Postprocessing Operations in CAD

The ensemble of activities by which the engineering significance of a
mathematical field solution is evaluated is generally termed postprocessing.
It includesthe. derivation of specific numerical results as well as their
graphical presentation. A postprocessor is a major part of any design sys-
tem since it allows relevant data to be extracted from the solution and
presented in a way that has meaning to the user. Postprocessing should
desirably be an interactive process, allowing the designer to query the
solution. This chapter outlines the major requirements of postprocessing,
while the following one describes a particular postprocessor structure by
way of illustration.

Postprocessing is the activity of converting mathematical solutions into
engineering results. This chapter examines the operations required in a
selection of postprocessing tasks, in an attempt to exhibit unity in the pro-
cessing requirements that underlie the great diversity of applicational
needs. Thus the discussion here will begin by examining simple but illus-
trative design probiems, and will then generalize to broader issues appli-
cable not only to the examples treated but also to other cases.

Inductance Calculations

The calculation of terminal inductance values is probably the most com-
mon single requirement in magnetic device design. Despite its frequent
occurrence, the determination of inductance is fraught with subtle
difficulties not always evident at first glance. Examining a simple
magnetic-core reactor and considering the methods available for calculat-
ing its inductance is therefore both indicative of general methods and use-
ful in its own right.

A Simple Inductor

‘A simple, two-dimensional inductor may be formed by winding a coil
around a highly permeable core, as shown in Fig. 1. It is assumed, for the
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Figure 1. A simple inductor, assumed to extend infinitely in the direction normal
to the paper.

sake of simplicity, that the device extends sufficiently far into the paper to
allow purely-two- dimensional analysis. Not only is the finite element
analysis of the device made easy by this assumption, but basic conven-
tional design rules may be applied for comparison when the inductor is
simplified in this way.

Since this device is to furnish a prescribed value of terminal inductance,
that is, to store energy in the magnetic field in its core, certain further sim-
plifying assumptions are possible in the analysis. In addition to taking the
field problem to be two-dimensional, two main simplifications will be
made: the core iron will be assumed lossless, and external leakage flux,
Le., leakage flux not in the window area of the core will be neglected.

Assuming iron lcss due to eddy currents to be absent permits finding
the magnetic ficld by 'means of one or more static field solutions. The only
loss accounted for will then be the ohmic loss in the winding conductor
itself. This loss cannot be calculated from a magnetic field solution, but
must be computed from the known wire resistance. The inductor will
therefore be represented, to an approximation adequate for most pur-
poses, by the equivalent circuit shown in Fig, 2.

o,

Figure 2. An equivalent circuit of the simple inductor shown in Fig. 1. assuming
lossless iron.
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The principal part of all the flux which links the current-carrying wind-
ing will very likely be contained in the iron core, while some small portion
will close through the air space within the window opening of the core.
Only a very minor amount will take a path outside the core itself. Hence,
little error will be incurred in not modelling the air space and winding
outside the core; it suffices to take the outer edge of the core perimeter to
be a flux line and to model only the iron, air, and winding inside this flux-
line boundary. Furthermore, the symmetry of the core and winding make
it necessary for the core centerline to be a line of symmetry, and hence
the separatrix flux line which separates the flux lines of clockwise circula-
tion from those which close in a counterclockwise sense. It is therefore
necessary to model only one half, say the right half, of the inductor. A
finite element model of this half-problem appears in Fig. 3. While
moderately crude, this discretization probably suffices to produce a mag-
netic field solution adequate for inductance computations. Any lingering
doubts about the amount of external leakage flux may of course be
dispelled by employing a similar model, but with some of the exterior air
space explicitly included.

Physical realization of such a device is invariably subject to many
requirements other than electromagnetic, such as weight limitations or the
cost of material used. These constraints not infrequently will be handled

Figure 3. Finite element model used for analysis of the simple inductor.
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by other CAD or CAE systems. Only its electrical design will be con-
sidered here.

Definitions of Inductance

The computation of inductance is a simple affair in principle: numerical
values taken from a field solution are substituted into an appropriate
expression that gives the inductance in terms of the magnetic field, and
the result is evaluated. Unfortunately, there is no Single definition of just
what constitutes inductance for a nonlinear inductor.\ Indeed, there are

several accepted definitions, of which two may be considered fundamen-
tal:

1. The number of flux linkages of the winding, divided by the current in
the winding. )

2. The energy storeé in the inductor, divided by one-half the current
squared.

All other accepted definitions make reference to either the flux linkages or
the stored energy; they may therefore be considered variants of the above.
Both definitions give identical results for linear inductors. In the nonlinear
case, however, they do not. Which definition should be used, if indeed
cither, then depends very much on the uses to which the result will be
put—or, what amounts to the same thing, the kind of measurement which
the analysis is intended to mimic. Because periodic excitations (not neces-
sarily sinusoidal) are of frequent interest, the second definition is often
further refined in one direction or another, for example, to refer to the
average stored energy and the fundamental component of currsnt.

There are two experimental ways of measuring inductance, which paral-
lel the two analytic definitions. One seeks to determine flux linkages more
or less directly, the other measures time-averaged energy storage.

Direct measurement of flux linkages in an inductor is readily accom-
plished by a method widely used since the invention of the 2alvanometer
and generally called the ballistic fluxmeter method. The principle is to

‘open- circuit the inductor winding suddenly and to integrate the resulting

terminal voltage over time so as to determine the total flux linkages that
existed prior to open-circuiting. If n¢ is the number of flux linkages,
Faraday’s law prescribes an open-circuit terminal voltage

_ d(nd)
a
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whose time integral, as measured by an integrator circuit, is equal to the
initial value of flux linkages:

ng(0) = |HQ e(t)dr. @
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In practice, the current is usually reversed rather than merely discon-
nected. The number of flux linkages is thereby doubled, reducing the
error of measurement slightly and simplifying the experimental pro-
cedure; but more importantly, hysteretic effects are substantially reduced
or even eliminated. This method is directly related to the first, flux linkage
based, definition of inductance. Its noteworthy aspect is that the measured
value is not directly dependent on the shape of the material B-H curve
and is therefore not related to the amount of energy stored; various
different B-H curves could yield the same value of flux linkages. In other
words, the measured result is truly the total of flux linkages; no approxi-
mations are involved. Inductance is then determined as the ratio

— na(0) :
L= i(0) -~ ®)

A second, very common, technique for measuring inductarice is to find the
root-mean-square values of voltage and current when a time-sinusoidal
excitation is applied to the device. The inductance value is then found as
the measured reactance divided by angular frequency,

X _ Epys
L=== ol 4

This measurement is closely related to the second or energy definition of
inductance, since the reactance is in principle the amount of energy stored
per unit of coil current, averaged over the ac cycle. Let it be supposed for
the moment that a source of sinusoidal current is connected to the termi-
nals of the inductor, Fig. 2,

i(t) =T sin «. (5)

The corresponding flux linkages will reflect the shape of the B-H curve of
the core material, so the flux linkages, and hence the terminal voltage, will
not be sinusoidal but must contain all odd harmonics as well:

e(t) = m Epe—1 cos [(2k—1)ef + fy_,]. (6)
k=1

When root-mean-square measurements are made, the measured voltage
will include a fundamental term and an additional contribution from
every harmonic term, That is to say,

N e,
) m.%”.mm > Ekh 0]
¢ k=|

so that equation (4) reads

L= g 3 Bh. ®)
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The laboratory measurements implied by (8) are easily carried out, so that
(8), as well as a similar equation based on sinusoidal applied voltage and
a nonsinusoidal resulting current, are commonly used as inductance
definitions. To calculate inductance by simulating this measurement is
feasible, but computationally a bit lengthy. Strictly speaking, it will be
necessary to solve a static field problem for nﬁv.e one of a set of current
values, from zero up to the peak value; then t¢ find the corresponding
flux linkages, and to differentiate these so to obtain the voltage
waveform. From the voltage waveform, the root-mean-square value can
then be computed. Such a computation is only very rarely carried out, not
only because it is complicated but also because the inductance value as
defined by (8) is not ideally suited to many applications. Indeed, quite a
few practical needs are better satisfied by a similar definition, but refer-
ring to the fundamental components only,
L |.|.m._~ 9
Y O

This definition is particularly useful if the winding under consideration is
one of several, and it is known in advance that any reasonable intercon-
nection of the windings will result in a great deal of harmonic cancella-
tion. Such interconnections are often encountered in electric machines.

It is possible to make measurements which seek to determine the stored
energy corresponding to a specific instantaneous current value, so as to
apply directly the energy-based analytic definition of inductance. The
principle is exactly cpposite to that of the ballistic fluxmeter experiment;
the inductor coil is suddenly connected to a pure resistance, and the
instantaneous power in the resistor is integrated over time:

:\nbs 5 (O] i) dir. (10)

As the energy stored in the inductor is gradually dissipated in the resistor,
the current i(1) falls, and the flux linkage na(#) falls with it in accordance
with the shape of the B-H curve of the core material. The inductance
value thus measured corresponds truly to the sccond definition given
above, and faithfully reflects the saturation characteristics of the core
material. Such measurements, however, are rarely made because they are
experimentally difficult to carry out.

