she is indifferent between
playing u and d and can play any mixed strategy. .

To produce these beliefs, Player | must play U with pr.obabll-
ity 4 and D with probability 1. Otherwise, Player 2’s .be.hefs are
not consistent with his equilibrium strategy. Because this mfgrma-
tion set must lie on the equilibrium path (both of Player %’s initial
moves lead to Player 2’s information set), Player 2’s be.llefs must
be the same as the conditional probabilities each node is reached
in equilibrivm. o

For Player 1 to mix his strategy in his first move, he must 'be
indifferent between playing U and D, Player 2 can ereate this in-
difference by choosing a mixed strategy in her move, Let 1 be the
probability that Player 2 chooses u in her move. Caleulate Player
1's expected utilities for U and D and equare them:

u(Play U) = u(Play D);
3y + (1 = )(1) = r(0) + (1 — 1)(2)

=1
=z

Once again, Player 1 anticipates Player 2’s and his own future
moves when calculating his utility for each strategy.
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Putting all this together, [(3U,4D),L,B;(ju,2d): 1;3] constitutes
a perfect Bayesian equilibrium for this game. The beliefs follow
directly from the strategies. Player | plays U with probability %
and D with probability 7. Then Player 2’s beliefs must be 2 on the
upper node and ;1 on the lower node. Similarly, Player 1’s beliefs
for his information set also follow directly from Player 2’s strategy.
In this game, Player | mixes his strategy to produce the beliefs that
allow Player 2 to mix her strategy in a fashion that makes Player 1
indifferent at his first move, allowing him to mix his strategy. This
interdependence of mixed strategies is common in these games.
If either player deviates from the equilibrium strategy, the other
player will take advantage of that defection.

Finally, we must check that no pure strategy equilibrium exists
where Player 2 knows that she is at one of the two nodes in her
information set. Player 1's moves later in the tree are fixed at L and
B by the same logic as before. If Player 1 plays U for certain, Player
2 will believe she is at her upper node (consistency of beliefs again)
and will play d. But then Player 1 would prefer to shift from U to D,
so (U,L.B;d:1;0) is not a perfect Bayesian equilibrium. Similarly,
(D,L,B;u:0;1) is not a perfect Bayesian equilibrium because Player
1 would like to change from D to U. If he does, Player 2 wants to
change to d.

Beliefs allow us to judge the sequential rationality of moves from informa-
tion sets with multiple nodes. In this example, Player 2’s optimal move from
her information set depends on her beliefs. In the example in Figure 6.1, beliefs
allowed us to judge the rationality of Player 2's move at a singleton information
set before Player 3’s information set with multiple nodes. Sequential rationality
Jjudges the rationality of all moves in a game.

Exercise 6.6: For each of the Nash equilibria in Exercise 5.2 (page
130), determine which are perfect Bayesian equilibria. Find the
beliefs that support each perfect Bayesian equilibrium,

Exercise 6.7: Find the perfect Bayesian equilibria for each of the
games in Figures 6.3 through 6.5. Be certain to specify the beliefs
and the strategies off the equilibrium path as well as the equilibrium
behavior.

a) Find the Nash equilibria of the game in Figure 6.3 and compare
them to the perfect Bayesian equilibria.

b) C denotes a chance move in the game in Figure 6.4. Find the
perfect Bayesian equilibria.
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(2.0)

Figure 6.3 Exercise 67a Figure 6.4 Exercise 67b

(-1-2)

g2 (201)
< (0.0)
(2-h

nA” (-1.-2)

ln\v (0.0}

Figure 6.5 Exercise 6.7¢c

e information set in the game in Figure
ove without knowing the chance move
first. Find the perfect Bayesian

¢) Each player has only on
6.5. Each must choose 1ts m!
that determines which player moves
equilibria.