Inductance from Flux Linkage

When a CAD system is used to solve the magnetic field in the inductor
described above, a static solution is normally produced. Static solutions
can be closely related to the first, flux-linkage-based, definition of induc-
tance, and the corresponding calculations are quite easily carried out.

Let the magnetic field be determined in the simpie inductor described
above. To make the matter concrete, the core is taken to have external
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dimensions 0.8 m by 0.4 m, so that the half modelled in Fig. 3 measures
0.4 m by 04 m; the window size is 0.2 m by 0.2 m. The coil occupies a
space 0.08 m by 0.2 m. The B-H curve for the model is as shown in Fig. 4.
It may be noted that the curve is carried up to quite high saturation lev-
els; the current increments along the H axis are 10000 ampere-meters
between ticks, while the values of B extend up to 2.48 tesla. A solution,
showing flux lines in the core and in the window space of the inductor,
appears in Fig. 5. The coil excitation in this case is 500 ampere-turmns.
With the mean flux path length in the magnetic core of the order of one
meter, it is clear from Fig. 4 that this solution is essentially a linear one;
the magnetic material is working well within the linear region of its
saturation curve throughout. The material permeability is correspondingly
high and, as might be expected, practically all the magnetic flux is
confined to the iron core.
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Figure 4. Magnetization curve used in inductance calculations for the simple
inductor.

Definitions of Inductance 167

0 >

M

0
=

Figure 5. Flux distribution in the simple inductor at low saturation level (coil exci-
tation 500 ampere-turns).

Inductance calculations based on flux linkage counts are very simple to
carry out if the flux is principally confined to a clearly defined iron
member or path, as it is in Fig. 5. In effect, it suffices to pretend that the
winding can be replaced by a single filamentary coil and to calculate the
flux spanned by that ccil. In the case shown here, it does not even very
much matter where the filamentary coil is placed, provided only that one
side of it lies somewhere within the core window, while the other side is
placed at a corresponding point in the other window. The precise posi-
tion is unimportant, for so long as the coil is threaded by the iron core, it
will link practically the same amount of flux.

Suppose next that a hypothetical single-turn filamentary coil is placed
in the window space of the inductor as shown in Fig. 6(a). The flux ¢
linked by this turn can be expressed in terms of the flux density B and the
area enclosed by the coil as

¢ = [ B.ds. (1)
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Figure 6. (a) A single-turn conductor or thin-sided coil in the inductor structure,
{b) A slim-sided coil as part of a thick winding,

Substituting the vector potential A for the flux density B, in accordance
with

curl A =B, (12)
one obtains

¢=FA-d, (13)

where the integration is around the closed contour formed by the coil, ie.,
following the wire of which the coil is made. Because the problem is
essentially two-dimensional, the end contributions to the integral in (13)
may be ignored. Along the two long sides of the coil, which lie within the
window space of the core, the vector potential has constant values, say Ay
on the left and 4z on the right. If the length of such a side is Z, then the
integral in (13) takes the simple form

¢ =Z {Ag — AyL). (14)

For a thin multi-turn coil, a similar development may be carried out as
for the single turn above. If the coil is made of turns, then integration
must be carried out over the spiral contour traced by the wire. If the turns
are tightly packed and occupy little space, the same argument may be
applied to each one; the flux linkages n¢ are therefore n times larger,

no HHNTA_E.I.AFV. (15)

To keep the total exciting ampere-turns I of the n-turn coil the same as
those of the single turn, the current must be reduced by a factor of n, to
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7

i = I/n, because the samie current is threaded through the core window »
times, The inductance is therefore finally calculated as the number of flux
linkages no divided by the coil current f /n:

2
_np _ nZ(Ag—AL)
b=gr= i . (16

[t will be noted that the inductance value is proportional to the square of
the number » of turns in the winding. Computing the inductance of a
multi-turn coil with thin sides is thereby reduced to determining the vec-
lor potentials 4z and A, at its two sides and multiplying by n? Z,
mathematically straightforward operations.

The very simple flux linkage method of calculating inductance is not
applicable to windings that fill an extended portion of space, because
there is no particular point at which to measure the vector potential. In
effect, thickening tke coil sides requires forming some sort of average
value of the vector potential over the space occupied by the winding. The
mathematical development in this case is fortunately still quite simple, as
may be seen from the following.

A thick winding may be regarded as a set of individual turns, or
perhaps as a set of smaller, thin, multi-turn coils, all connected in series.
The total flux linkage of the thick winding must then be the sum of the
individual flux linkages of its component parts. In Fig. 6(b) the simple
inductor appears again, with a particular small group of adjacent turns
highlighted; if this group has n; turns, say, then its flux linkages are

(nd)e =y (Apr — Apr), a7

where it is assumed that the group is compact enough for the potential
values at its left and right sides, 4,7 and Az, to be substantially constant
over the extent of the group. Summing over all the m elementary coils
that make up the winding, the total flux linkage is

m ) 2m J
nd = 3 (nd) H»M“ Ry 3\:. (18}
k=1

=1

Here the last summation is carried out over coil sides, rather than coils, in
the interest of generality. To ensure that oppositely directed sides enter
into the summation with opposite signs, each term has attached to it the
local direction of the current density J.

The flux linkage calculation as set out in equation (18) requires the
winding to be divided into sections and their individual contributions to
be summed. The inconvenience of explicit subdivision is avoided by using
a more convenient formulation of the problem. To reformulate, it suffices
to note that, since all turns in the winding are in series and therefore carry
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the same current, the signed number of turns of a particular coil side, as
in the rightmost member of (18), may be written

J 5745 " :

|,n||, G
1T ni (%

where the the surface of integration Sy is the cross-sectional area of the
kth coil side. The numerator in equation (19) therefore represents the
number of ampere-turns contributed by the kth elementary coil side,
while the denominator equals the total number of ampere-turns for the
whole coil. In simple words, (19) thus says that the number . of turns in
the elementary coil side can be found by determining what fraction of
total ampere-turns it contributes. Substituting (19) into (18), there results

1
mp=-1 hm 7ds, (20)

where i represents, as previously, the current in the coil. The winding
inductance is again calculated from its definition as the number of flux
linkages per ampere:

2 .h\__; gs, @1

where Z represents, as before, the length of the winding in the z direction.
While this inductance expression is valid for two-dimensional cases as
given here, it is readily generalized to cover situations where the coil sides
are not straight, indeed to coil configurations not describable by two-
dimensional approximations at all. Omitting the mathematical details, the
result turns out to be

hnhmh?:d, 22)

where U is the volume occupied by the winding,.

Although the number of turns » does not appear explicitly in equation
(22), L is dependent on it through the values of J and A. Suppose, for
example, that the number of turns is increased from » to N, and that the
current / is correspondingly reduced to (n/N). The total number of
ampere-turns remains unchanged in this process; so does the current den-
sity J. The vector potential 4, however, depends only on J, and therefore
remains unchanged as well. Thus, the numerator in (22} is not changed,
while the denominator is altered by (n/N)®. The inductance therefore
increases by the factor (N/n)%, in accordance with equation (22).
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Stored Energy and Inductance

The inductance value of a reactor may be defined in terms of the mag-

netic energy W stored in it. This definition relies on the familiar energy
expression

w=2112 (23)
2
where 7 is the terminal current of the inductor, as in the above. If the
stored energy W can be determined, then the inductance value follows,

2
=2 24)

T
The stored energy contained within a magnetic device may be found by

integrating the stored magpnetic energy density w over the volume U/ of the
device:

x\n.b wdU. . (25)

But at any point in a magnetic material, the stored huﬂm% density is given
by the area to the lefi of its magnetization characteris ﬁ

w= [ H(b)-ab, (26)

where b is a dummy variable which follows the flux density along the B-H
characteristic, which in general is a vector relationship, up to its final
value B. The inductance of the inductor may therefore be calculated by
using the relationship obtained by combining equations (24)-(26):

hum%c.h_m:;_:c @7

Evaluation of this quantity is fairly straightforward in well designed CAD
systems, which have access to the material B-H curves. After all, the mag-
nelization curve of every material must be known to the system if solution
of the field problem is to be possible in the first place.

In several older magnetics CAD systems, the material magnetization
characteristics are nct actvally available at postprocessing time; instead,
the material reluctivity (inverse permeability, ie., the value of H/B at the
solution point) is known. In such circumstances, a rough approximation
based on linear theory can sometimes lead to useful results. Linear or not,
equation (26) may always be rewritten as

yil
suh v b-db. (28)
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For a magnetically linear material, the reluctivity may be moved across
the integral sign, so that (28) becomes

w=» | b-db=—. (29)

Although this expression is not correct for nonlinear materials, it some-
times leads to results of adequate accuracy. That is to say,

2 B
H\%Esk = ~|m U M du (30)
can furnish useful approximations where better ones are not available.
Although the substitution of linear for nonlinear magnetization charac-
teristics may seem a very crude approximation, it is frequently permissible
because the use of inductance as a circuit parameter is often confined to
near-linear cases anyway. If the approximation is very bad, then quite

likely the use of inductance for whatever further purpose is likely to be a
bad idea also!

An Example Calculation

The methods of inductance calculation discussed above may be illustrated
by giving numerical examples. These relate to the inductor of Fig. I,
whose core material is characterized by the curve of Fig. 4.

A field solution obtained for very low excitations is shown, and briefly
discussed, in Fig. 5. The flux density in that solution is everywhere fairly
low, as the result of the low excitation value; the material permeability is
high, and the flux is therefore almost entirely confined to the iron core. A
different situation obtains when the excitation is raised to a much higher
value. A second solution, computed for an excitation of 100 kiloampere-
turns, is shown in Fig. 7. It is clear from Fig. 7 that most of the flux still
resides in the iron core; but the leakage flux crossing the core window is
considerably larger than in the earlier case. Even at this high saturation
level, however, the leakage flux still represents only a modest fraction of
the total fiux, so that the same methods of inductance calculation may be
applied, as is indeed done below.

Numerical values of flux densities at a few selected points are shown for
both solutions in Table 1. The increase in leakage flux is immediately evi-

Table 1. Flux density values at selected points

Excitation  Leftlimb  Upperlimb  Rightlimb  Lowerlimb Window  Winding

(kA-turn) T T T T mT mT
0.5 0.99 0.99 0.99 0.99 0.10 0.50
100 2.57 2.45 235 245 140. 13.0
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Figure 7. Flux plot for the simple inductor of Fig. 1, with a coil current to pro-
duce 100,000 ampere-turns.

dent. Flux densities in the iron portions of the inductor rise by a factor of
about 2.5 from one solution to the other; but the flux density in the wind-
ing space rises by 26 times, while that in the window air space increases to
1400 times its value at low saturation levels!

Inductance values may be calculated from either solution, using the
several techniques given above. Four values of inductance are given in
Table 2 for either case: two computed using the flux linkage approach,

two using the energy approach. The flux-linkage-based calculations
include the approximate simple one,

3 .
:A... n®Z A\_w l\n.—tv
L=—""_=
Iin I ’ (16)

as well as the more precise

L=y (22)
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The cnergy-based values are computed using first the full and correct
stored energy expression,

2 8 .
L= §, ) H-awav @7
and then also the quasi-linearized approximation
=5 ) Z—au (30)

Results obtained by these four methods are shown in Table 2. They are
expressed in microhenries, for an inductor with a winding assumed to
contain exactly one massive turn; for realistic windings, the inductance
values should be multiplied by n? For example, the correct inductance
values for a 1000-turn winding are those shown in Table 2, multiplied by
105, that is, with Table 2 read as containing values in henries instead of
microhenries. It is immediately evident that the two saturation Jevels are
indeed extreme, their corresponding inductance values varying by about
two orders of magnitude.

Table 2 is so arranged that the two most accurate values, those computed
by using equations (21)-(22) and (27), occupy the two columns in the
middle of the table. As can be seen from Table 2, the values are in very
good agreement with each other for the unsaturated case.

The approximate energy-based calculation of equation (30) is seen to
yield results in close agreement with those based on flux linkage totals.
This phenomenon is perhaps not so surprising after all if one notes that
the approximate energy calculation employs only the static permeability
B/H, in other words, that the calculation relies heavily on one or a few
points on the B-H curve; and so do the flux linkage methods. In essence,
all three replace the B-H curve with a straight line that connects the origin
with the current working point. The true nonlinear energy-based value, on
the other hand, takes the curvature of the B-H characteristic fully into
account.

Given that the different methods of inductance calculation can yield
results as far apart as 0.974 and 2.556 for the same physical situation,
which is correct? The answer, of course, is: both! It is important to keep
in mind that the difference lies not so much in the computation methods

Table 2. Computed inductance values
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as in the definitions of inductance, In fact, two different quantities are cal-
culated and listed in Table 2, since the various definitions of what consti-
tutes inductance coincide for the linear case—as indeed they do for the
low-saturation case in Table 2—but are quite different for strongly
saturated materials.

In practical design problems, difficulties are fortunately not as bad as
they may seem from the above discussion. Most inductor designs have an
air gap in the magnetic circuit to control the inductance under varying
operating conditions. The inductor shown in Fig. 7 has been modified in
Fig. 8 to include an air gap in one limb. The model also has to be
changed to include some air space in and around the gap, in order to
allow for the fringing flux which can now appear around the air gap. The
gap introduced is 10 cm wide. The solution was recomputed for the two
current levels described earlier and Fig. 8 shows the flux distribution for
the saturated, 100 kA, case. The inductance values for the two current lev-
els are shown in Table 3.

As can be seen, the variation in inductance between the saturated and
unsaturated conditions is now considerably less, being of the order of 15%
rather than the 80% without the air gap. The reason for the change is that

|
/

|

=

-~

Excitation L via flux linkages L via stored energy
(kA-turn) (microhenries) (microhenries)
kA-turn (16) 20 an 30
0.5 198.96 198.96 181.50 198.96
100 2.556 N.mmm 0.974 2.556

Figure 8. The inductor with air gap, subjected to an excitation of 100 kiloampere-
turns.
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Table 3. Computed inductance values with air gap

L via flux linkages L via stored energy

Excitation (microhenries) (microhenries)
KA-tumn @n @n (30)
0.5 2.750 2.750 2.750
100 2,177 1.823 2177

the air gap dominates the problem in terms of where the energy is stored.
The results detailed in Tables 1-3 were calculated on a finite element
mesh having 76 nodes and 122 elements (for the problem in Fig. 8). The
results of Table 3 were recomputed for a model having 543 nodes and
1039 elements but describing the same physical device. Considerable care
was taken in the placement of the elements in the refined mesh in order
to get a good solution for the flux distribution in the core and air gap of
the inductor. The inductance vatues, corresponding to those in Table 3,
for this highly refined model are shown in ‘Table 4.

The results for the fine mesh give inductance values which vary by
about 6% on average from those calculated with the coarse discretization.
If a similar test is performed without the air gap present, the variation is
about 1%. These results highlight the fact that the discretization choser
for a particular problem depends heavily on the results which are to be
obtained—the refined mesh took approximately 20 times longer to solve
than the coarse system and yet the inductance values, based on global
energy storage calculations, vary by less than 6%. However, if the flux dis-
tribution is considered and the degree of saturation at various parts of the
circuit is of prime importance, then the refined mesh preduces consider-
ably more accurate results because the coarse system does not allow any
flux redistribution around the magnetic circuit.

A Transformer Design Problem

In the design of small transformers, it is important to determine the con-
ventional transformer equivalent circuit parameters. Not only are they
significant as evaluation criteria, but they often appear as key points in

Table 4. Computed inductance values
with air gap—refined mesh

L via flux linkages L via stored energy

Excitation {microhenries) {microhenries)
kA-tumn @2n n (30)
0.5 2.938 2.938 2.938
100 2237 1.820 2358

A Transformer Desiga Problem 177

customer specifications. These parameters are experimentally determin-
able, and analytically calculable from field solutions in a manner which
resembles that used for the simple inductor example above. However,
since the transformer is a multi-winding device, both the questions that
need to be asked and their answers tend to be a little more complicated.

The Conventional Equivalent Circuit

Many small transformers are constructed by placing a pair of windings
around the center leg of a magnetic core, as indicated in Fig. 9(a). The
windings are placed over each other, usually with the primary winding

winding 2 winding |

air

AN
7 77/

S —

core

(a)

(b)

Figure 9. (a) A small iwo-winding transformer, with (b) its conventional
equivalent circuit representation.
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nearer the core center. The core is a built-up stack of E- and I-shaped
stamped steel laminations, laid with the E and I pieces m:ﬂ.:m&.:m in
orientation, so that a closed but gapless magnetic structure is achieved.
This structure resembles the simple inductor of Fig. 1, except for two
details: the transformer comprises two windings while the inductor has
one, and the inductor frequently (though not always) incorporates one or
more air gaps in its magnetic path.

The transformer is structurally similar to a simple inductor, and the two
devices are analyzed by techniques similar in principle. The mmmE.Eu:.om is
once again made that very little leakage flux escapes the core, Emo.som:w
all the flux being confined to cither the core itself and to the window
space which contains the windings. End leakage will be mmnw:& in a first
analysis; some compensation for this approximation is possible by giving
the air in the window space a relative permeability a little higher than
unity. In a two-dimensional representation of the transformer, there are
two symmetry planes, as indicated in Fig. 9(a); only one-quarter of the
transformer need therefore be given an explicit representation for
analysis.

Like many other electromagnetic devices, transformers are very fre-
quently used as component parts in large, complex systems. Hr.ow are
commonly described by equivalent circuits, so that circuit descriptions of
whole systems can be composed out of the equivalent circuits of their
various component devices. Several equivalent circuits are available for
transformers, all of roughly similar complexity. The most common
equivalent circuit representation comprises two parts: a perfect (lossless
and leakage-free) transformer with the correct turns ratio and the T-
circuit shown in Fig. 9(b). The latter contains the circuit parameters which
set the real device apart from an ideal transformer.