Nuclear Deterrence i
I now turn to some simple analysis of the strategic queshons B ranster,
. onsible |;:lrli€:$ agree that nuclear war would l_m an unp.ul-.nl - R eolas
\:Stp nder shat conditions might a government Ihmk_:f'mutll te ur et
: 1 = TRl
Tu l::t the scene, | present the follawing greatly simplified discussior
08 5 3 ! 2 " i
jssues in nuclear stritegy drawn from Powell lj‘){].. BB
§ Some rational leaders might consider Inunlchmg anuc e ming lhal
‘;(r‘ikc would disarm the other side, preventing any responssl: s ing
| icy Id not impose serious co B
-run ecological damage wou! ¢ ; 2
1:::5) But tluri:.;g the Cold War, both the United States and the fo

i ike i ¢ other side
Union had nuelear arsenals that made o first strike that disarmed th
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highly improbable. From the mid-1960s on, each side had a secure second-
strike capability; that is, both the United States and the Soviet Union could
have responded to any initial nuclear strike with a devastating retaliatory sirike,
primarily from submarine-based missiles, but also from surviving land-based
missiles. First strikes were deterred by this credible threat of retaliation. This
case illustrates the general one: neither side will be willing to launch a first
strike when such an attack will only lead to its own destruction through nuclear
retaliation,

This conclusion has a disturbing side effect. 1t eliminates the use of nuclear
weapons for extended deterrence—the protection of allies from external threats
through nuclear threats. For example, during the Cold War, the United States
threatened to use strategic nuclear weapons if the Soviet Union invaded West-
ern Europe—but if such a nuclear first strike would necessarily have led to
the devastation of the United States by Soviet nuclear retaliation, the threat of
initiating nuclear war to defend Western Europe would not have been credible.
For nuclear weapons to have political utility beyond the deterrence of nuclear
war, both sides must believe there is some chance that nuclear war could start,
Otherwise, the threat is hollow.

Schelling (1960) proposed one solution to this problem, the reciprocal fear
of surprise attack.! Assume there is some advantage in striking first if nuclear
war occurs: the side that strikes first is somewhat less devastated than the other.
Both sides can still launch devastating second strikes. But it is better to strike
first than second because the first strike takes out some of the other side’s mis-
siles. Bach side might contemplate  first strike, not because it expected (o win
by attacking, but rather because it feared that the other side was preparing to
attack and it wished to gain the first strike advantage for itself. These fears
could build upon one another in a vicious circle, creating the reciprocal fear of
surprise attack, Nuclear war might then be launched. not because either side
thought it could win, but because each feared the other was about to launch an
attack.

This argument places several restrictions on possible models. Neither side
must know that the other side has committed itself to not attacking when it
must decide whether to launch an atack itself. If neither side decides 1o attack,
the status quo, the best outcome for both sides, should prevail. If a first strike
s launched, the other side retalintes, but the side that strikes first suffers less,
The game in Figure 6.6 is one model of the argument. The A umil o actions
e nuclear first-strike attacks. and the D and d actions delay the launching of
i first strike. The a payoffs are for launching a first strike, and the r payoffs
are for receiving such a strike and then retaliating. The difference between the
two measures the first=strike advannge. The larger (r — a) is, the greater the
advantage to striking first. If neither player attacks, the status quo holds—the
U piyolf. We assume that striking first is preferable o receiving a first strike,
but that no nuclear war is preferable w any nuclear war (ie., 0 > —a; > —p,
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(-a, )

(0.0)

i the
Figure 6.6 A Game with
Reciprocal Fear of Surprise Attack

10 as = —t3), The chance move and information sets C:lplll;l:' lht':‘ ldl.‘l.:
and 05 —as > —13) ance ot s g S
that neither player knows whether the other is |_m,|mrmg :1 _11|vsll-.l? ke
must choose whether to launch a first strike of its own, Neither p d\ - .,mf;r
whﬁhur delaying a strike ends the game al the status quo or gives

portuni aunch its own strike.

{ayer the opportunity 1o launc v strike . move: Player
’ 'gpccify an equilibrium of the game In l-igl!wh,() by (.Playel.' lfs nnl‘ as Se}tl :
"- move: Player 1's belief that he has the first move 1;’ ttlns {nfg:maﬁon -
s Play belief irst miove if her i
reached; or 2% belief that she has the first mg 1 inf
reached; Player 2's ' o
sached). The above game has three perfect Bayesian equilibri:

(A1), (Did:135),

and

. T — a1 'a|+r|_az+r2
2 , n2”%p) 2ay o d)'T* ol
a, + 12 ‘ay + 1y a +r1;, a4 T 1
e Ao ] SCaNEe ‘a’..h
I the first equilibrium, each side attacks if it wins the ('.}:ll“ hu.t:lr:. ?rhi-;
knows that if it does not attack, the other side will utiuc?\ mkn.»i: i .my‘:r
c uililhrium aives the reciprocal fear of surprise attack run amo : ._:]u.c & e
::acks oul of the fear that the other will attack if it does not. ll'l r\:i.dc o
.cqmii‘;mri-.nn neither side attacks because cafh klnlf::lx-s ﬂwir;:::;:-:-_:ﬁr:' e
ini fere ave “mutual confidence inres e
tack in its turn, Here, we have “mu ! ot
::tl‘tt\:.t! Jaunches an attack because they both believe the other player W il
it i ian equilibrium,
lau’;‘lo see that the first strategy-belief pair forms a perfect Bayes;an e:!:‘slirategy.
consider a player’s best reply given its beliefs anq the other'p layer i A
Call the player i for convenience. It believes that it has.the mltl?[tlsva[tack e
first if it gets to move. Its utility for attacking is —a;. If it delays 1
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other player will attack, giving Player i a payoff of —r;. Because ~a; > —r;,
it prefers attacking. Its beliefs follow from the players’ strategies and Bayes’s
Theorem. Let “i mf” (or “j mt™) stand for “Player i moves first” (or “Player j
moves first”), which has probability % based on the initial chance move. Let “i
isr” stand for Player i’s information set reached. If Player i has the first move,
its information set is always reached, p(i isrli mf) = 1. If Player j has the first
move, i’s information set is never reached in this equilibrium because j always

attacks, p(i ist[j mf) = 0. Calculate the probability that Player i has the first
move if its information set is reached:

o p( mf)p(i istfi mf)
p(i mfli isr) = p(i mDp( istfi mf) + p( mf)p(i isr]j mb)
[E300]

e+ do

In the third equilibrium, both sides play mixed strategies, with each side’s
probability of attacking increasing as the other side’s first-strike advantage
(r — a) decreases. If the third equilibrium seems bizarre, remember that each
side’s probability of attacking is chosen to make the other side indifferent be-
tween attacking and not attacking. One might think that the greater the first-
strike advantage, the more attractive a first strike. However, there are two
motivations for attacking in this model: to gain the first-strike advantage and
fear of the other player’s attacking in turn. The mixed strategy equilibrium
offsets these two motivations, When the advantage from striking first is large,
the motivation to strike first from fear must be reduced. Otherwise, the other
player will always launch a first strike. The best reply is to attack against mixed
strategies that use a higher probability of attacking than the equilibrium strat-
egy does. When the opponent has a strong motivation to seize the first-strike
advantage, you must try not to provoke it. Lowering the probability of launch-
ing one’s own first strike lowers the level of provocation.

Exercise 6.8: Demonstrate that

11
(D’d'f’f)
and

2a; T —a 2a rn-—a a)+r a+r
2 A 12 2p); tg 0 ). & 1L@2th
a+rn a+n ay+r; a;+r 2r, 2y

are perfect Bayesian equilibria of the game in Figure 6.6.




184 CHAPTER SIX

fzes the logic of the reciprocal fear of surprise
attack. Both sides are willing o attack if cach fears that the other side is about
1o attack, 17 you break both sides”’ information sets and play the game under
perfect information, the reciprocal fear of surprise attack disappears. Each side
Kknows then whether it is moving firstor second when it must decide whether to
attack. When it is moving second, it knows that the other side has ot attacked.
When it is moving first, it knows that the other player will know that it has not
|aunched an attack when the other player moves, Only uncertainty about the
ather side’s actions can create the reciprocal fear of surprise antack. 1 nuclear
war were like tennis, where everyone knows who serves and in whit order they
serve, it would be less of a problem. Unfortunately, nuclear war is not lennis,

“The model in Figure 6.6 formil

Show that (D) is the only subgarme-perfect
equilibrivm of the gume in Figure 6.6 played under perfect in-
formation (read the strategy as Player |'s move if he moves first,
Player 1's move if he moves second: Player 2's move il she moves
first, Player 2's move il she moves second).

Exercise 6.9:

Thie model above provides no reason why either side would contemplitie us-
ing nucleur weapons in the first place. Typically, nuclear stratc gists assume that
some crisis would precede any thought of using nuclear weapons, A nuclear
threat could be considered as a way o extorta favorable resolution of the eri-
sis. In the model in Figure 6.0, there 1s nothing at stake between the two sides
except nuclear war, If we add sonte stakes beyond the prevention of nuclear
war to the model, each side has another option—to end the ¢ris by surren-
dering the stakes o the other side. 1 call this option Quin (abbrevimed Q and
). The outcome of quitting the crisis is that the side that quits surrenders the
stakes to the other. Winning the stakes is preferable to the status quo; surren-
dering the stakes is worse {han the status quo but better than any nuclear war.
Let the value of the stakes be s for Player 1. Then 0= =% = =y = —y, and
0= sy > —1p > —#p. Figure 6.7 presents the game with this added option.