One reason why the T-shaped transformer equivalent circuit of Fig.
9(b) is in widespread use is that its components correspond fairly closely
to the various physical phenomena in the transformer, The reactance in
the vertical leg is essentially similar to the single reactance in Fig. 2: it
accounts for the energy stored in the iron core. However, in the inductor
the stored energy associated with leakage flux could be lumped in with
the energy stored in the core; in the transformer it cannot, because there
do exist measurements affected by the one and not the other. The series
resistances in the horizontal legs of the T are the same wire resistances as
in the inductor equivalent circuit of Fig, 2 above; the difference is that
there are two windings and hence two resistances, while the inductor has
only one. The shunt resistance in the vertical leg is a nnm..moamv_x good
representation of the power loss in the iron core. Identifying maEe.m.HnE
circuit elements with physical phenomena in this fashion is not strictly
accurate; but the error involved is minor in most cases, because the
numerical values of the vertical and horizontal branch circuit components
in Fig. 9(b) differ by at least one, and occasionally as much as three, ord-
ers of magnitude.

A Transformer Design Problem 179

The E\m&\:mnmwganq shown in Fig. 9(b) is vsually omitted in analysis
of 3yst€ms containing the transformer. It is usual among (ransformer
engineers to refer all quantities to the source-side winding, and to speak
of the equivalent circuit as if it did not contain an ideal transformer or,
what is the same thing, as if the turns ratio of the transformer were
exactly unity. The voltages and currents that appear in the equivalent net-
works must then bz scaled up and down, respectively, by the turns ratio tg
bring them into accord with the actual values. The minor inconvenience
of voltage, current, and impedance referral, however, is richly compen-
sated by the simplification that results when writing and solving circuit
equations, This convention will be adhered to in what follows,

Short-Circuit Parameters

In the laboratory, the leakage reactance and winding resistance of the
transformer are measured by means of the so-called short-circuit test. In
this test, the secondary (load) terminals of the transformer are short-
circuited, and the primary is fed with a low-voltage source so as to draw
the rated current. Viewed in terms of the equivalent circuit of Fig. 9(b),
the test arrangement amounts to shori-circuiting the right-hand terminal
pair. Very little current then flows in the shunt (magnetizing) branch of
the circuit, since the impedance of this circuit branch is normally very
high; typically, the shunt branch current might amount to 1-5% of the
total. Primary-side measurements of voltage, current, and woim,n therefore
relate to the leakage reactance and winding resistance only; indeed, they
provide a reasonabls way of measuring these quantities,

Simulation of the classical short-circuit test is possible using a CAD sys-
tem, but a better idea is to substitute another test, which might be calied
the bucking test; it is more accurate but much more difficuit to petform in
the laboratory. In the classical short-circuit test, a sinusoidal current
source is connected to the left-hand terminals of Fig. 9(b) and the right-
hand terminals are short-circuited. In the simulated test, two current
sources are employed, one connected to the left and one to the right ter-
minal pair. The two sources are identical, so that the current flowing into
the left terminals is exactly equal to the current flowing out at the right,
The magnetizing (vertical) branch of the equivalent circuit must then
carry exactly zero current in the bucking test, in contrast to the conven-
tional short-circuit test in which its current is approximately zero. For
determining the horizontal branch parameters of Fig. 9(b), the bucking
test is clearly superior because it eliminates the magnetizing branch com-
pletely. It is easy to implement in a CAD system, where it is only neces-
sary to prescribe equal currents; in the laboratory, on the other hand, it is
perfectly feasible in principle but very hard to carry out in practice. In the
transformer core and window, such a test produces the flux distribution
shown in Fig. 10. It will be seen that all the flux lines link at least part of
one winding or the other. There are no flux lines which close in the iron
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Figure 10. Flux plot for transformer on short circuit.

alone, showing that the two winding currents are exactly equal, with no
net magnetomotive force applied to the core. To put the matter another
way, there is zero net flux linkage of the secondary and primary windings.

The leakage inductances of the transformer can be determined by cal-
culating the total stored energy associated with the solution of Fig. 9(b),
using the technique of equation (27). Alternatively, the flux linkage tech-
nique of equation (21} may be applied; there should be no difference in
the results, since almost all the stored energy will reside in the air. The
flux density in the iron core is invariably very low at short circuit in a well
designed transformer, and the energy stored in the iron core is therefore
tiny compared to the energy stored in the leakage ficld in and around the
windings. In fact, the short-circuit test simulation is very frequently per-
formed on the assumption of infinite iron permeability, so that the energy
stored in the core is not taken into account at all.

When short-circuit tests are performed in the laboratory, only the com-
bined reactance value of the two windings (referred to the primary) is
determined. It is conventional to apportion half the leakage inductance to
the primary, half to the secondary winding. This apportionment may seem
arbitrary but is often unavoidable. The single measurement made in the
short-circuit test can only determine a single reactance, the combined total
of primary and secondary leakages; separating them requires at least one
further laboratory experiment. But the CAD system user, unlike the
laboratory experimenter, obtains a full field solution from the (simulated)
experiment, not merely one or two terminal vatues, He is therefore able to
carry out additional simulated measurements by performing further
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.mathematical manipuiations on the fields; furthermore, he is free to de-
vise simulated measuring instruments which would be very difficult to real-
ize in the laboratory. This flexibility permits separation of primary from
secondary leakage inductances in cases where the windirgs are not sym-
metrically disposed and where a simple half-and-half split may not be

appropriate. It is only necessary to write the total stored energy in the
form

_ ~
:\lm.m\;:m+m._wm§? 31
where S, is the cross-sectional area of the primary winding, S, that of the
secondary winding, In accordance with equation (20), this energy may be
written in terms of the primary and secondary flux linkages (n9), and

(), as
W= 2 [(n)y + (n9)] . (32)

Since no mutual flux linkages are shared between primary and secondary
in the bucking test, it is proper to rewrite the energy W in terms of the
primary and secondary leakage inductances Ly and L, as

1
W= 2 [Lyi + L] (33)

showing that the individual leakage inductances are separately comput-
able. The primary leakage inductance is thus, by (22),

i
hmuﬂhh;a% (34)

and a similar expression holds for the secondaty. The leakage inductances
are separable, in other words, by measuring the primary and secondary
flux linkages separately, a task not particuiarly difficult ir the simulated
bucking test but impossible in laboratory practice.

It should be noted that the winding resistances in the equivalent circuit
cannot be calculated directly from the magnetic field distribution. As with

the simple inductor, a value can be deduced from the lengzh of wire nsed
and its conductivity.

Magnetizing Inductance

The magnetizing reactance and core loss resistance of transformers are
determined in the laboratory by performing an open-circuit test. In this
test the secondary terminals are left open-circuited and the primary is
excited at rated voltage. Measurements of the primary voltage, current,
and power, together with the results from the short-circuit test, aliow the
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calculation of the magnetizing reactance and the core loss resistance.
Since the magnetizing impedance of a well designed transformer is very
considerably greater than the shunt impedances, the results of the open-
circuit test are quite often used to calculate the magnetizing impedance
directly, ignoring any correction for the leakage and winding resistance.

The open-circuit test is not only easy to perform in the laboratory,
because the transformer is run at rated voltage without load, but it is also
easy to model analytically. Leaving the secondary winding open-circuited
simply requires that it is ignored in setting up the problem! In fact this
test is identical to the simulation, already treated, of a simple inductor,
since only one winding is taken into account in the modelling. With the
primary winding on the left, the transformer of Fig. 9(a) exhibits the
open-circuit flux distribution shown in Fig. 11.

Since the open-circuit test is performed at rated voltage, not at rated
current, its simulation involves a few difficulties. First, most present-day
CAD systems work best with prescribed currents rather than voltages.
Secondly, the magnetizing reactance is ill defined, since most transformers
are operated at sufficiently high saturation levels to cause the magnetizing
current to contain a significant proportion of harmonics. With sinusoidal
applied voltage, but nonsinusoidal current, the inductance—and hence the
reactance—of the primary winding can be defined in several ways. This
problem does not arise in the leakage calculations associated with the
short-circuit test, since much of the magnetically stored energy is stored in
air. The contrary is true for the open-circuit test: almost all the magnetic
energy is stored in the iron core, which is after all nonlinear.