This game has only one perfect Bayesian equilibrium, (Did:5 ) (using the
sume notation as for the previous game). Once we add the option of ending
the crisis by surrendering the stakes, neither player has an incentive 10 anack
because quitting the crisis is always preferable 1o starting a nuctear war, {on-

sequently, the reciprogal fear of surprise attack disappears for both sides. 1f
one side hegins to fear that the other is planning to attuck. it should quit the
crisis instead of launching its own first sirike. The logic of mutual wysured
destruction says that nuclear war, even when you strike first, is worse {han any
non-nuclear war outcome, inchiding surrendering the stakes at hand. Thus the

recipracal fear of surprise attitck should not aceur, Not enly shoutd 1 surrender
i1 fear you are-planning o atack, but 1 should also expeet you 10 surrender
nuelear threats cannot be used 10

il you fear Lam plunning to attack. Further,
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Figure é.? The Opportunity to Quit Added to a Game
with the Reciprocal Fear of Surprise Attack

this model to coerce the other side to surre

that th e h E surr nder the stakes. Both sides

o elilninoe:x:eltl{z(:;r\vl:l r;ol ell.tack. There is no reason to surrender the i’:ffg;

the argument that ;L?Clo‘ »vvm*lhal threat does not exist. Again we return to

or extort concessions fe(ll weapons cannot be used to defend other interests

necessary for i rom the other side. Some real threat of nuclear war i
y for either extended deterrence or nuclear extortion to be possible ’

Exercise 6.10: Show that (D:d: ;1) is
equilibrium of the above g:lmle..zq) 18 the only perfect Bayesian

a) First show that (D;d:3:1) i .
the game. (Dsd:353) is a perfect Bayesian cquilibrium of

g)orizz\:e::?; %stri({ctly dominates A (and g strictly dominates a)
S , A and a can never ar in a per i :
T B everappear in a perfect Bayesian equi-

;)riftl;;\a(/iot;ql o[nceQn(Eilher player ever attacks (play A or a), D
g inates and d strictly dominates T ,
given belief-strat iri : s h'us pot i
i rategy pairing can be a perfect Bayesian equilib-
The critical point of this
is example cannot be emphasiz !
ol . : phasized too strongly:
5;,-:,-::, ;g’ :; madel t.j'r. plc.fm‘ upon the choices you give the players amfr;ﬁ:ﬁ' ‘:E:.
e wmi‘ Breaking the mﬁ?rmatiun sets eliminated !he‘pmbiem but :hm'
et II:;I‘D the madel seems implausible. The reciprocal fear of w;‘ TiSe at
In alnc;:.uE I-.I :]|imn' gach g:lnycr's not knowing whether the other wu;s priparitq;
ack. mating that uncertainty denied 1 i
Pl i Ltal unpes a central premiise of th -
nlinesﬁid::cgi the cl;ctt‘u?u of quitting the crisis and sacrilicli:xg the stukcscu:'lp:i.:—
e viola;qr?;? ‘c.zr of surprise attack, and that modification of the mode!
¢ the assumptions of the reciproeal fear argument, It may be that
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the sides do not have the option 1o surrender in a specific situation. This varia-
tion does not demonsirate that the reciprocal fear of surprise altack cun never
oceur. It dows demonstrate that in this model the reciprocal fear of surprise does
not oceur when the option of surrendering is available. The only way (o judge
what are reasonable models is 10 understand the situation, build the models,

and solve for their consequences.

Review
he ideas of beliefs and perfect Bayesian equilib-
form backwards induction through information
s sequential cationality. Each player™s moves
lity given its beliefs and the other players’
dge sequential rationality from information
sets with multiple nodes. We weigh the utility of a move from cach node inan
information set by the probability that thi moving player believes it is at that
node when it moves, Unlike Nash or subgame-perfect cquilibrium, sequential
fationality allows us to check best replies ar all information sets in a game.
Beliefs must be consistent with the players” equilibrium stritegies when-
ever possible, Players use the equilibrium strategies and Bayes's Theorem o
caleulate the probability that each node i an information set with multiple
nodes is reached. Bayes's Theorem combines prior beliefs and new informa-
tion optimally to update probabilities. For information sets off the equilibrium
paih, players are frec 1o mitke any conjecture about why defection from equi-
librium oceurred, However, they must share that conjecture and continue to
use Bayes's Thearem and the equilibrium strategies after a defection.