=
Z

Figure 11. Flux plot for transformer on open circuit.
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Like many other simulations, the open-circuit test can be carried out in
a careful and fairly precise way, or it can be done quickly but less accu-
rately. The slow and precise way procceds as follows. The range of instan-
taneous magnetizing currents, up to the largest peak current likely to be
encountered, is determined by any reasonable means (which may include
an educated guess). A set C of N current values, which may number about
ten, is chosen so as tc span the range,

C={ik,k=1,...,N}. (35)

The open-circuit field problem is solved for each one of these values,
thereby producing a set 4 of vector potential distributions Ar(x.p),

A= {Aex)), k=1,..., N}, (36)
The primary flux linkages are next computed for each solution, using

equation (20},

(né) = %h ATdS. 37)

e V5,

Since every flux linkage value (n¢); in this set corresponds to a specific
<m_cm ir, En.:{o sets taken together describe a function which assigns a
specific flux linkage value to each current value, and vice versa:

() = nolir). (38)

The resulting curve of flux linkages against current will roughly resemble
a B-H curve. However, it will not be proportional to the B-H curve of the

core Bm.m.:mr because the flux distribution in the core actually changes as
the material saturates,

.aﬁ.ﬁ: an open-circuit test is carried out in the laboratory, the primary
winding is excited with a sinusoidal voltage, say

e(t) = E cos wt. (3%

By Faraday’s law, the primary flux linkages must therefore vary in a
sinusoidal fashion,

ne = — (1/w) E sin wt, (40)

so that the sequence of time instants 4, may be determined at which the
tabulated values of flux linkage are reached during a quarter cycle:

fk = — (1/w} arcsin [ —wne(iy )/E]. “n
But this relationship creates a set T of time values,

T={t, k=1,...,N}, (42)
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which correspond to the current values C of equation (35). If these
current values are plotted against time, the magnetizing current waveform
is obtained. It may be written as a Fourier series, as detailed further
below. Because the total current waveform has quarter-cycle symmetry
and begins at ¥{0) = 0, the series contains odd sine terms only:

()= 3 I sin (2m—1)at. 3)

m=1

The magnetizing inductance is then calculated by taking the fundamental
components only,

E
H%:nw = Iﬁlo..m‘_l . ﬁb&v

The fundamental-frequency component definition of inductance is prob-
ably the best to choose in this application, because a main use of small
transformer equivalent circuits is in the calculation of fundamental-
frequency currents ia systems containing transformers. Getting the funda-
mental components right is therefore likely to be important, more so than,
say, finding the stored energies with high accuracy. The same cannot be
said, however, of applications involving transients. Most transient
phenomena involve transfer of flux linkages or stored energies and there-
fore should use inductances based on total quantities, rather than specific
Fourier series components.

A quick but less accurate estimate of the magnetizing reactance can be
obtained by means of a single static solution. The primary winding
current is set at the root-mean-square value expected, and its flux link-
ages are computed from the field solution. A value of terminal voltage is
then obtained, on the assumption that the value obtained for flux linkages
is the root-mean-square value also. If the resulting voltage value is within
a few percent of the rated voltage, the magnetizing reactancé value is
probably accurate to a few percent also.

It may be worth noting that no attempt has been made in either of the
above methods to allow for the primary leakage reactance. Since both cal-
culations actually deal with serminal voltage, the reactance values
obtained represent not the magnetizing reactance, but rather the sum of
magnetizing reactance and leakage reactance. To obtain a value for the
magnetizing reactance alone, it suffices to subtract the leakage reactance
value obtained from the bucking test simulation described above.

Harmonic Analysis

The harmonic content of magnetizing current is a quantity of considerable
interest to transformer designers as well as to the system engineer using
transformers as circuit components. If hysteresis is absent, as has been
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assumed in the above, then the magnetizing current will have quarter-
cycle symmetry; that is,

et + 7) = — i(wl). (45)
The Fourier series of i(wt) can then contain no odd terms; and
i(wf + 7/2) = ~ i{—wt) {(46)

so there can be no cosine terms. The Fourier series of i(wr) therefore has
the form already alluded to,

i(1)y = W Ly sin Qm— . (43)

m==1

In any real situation, the true current i(f) cannot be known, since an
infinite amount of data would be needed to determine all Fourier series
components. Instead of (43), the practical analyst must remain content

with the approximate current iy(s), which contains only M terms of the
series,

M
ity = 3 I sin (2m—1)t. (47)

m=]
The number M is of course limited to at most N, the number of data
points contained in the sets of current and time values, equations (35) and
(42). This restriction is not particularly severe, for there is rarely much
interest in harmonics beyond the fifth or (in some three-phase systems)
eleventh. That is to say, M is limited to 3, or 6 at most, while present
CAD systems make it easy to compute solutions for, say, N = 10.

Since the number N of data points available is frequently larger than
the number M of Feurier series terms required, it is best to compute the
limited number of terms by a least-squares approximation. To do so, the
series (47) is formally evaluated at each of the N time instants i

M
Bty = D Iy sin (2m ~ Dty . (48)

m=1

The coefficients 1,, are chosen so as to make the squared difference
between left- and right-hand sides of (48), taken at all the N time instants,
as small as possible. That is to say, the I, are chosen so as to make first
derivatives vanish:

=

i 2 = intiof =0, “9)

Substituting (48) into (49) and differentiating, a set of simuitaneous equa-
tions is obtained. For every value of m,
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M N
> > sin(2n— ety sin{2m— Dty 1,
n=1 k=1 N

= W sin(2m — Vet i(te) ~ (50)
k=1

must hold. These equations are easily recast in matrix form for numerical
solution, noting that the inner summation (with index k) on the _n:-rm:.a
side collapses the trigonometric functions into a symmetric square matrix
with indices n,m.

The above discussion assumes that hysteresis is absent. Indeed, no
other assumption can at present be fruitfully made, for no general-
purpose CAD systems now available can treat hysteretic behavior in solv-
ing field problems. The analysis given here is most accurate at high
saturation levels, when the hysteresis loop width is small compared to the
excursion in magnetic field.

Loss Estimation

The core loss resistance to be included in the transformer equivalent cir-
cuit may be estimated roughly from a single static field solution. The
estimating technique is simple: the local power loss density p (usually
given on a per unit mass basis) is weighted by the mass density m(x,y) of
the stacked laminations and integrated over the volume of magnetic
material so as to obtain the total loss P. Thus

P=Zf pm(xy)ds, D)

where Z represents the stacking depth of the core iron, and Siron is the
area occupied by iron in the transverse (x-y) plane. The loss density p(x,y)
of course depends on the magnetic events at the point (x,). It is usually
expressed as a function of peak fux density,

p = p(B,). (52)

The function p(B,) must be obtained either from the iron supplier or by
direct experimental measurement. Most suppliers of magnetic materials
provide core loss curves for sheet and strip stock, in watts per kilogram or
pound as a function of the peak flux density. By referring to mass rather
than volume, any required stacking factors are automatically taken care of
by the mass density m(x,y) in equation (51). Curves are usually available
for sinusoidal flux density variation, at 50 Hz and 60 Hz for the thicker
materials and 400 Hz for the thinner grades. Data for other frequencies or
working conditions are furnished only infrequently.

Since the loss curves refer to peak flux density, the loss is estimated
from a field solution obtained for the open-circuit test with the primary
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winding carrying peak current. This solution is identical to one obtained.
for determining the magnetizing reactance. The potential values in it are
differentiated, to yield the corresponding flux density By,

B, =curl (1,4,). (53)

These represent peak values, since they are derived from the peak values
of potential. The loss density curve supplied by the manufacturer is then
used to determine the loss density everywhere in the core, as in (52), and
the total loss is obtained by integration over the whole core, as in equa-
tion (51).

The core loss resistance R to be included in the transformer equivalent
circuit may be calculated from the estimated core loss P. By simple circuit
theory, the value of R is

EL;
R =
P

. (54)

If voltage drop in the primary resistance and leakage inductance is
neglected—a reasonable approximation for the open-circuit test—then E,,,,
is the root-mean-square voltage at the primary terminals. Because the
transformer may be assumed to be excited by a sinusoidal voltage, (54)
may be rewritten in terms of the peak voltage £,
-L.1~
=_r
R= 2. (55)
But the peak terminal voltage is related to the primary flux linkages n¢ by

equation (40). Hence the value for core loss resistance is finally obtained
as

w(ng)?
2P

R =

. (56)

It should be noted that the loss as estimated using the standard core loss
curves refers only to the loss incurred by alternating flux, not rotational
flux density. Rotating fluxes arise in many devices through the redistribu-
tion of flux which arises from saturation. The distribution of fluxes in a
transformer core, or indeed in any magnetic device, is clearly not the
same at high and low saturation levels. As the exciting current is raised,
regions of high flux density saturate first, crowding flux into areas of lower
density. At high saturation levels, flux densities therefore tend to be much
more uniform than at low total flux values, and the local direction of flux
is not the same in the two cases. As a transformer on open-circuit test
traverses the alternating current cycle, the flux density vector B at most
points of the core iron not only varies in magnitude but also changes in
direction as flux redistribution takes place. Hence the vector B rotates in
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direction as its magnitude alternates; its tip generally traces an elliptic
path. Iron loss curves, however, make no allowance for rotating com-
ponents in the flux density. Estimates of loss are therefore usually less
accurate than estimates of the corresponding magnetizing reactance,

Mutual Inductances

Many phenomena in electromagnetic devices are conveniently described
in terms of mutual inductance values, and many designer-years are spent
calculating values of mutual inductances. Ways of extracting mutual
inductances from field solutions therefore merit more than passing men-
tion.

Mutual Inductances and Energy

Since there are at least two reasonable bases on which to define self-
inductance—stored energy and flux linkages—it should not be surprising
that mutual inductances can be similarly defined.

One note of caution is perhaps in order: the computation of induc-
tances, like the computation of almost anything else in a CAD system,
should be undertaken only as a simulation of experimental measurements,
A corollary is that no attempt should ever be made to calculate quantities
which cannot be defined in terms of a physically feasible experiment,
While this principle may seem obvious, it is very frequently violated by
classical engineering clectromagnetics. For example, the concept of inter-
nal inductance of a conductor is enshrined in textbooks and has been so
for a hundred years. It is well known and calculable for a round wire, for
which analytic solutions of the skin-efiect problem exist. It is not calcul-
able for other, more complicated shapes—not because of shortcomings in
the available processes of calculation, but because the classical definition
of internal inductance itself makes no sense for other conductor shapes.
(It assumes that one flux line coincides with the conductor surface, parti-
tioning all other flux lines into those infernal to the conductor and those
exiernal to it. Such a separatrix flux line can only exist if the conductor is
round.) Many of the classically useful concepts and quantities of electric
machine engineering in particular are imprecise because their definitions
contain built-in presuppositions about geometric shapes: examples are
end-turn inductance, slot leakage inductance, and zig-zag leakage. If
there is any doubt at all about some well established parameter, the one
sure test is to invent a physical experiment for measuring the relevant
quantity. In effect, the invention of such an experiment redefines the
quantity in experimental terms valid for all cases. Even if the measure-
ments are impractical to carry out, their simulation may be quite straight-
forward,
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Defining mutual inductance in terms of stored energy is a secure pro-
cedure, for the stored energy is a quantity easily measured, at least in
principle, by an integrating wattmeter. The mutual inductance in a two-
winding system may be determined by a difference measurement involy-
ing two experiments, one with the two winding currenss oriented to have
their fluxes adding, the other with the fluxes bucking each other, as in Fig,
12. It is of course not necessary to know at the outset which is which; it is
only essential to conduct two expetiments, with connections to one wind-
ing reversed relative to their orientation in the other experiment, i.e., to
have the winding currents /; and i in one case, i; and —i, in the other.
Altering the order of experiments will make the mutual inductance have
either a positive or a negative sign.

Let W, and ¥ be the stored energies in the two experimental cases.
By simple circuit theory, they are related to the self-inductances L,;, L,
and the mutual inductances M2, My through the relationships

1 . . L ;
W) =75 (L it -+ My iy iy + My by iy + L i3) 7

and

1 . .. o :
W, =3 (Lu it — My i) i =My iy iy + Ly i3). 8)

By subtracting, the difference in stored energies is obtained. There
immediately results

W, — w;
)

My 4+ My = , (59)

and since mutual inductances are reciprocal, My = May = M

L}

Wy — W,

M= .
24 iy (60)

The procedure as given above requires measurement or computation of
stored energy, followed by subtraction to find the energy difference, If the
energies W, and W, are not very different, the result can be considerably
in error. This subtraction of elephants difficulty arises no matter whether
the data are obtained by direct physical experimentatior. or by computer
simulation: if the difference looks like small mice, the result is of doubtful
accuracy. To be more precise: as many significant figures will be lost in
the subtraction as there are similar leading digits in W, and W;. It is
always well to inspect results, including intermediate resclts, from time to
time as calculations proceed and to bear this potential difficulty in mind.
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Figure 12. Two windings connected together for purposes of mutual inductance
determination: (a) seties aiding, (b) bucking. :

The stored energy calculations required in the above simulation may be
carried out by exactly the same techniques as followed in the simple
inductor case. The appropriate equations to use are generally (25) and
(26), but circumstances may allow simplifications arising from magnetic
linearity or geometric shape.

Mutual Inductance and Flux Linkage

Like self-inductances, mutual inductances may be defined in terms of flux
linkages. Such a definition leads to quite direct and simple calculations,
possibly casier than the energy-based approach. In linear problems, the
two definitions again coincide, so the results obtained are identical to
within the error inherent in numerical computation; the choice of method
is therefore a matter of convenience. In nonlinear cases, however, flux
linkages and stored energy must lead to different results because they
reflect two different definitions of inductance.

In terms of flux linkages, the mutual inductance My is defined as the
Jlux linkages of winding 1 caused by the current in winding 2, divided by
the current causing them:

Mp=—5—, 61)

As already discussed in connection with equation (20), flux linkages are
best determined with reference to currents, so that any nonuniformity in
the winding density is automatically introduced as a weighting factor. To
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determine the flux linkages in winding 1, it is therefore best to imagine
that a very small current iy is made to fow in that winding, one small
enough to cause negligible change in vector potential. This small current
will nevertheless cause a current density J; to exist in winding 1. Gen-
eralizing on equation (20) slightly, the required flux linkage may then be
calculated as

Jy
Ah%uﬁ“%l 5 as, (62)

{

Combining (61) and (62), the mutual inductance is thus

_ .:
Iz T

The region of integration here may be the cross-sectional area of winding
1, or any larger area. A larger area is perfectly acceptable, since the
current density J; will vanish in any portion not actually occupied by
winding 1. No extra contribution will accrue to the integral even if the
area is too large. As a practical matter, the area is frequently chosen to
include the entire problem region, thereby reducing work in defining the
region of integration.

When the calculation of (63) is actually carried out in a CAD system,
there is no need to keep /, small, provided the vector potential 4 as used
in the calculation is the vector potential that results from solving the field
problem with winding 2 excited, but without current in winding 1. In
other words, there is no need to risk numerical error by choosing i; to be
very tiny; any convenient value will do.

Force Calculations

Many of the uses tc: which magnetic devices are put may be classified as
electromechanical; that is, they are used to convert energy between elec-
trical and mechanical forms. Indeed, mechanical force production is the
major reason for the existence of devices such as actuators and electric
motors. Consequently, the end product of a magnetic field analysis may
well be the evaluation of the mechanical force produced by the device
and its variation with changes in excitation or position. The principles
involved are introduced and discussed here with reference to illustrative
examples.

A Magnetic Bearing

Permanent magnet tearings are employed in some watt-hovr meters. Such
meters are in essence small electric motors designed to measure electricity
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consumption, which must have very consistent performance in order to
meet legal and commercial needs. The usual type of meter includes a
rotating aluminum disk, driven by eddy currents caused by two excitation
coils—one coil intended to measure instantaneous current, the other
instantaneous voltage. Integration over time is performed mechanically,
by having the disk actvate a rotating counter. For satisfactory operation
the rotating disk mechanism should exhibit little friction, and the bearing
characteristics should show negligible change with diurnal and seasonal
weather variations as well as over the lifetime of the device, which is
likely to be measured in decades.

To meet stability and consistency requirements, one type of watt-hour
meter incorporates a permanent magnet suspension system with an auto-
compensating magnetic shunt to allow for the temperature variation of
permanent magnets. Such a configuration is represented in Fig. 13. A
compensating shunt (flux diverter) bypasses part of the magnetic flux of
the permanent magnet. With an appropriate choice of materials and
dimensions, the amount of flux diverted can be made to vary with tem-
perature in the sense opposite .to the permanent magnet material. For
example, an increase in total flux, resulting from temperature variations, is
compensated for by an increase in the fraction of flux diverted. In this
way, the suspension height can be kept practically constant, and the mag-
netic bearing can produce a watt-hour meter with precision that rivals
mechanical suspension, but without the wear that results from mechanical
contact,

For the magnetic bearing of Fig. 13, the field at nominal design tem-
perature is shown in Fig. 14. The analysis shown was carried out using
explicit current-carrying coils rather than intrinsic ‘permanent magnet
models, and the coil sides (which actually are empty air space) are clearly
visible in Fig. 14. The flux diverter accounts for very little leakage at the
design temperature, which corresponds to summertime operation,

Although it is necessary to obtain lifting force values as a final analytic
result, preliminary examination of possible designs may require no more
than simple visual inspection of field distributions. Often an extremely

Figure 13. A simple vertical-shaft magnetic bearing used in a watt-hour meter,
based on permanent magnets.
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Figure 14. Magnetic field (flux lines) of the permanent magnet bearing shown in
Fig. 13.
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useful indication of the behavior of a magnetic system can be obtained in
this qualitative way. In Fig. 14 the flux lines are crowded together in the
air gap between the two magnets and are directed horizontally. This
strong tangential component of field in the air gap suggests that there is a
substantial repulsion force between the two parts of the bearing, The
magnitude of the force can be gauged very roughly by otserving both the
density of the lines and how horizontal they appear to be.