This chapter has introduced U
rium. Beliefs allows us to per
sets with multiple nodes. This i
must maximize its expected uti
strategies. Beliefs allow us to 1

Further Reading

Most statistics texibooks contain sect
is a textbook on Bayesian decision the

information is loosely adapted from Calvert 1985.
The discussion in this chapter draws on Selten 1975 and Kreps and Wilson
tical, very difficult reading, and

1982, Both of these papers are highly mathems

immensely rewarding. | have drawn frecly from their carefully crafled exan-

ples and terse discussions of their solution concepts. The thrée-player game ini

well-known example from Selten 1975. The textbooks in noncooperative game

theory provide more accessible treatments of perfect Bayesian cquilibrium.
The section on nuclear war draws heavily on the work of Robert powell.

in particular Chapter Five of Powell 1990, The other chapters of Powell 1990

deal with other issues in nuclear deterrence.

ons on Bayes’s Theorem. DeGroot 1970
ory. The model of preference for biased

PERFECT BAYESIAN EQUILIBRIA 187

Comparative Politics

Form: i i it f
The S?rlo\:’lg;l;:';rc;n;?ara“]"’e politics typically draws on models of U.S. politics
racies. Most demo application is the politics of advanced industrial democ—.
excellent placdig 1-(:‘:‘lé:f:les fire_: multiparty ones. Laver and Schofield 1990 is an
Although it does uule:“.r.c.‘m"?g the formal literature on multiparty democracy,
tiparty systems -uh‘ull Tl-t;:m formal models. it draws heavily on models. Mul:
Auston-omith et e OIS sy el s e et ooy
are affected by their corfsgdcriﬁl-.“ltltlerg?uﬂ:i 3:!(:]511}“1 bt ‘Ic{:ismn"-
that forms. Qe : el voles on the governime
model gojer?;seti? fg::r:tr:'und Banks (l_‘J‘J(l.‘l and Laver and Shl‘i‘slc (I;;:;:
the model of bargainin ? II“.n Iu‘mi pottfolio allocation. Baron (1991a) modifies
whether modera‘tge parligelsnar;bi::gl‘::ulﬁ:‘;:l::ll::u::sc:ll o Chl:l'ﬂ'-"' e il'l\’(::ilig;ltu::
e " ) an others to be included in coaliti
t‘: :’:]L';:‘:’I?‘::i-“?:“‘il';'(‘l‘J‘)Jil_ .\"!mw?; that & multiparty system leat;: }:-Iilznszl:rltli(:sl
Stiepsle (1987) analyze how the po campaigns and in office. Greenberg and
p:lr\llit:§ to ndopt dil'fcm:m pusilin‘r‘;sr?%blble Uy g gss [Rosieaizting
mmﬂiriii;fogil:‘ﬂ:el?ﬁpogl and le:glslalive rule_s across countries has also been
ticts with winn-fr-p k -)l m.‘ph"."s Duverger’s law—that single-member dis-
cich district, Cox {'Ill);-:.ll : Llc‘.:-{mm Biverise to only (wo competing partics in
prositions in élculimn Ili) ﬁmldﬁr: how difforent elecioral laws change P‘;")’
and the United S 5. Huber (1992) compares the legislative rules of France
Thece are o > l.ﬂm.'llslng formal models of legislative structure
1990) s questio o.lh?r issues in comparative politics. Wallerstein (1989
examings the ‘;?rnc ¢ ni\ nw u!\mu urgamz:l_linn and corporatism. Pool “99};
et ol Aol ot e s e, 193
rend R 5 involved in judging when a population is
g‘:{‘-i':lb’h;ﬂfg:ur:!\;:lll:mlIl‘. Bnch :lm!_l.u:n (1985) show that Pniiticur; IIu):::II::IrI: I:Y1I:
(1991 model 0?_ P('I!‘:_Y concessions and rights to their subjects. (jctklc;'s
OE ety e fefian. s coverod ) n: Chiapter Pouis, Putiain's
Tebelis (1990) u:cd:ll'i:n::gj!:l‘ sjaznlr:ctr: domestic politics and forcign Foiic)".
incentives leaders face, 8 s o dal. s maland ol