The actual value of the force in a magnetic system may be determined
in several ways. Since there is in reality only one force, all the ways
should produce the same result, provided there is no computational error.
However, because of the numerical approximations which have been
made in the solution of the field equations and the distribution of the
force itself, the several methods may not give identical answers. In fact,
the most appropriate method to use may well depend on the device being
analyzed. Some of the more common approaches and their pitfalls are
outlinéd below.
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The Method of Virtual Work

The force exerted on a body may be evalvated by determining the work
done when it is slightly displaced from its rest position. In the absence of
frictional losses, this work must equal the change in the energy stored in
the entire electromechanical system or device. Thus, if the stored energy is
evaluated for the device in two positions separated by a small displace-
ment, then the difference in energy divided by the distance will give a
value for the force. Suppose, for example, that the stored energy is W) in
position 1 and W, in position 2, the two positions being separated by a
displacement x,,. The force required is then given by

W, — W,
F= . (64)
X12

This approach to force calculation is widely employed in mechanics,
where it is known as the method of virtual work. Tt evidently relies on the
assumption that the force does not change significantly during the motion
and thus is valid for small displacements only. In the completely general
case where displacements may take place in various directions, the force is
a vector quantity, given by

F = pgrad W(x), (65)

where W(x) is the stored energy, viewed as a position function of the vec-
tor displacement x. Equation (64) may be regarded as a special case of
(65), for one-dimensional movements.

The lifting force for the magnetic bearing described here was computed
by the method of virtual work. Since lift force is the desired quantity, the
upper magnet of the bearing was displaced so as to halve the vertical air
gap between magnets, from 2.0 mm to 1.0 mm. (By way of comparison,
the bearing magnet diameter is 18 mm.) The force is likely to change
more or less linearly with distance, in view of the large bearing magnet
diameter, so that the value obtained is likely to represent a good estimate
for the actual force at an air gap of 1.5 mm. Values for the stored ener-
gies in the two positions and the force are as follows:

Stored energy with 2 mm gap =  2.9476 mJ
Stored energy with 1 mm gap =  2.8892 mJ
Change in stored energy = 0.0584 mJ
and the force follows directly as
0.0584 ml
Force = = 0. .
orce 1,000 mom 0.0584 N

It may be noted that the energy difference in this case is about 2% of the
stored energy itself. In other words, nearly two leading significant figures
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are alike in the two energies, and nearly two significant figures will there-
fore be lost to roundoff error in the subtraction. If the energies themselves
can be relied on to about five figures, then three-figure accuracy of the
force is all that can be hoped for.

The figures above are fairly typical for a calculation based on the vir-
tual work method, although in this case a comparatively large displace-
ment can be made. In systems where only a very small displacement is
possible and the forces are likely to be small, the change :n stored energy
may be a fraction of a percent of the total energy. The difficulty of sub-
traction of elephants then arises once again, just as it did with equations
(59)-(60). There are two ways it can be alleviated: wisdom in solution of
the field problems and wisdom in differentiation.

When forces (or mutual inductances!) are computed by subtracting
energies, accuracy can be considerably enhanced if the error inherent in
the two energies themselves is similar. If, say, W, as computed contains
some error ey, as ¥ + e, and W, is similarly computed as W, + e,
then obviously

(W2t e)— (W) +e))=(Wy — W)+ (e2 — e)). (66)

The etror in the energy difference will certainly be no larger than the
error in either energy; indeed it will generally be smaller, if it can be
guaranteed that both e, and e; have the same sign. Suck a guarantee is
castly furnished if the field problems underlying ¥, and W, are both
solved using energy-minimizing finite element methods Fortunately, such
methods are by far the most popular ones in present-day CAD systems,
The best results will clearly be obtained if e, and e, are not only of the
same sign but of similar magnitude. Their magnitudes are very often
mainly affected by the discretization error that arises from the finite cle-
ment mesh. If W, and W), are solutions computed on the same finite cle-
ment mesh, or very similar meshes, errors are likely to be similar and the
energy difference therefore much more accurate than the simple rules of
thumb would indicate.

The results obtainable by virtual work calculations can sometimes be
improved by employving not the simple equation (64), but its more general
version (65). Instead of computing energy at the two ends of the displace-
ment xi2, a set of several stored energies can be found a: several points
along the displacement vector. If a smooth curve is fitted zo these several
values, and differentiation performed according to (65), considerable error
smoothing can be achieved at the price of increased computation.

Maxwell Stresses

The second most common approach to determining electromechanical
forces is that known as the Maxwell stress tensor method. In contrast (o
the virtual work technique, which employs a volume integral to determine
the stored energy, the Maxwell stress approach computes local stress at all
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points of a bounding surface, then sums the local stresses by means of a
surface integral to find the net force.

The Maxwell stress tensor method may be derived from the elementary
force density expression which relates the force density vector f to the flux
density B and the current density J by

f=J x B. (67)

This expression is derived in theoretical electromagnetics from the funda-
mental force relationship between two moving charges, and represents the
magnetic portion of the Lorentz force.

The expression given in equation (67) describes a force density vector,
which possesses components in each of the coordinate directions and has
dimensions of force per unit volume. Thus the force on a body in a partic-
ular direction may be found by integrating the appropriate component of
the force vector over the entire volume. It is common, however, to reduce
the volume integral described above to a surface integral in order to sim-
plify the overall force calculation. If a substitution is made for J in equa-
tion {67) by using Maxwell’s equations, the force expression becomes

f=rB X curl B. (68)

The left-hand side of this equation may be expanded into three com-
ponents. The x directed component is typical and has the following form:

2B, 3B, 3B, 3B,
— B,
9z dx 7 7y

fe=vB, . (69)

If a term vB,(3B,/8x) is simultaneously added to and subtracted from
equation (69), and the identity

aB;
ox

2 (B, =28, (70)

is used, then the force component becomes

_ I d 5 98, 08,
Jx=v|= — (B + B, + B, 3

2 ox dz

1 3

|mmla€m+mw+ww ) (71)

Some further manipulation gives
a . 1 2 d
= — —_— e —_— kw
fe= | gy BE=5 | BID+ 0 (BBy)

+ %a (B.B.)— B, divB|. (72)
74
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Since div B =0, the last term disappears and the remaining expression
may be recognized as the divergence of a vector fy, whose components are

1
fex =v{BE - > | B %), (73)
Sxy =vBB,,
fxz = #B.B,. (73)

A similar development holds for each of the other force components (f
and f;). Thus the force expression, equation (67), may be written as the
divergence of some tensor T:

L.
ﬁnhuxwacuﬂbazqmc. (74)

Making usc of the divergence theorem, this volume integral may be
reduced to a surface integral. Then the force becomes

1
= %m, ds, (75)

where the surface vector dS is taken as the outward normal on S.

The tensor T defined above has the dimensions of stress and is com-
monly known as the second Maxwell stress tensor or the magnetic siress
tensor. A more complete derivation of this tensor may be obtained by
considering both the magnetic and electric components of the Lorentz
force. In this case, an electric stress tensor may be defined in addition to
the magnetic one described here. The electric stress tensor has essentially
the same form as its magnetic counterpart with B replaced by E and
reluctivity replaced by permittivity. This form is useful for force calcula-
tions in electrostatic fields. Furthermore, when both electric and magnetic
forces are considered together a link between the two fields appears which
may be recognized as the Poynting vector representing power flow within
the volume.

The complete magnetic stress tensor T, written out in full, has the fol-
lowing form:

B -5 18] BB, B.B,
1 !
T = B,B, Emlw | B B,B. . (76
" BB, BB, (2= B|Y

Equation (76) provides the local values of all components of magnetic
stress along each of the coordinate axes. The rigid body force acting on an
object is obtained by integrating these components over its bounding sur-
face, as in equation (75).
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It should be remembered that each stress component is in fact a vector
and thus the dot product with the normal should be applied to each term
of the appropriate horizontal row in turn. In two dimensions the 3x3
matrix reduces to 22, i.e. the top left hand corner of the tensor, and the
surface integral becomes a contour integral. Thus, if the surface is parallel
to the x-coordinate 2xis in a two- dimensional system, the x-directed com-
ponent of force is given by B.B, and the y directed force is
(BZ— | B| 2/2). In the case of two blocks of iron facing each other,
such as might be encountered in an electromagnet where all the flux is
directed between the poles, there is no sideways force because B, is zero.
The attractive force between the two poles is then given by B2/(2p,),
which may be recognized as the conventional expression for the force
between two magnetic poles.

To determine the forces on a rigid body, the surface of integration §
should of course encompass the body. In principle, S should be the sur-
face of the body itself. In computational practice, it is often found con-
venient to place this surface in the air region surrounding the machine
part or other object on which the force is to be found. In effect, a “piece
of air” is therewith attached to the rigid body, as if it were a solid. Since
the air carries no currents and has no magnetic properties different from
free space, there is no harm in this hypothetical attachment.

Although the component values of equation (76) have units of stress,
they do not necessarily give correct local stress values. The mathematical
reason is that the divergence theorem, on which their derivation is based,
has a meaning only for complete closed surface integrals. Physically, local
stresses may be statically indeterminate and therefore not available at all
from such a global calculation. However, their closed surface integral is
guaranteed to have a physical meaning and to represent total force
correctly. Of course, the surface may be closed only in a restricted sense.
For example, in a periodic structure the surface need only embrace one
period, the remainder of the structure being taken care of implicitly.

The expressions given above may be rewritien in terms of the normal
and tangential components of flux density at each point on the surface. In
two-dimensional problems the calculation of force requires the determina-
tion of the normal and tangential values of flux density at each point
along the contour. Difficulties may be encountered as the result of numer-
ical cancellation (the subtraction of elephants problem once again!) when
Maxwell stress calculations are applied to finite element solutions. First of
all, flux density components are obtained from potential solutions by
differentiation, a process which commonly emphasizes errors. If the ele-
ment discretization of the air region is relatively coarse, the error in
evaluating the pointwise stresses may be considerable. Of course, this
problem may be overcome by increasing the number of elements.
Secondly, if the contour of integration actually passes through a node con-
necting several elements, the flux density is multi-valued, and no current
CAD system incorporates any rational way of determining which value of
flux density to choose, or whether to apply some form of smoothing or
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averaging. Finally, and probably most significantly, the rumerical round-
off problem already alluded to remains omnipresent.

If the tangential force is to be determined in a device such as an electric
motor, as for the calculation of torque, then the tangential component of
stress may not necessarily be directed continuously in the direction of
rotation—any particular pole of the rotor body may bs attracted both
toward the stator magnetic pole opposite it and to the one behind it. The
relative strengths of these two forces depend on the angle between the
rotor and stator magnetic axes. However, the stress distribution evaluates
both forces and the resultant is correctly the difference between them. As
with the virtual work method, the useful force may be small compared to
the individual, positively and negatively directed, force components. In
some situations, substantial numerical errors may result.

In practical applications of the Maxwell stress approach to force calcu-
lation, it is advisable to evaluate the force using several contours and then
to average the results, The deviation between results obtained for different
contours will often serve to indicate the likely accuracy level achieved,
even though strict upper and lower bounds are not available. If these cau-
tionary notes convey the impression that the Maxwell stress approach has
drawbacks, it is worth noting that it also has the advantage of being com-
putationally cheap; it requires just one field solution, while the virtual
work approach demands a minimum of two.

Current—Force Interactions

The force density of equation (67), used as the starting point for the
Maxwell stress evaluation, may of course be employed directly in the cal-
culation of electromechanical forces. Since (67) gives a body force density,
the net force on a conductor, viewed as a rigid body, is

qn.m,_xwmc. (17

This expression effectively involves integration only over the current-
carrying regions and thus may involve little calculation. Its advantage is
also its disadvantage: it cannot be employed to find the forces on
magnetic objects which do not carry any current, and it is therefore of
limited use. For example, in computing the torque of an electric machine,
(77) is not useful, because it will not produce the forces tending to move
the rotor, only the force exerted by the conductors on the slot walls. In
general, this s a feeble force compared to the magnetic surface forces that
move the rotor.

A specialized form of (77) has been used for over a century by electric
machine designers. If all the current is confined to a filamentary conduc-
tor of length /, placed in a field of uniform flux density B, the general
form of force in (77) reduces to

F=Bil, (78)
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where i is the conductor current. This expression will correctly give the
forces, and hence the machine torque, if (and only if) the rotor is perfectly
smooth and cylindrical; for only in that case are there no other forces act-
ing on the rotor. It is curious to observe that temoval of simplifying
assumptions, as in introducing rotor slotting in this case, can sometimes
actually make results worse!

Rate of Change of Inductance

Still another approach to computing electromechanical forces is based on
finding the rate of change of inductance with displacement. This approach
is closely related to the principle of virtual work and is particularly useful
for devices whose desired end product is motion. The motion may be con-
tinuous, as in rotating or linear induction machines; or it may be tran-
sient, as in stepping motors or loudspeakers. The latter class includes a
host of devices intended to supply kinetic energy on a pulsed basis, as for
example in an electromagnetic hammer.

The following discussion is based on a ballistic linear actuator, the ham-
mer of a door chime, as an example of a motional device in whose
analysis forces are best calculated using the rate of change of inductance.
The designer’s aim here is to maximize the kinetic energy possessed by
the hammer at the moment of striking its target, and conversely, to posi-
tion the target so as to have it struck at the moment when the hammer
possesses maximum kinetic energy. Fig. 15 illustrates the device in ques-
tion, an axisymmetric solenoidal coil and a moving plunger. The plunger
is attached to a nonmagnetic hammer, which is not shown in the drawing.

The ballistic actuator is forced to act by applying a voltage ¥ to the ter-
minals of its solenoid. When the voltage is suddenly applied, current
begins to fow in the coil, and a magnetic force appears to accelerate the
plunger, thereby endowing it with kinetic energy. Neglecting the coil
resistance, the instantaneous power input to the coil is, in accordance with
Faraday’s law as given in equation (1),

o d(Li)
iV=i QF . (79)
coil
w\
\ symmetry plane \\\\\\\\\\;\\\\“\\\ A plunger

Figure 15. Ballistic actuator in its resting position. The plunger is centered within
the coil structure,
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This equation expresses a power balance: the input power must exactly
equal the rate of increase of internal energy. Rewriting, (79) becomes
. R 2 dL
V=il — _—
i PL— i — . (80
The second term on the right-hand side results entirely from motion and
represents the rate of change of stored energy. The rate of change of

magnetically stored energy due to motion alone is obtainable from equa-
tion (23) as

dW, 1 , dL
3 a @1

The remaining energy must appear as the mechanical, ie., kinetic,
energy of the plunger. On the other hand, the kinetic energy is known to

be expressible in terms of the mass m and the velocity v of the hammer
and plunger as

W, = w mv?. (82)

Equating the kinetic energy to itself, there is obtained

mv*, (83)

Rewriting, using the chain rule of differentiation, there resuits

) dL dx _ 2
i i dr = mv-, (84

This equation can finally be solved for the hammer velocity. Noting that

dx
= ®85)

it immediately follows that v is given by

py= 1 4 (86)

Thus the velocity of the plunger can be determined from the change of
inductance as the plunger moves from one position to the next. The com-
putation required is thus to find the coil inductance L as a function of
position, using an energy-based definition of inductance. then
differentiating (or taking finite divided differences) and substituting in
(86). The force acting on the plunger at any point in its travel may be
determined subsequently by any one of the force calculation methods dis-
cussed above. Since the mass of the plunger is presumed to be known, its
acceleration may also be determined.
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The flux distribution for the plunger in its equilibrium (symmetric)
position is shown in Fig. 15; Fig. 16 shows the flux lines when the
plunger is displaced to one side. The field plots clearly demonstrate that
the force is one tending to restore the plunger to’move to the centered
position.

For a plunger 1.25 times the length of the coil and an excitation of 300
ampere-turns, typical results for the centered position of Fig. 15 and for
the off-center position shown in Fig. 16 are as follows:

Position; Centered  Off-center
Magnetic energy (mJ) 1.555 0.771
Plunger kinetic energy (mlJ) 1.418 0.634
Plunger velocity (m/s) 0.476 0.319
Force on plunger (mN) 0.0 570

The plunger is considered to be magnetic but nonconducting throughout
this discussion. If the plunger is made of conductive material then the
motion through the magnetic field would induce eddy currents which, in
turn, would alter the device performance.

Local Field Values

The determination of local phenomena—field components, power densi-
ties, and particle forces—is an important part of the CAD art. Extracting

=
N~

=
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Figure 16. Ballistic actuator with plunger displaced to one side.
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local results from solutions is therefore just as important as determination
of inductances or forces. Of course, the extraction of local values requires
somewhat different postprocessing operations.

Local phenomena rival global ones in importance because the elec-
tromagnetic device designer typically must satisfy two distinct forms of
specifications: device performance and device feasibility. Both may
involve either global quantities—stored energies, power levels, or total
forces—or local values, such as flux densities, field uniformities, or particle
trajectories. Devices used as system components interact with their environ-
ments through terminal parameters which reflect global performance
specifications, although their feasibility limitations may be imposed by
local internal phenomena. Thus a power reactor will be expected to have
& particular inductance value, and an electric motor to furnish a specified
torque; both designs will no doubt be constrained by local power loss
densities or electric field gradients. In contrast to system components,
instruments are often specified in terms of local behavior and limited by
global consideratiors, An electron lens, for example, may have its perfor-
mance prescribed in terms of aberration cocfficients, which depend
heavily on details of local field structure; its feasibility will be dependent
on total power loss and material volume.

Local Field Components

Most present CAD systems employ the vector potential A to represent
magnetic events, so that the determination of any field quantities must
take this potential function as the point of departure. The most direct, and
casily computed, quantity is of course the flux density, given in general by

B =curl A. (12)

In two-dimensional cases where the vector potential is directed entirely
into the plane of solution, only a single vector component appears; A
seems to be a scalar quantity even though it is in reality a one-component
vector. The general form (12) then assumes the special form

B = curl (1.4). (87)

I; being the unit vector in the z direction. In terms of its Cartesian vector
components, the flux density is thus

0A.
By=-—, (88)
ay
04
B, =+ —. (89)
- ox

If required, the corresponding magnetic ficld values are found by first
determining the local value of reluctivity, then multiplying, The reluctivity
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is of course a function of the entire flux density, not merely one com-
ponent,

»=v» (B,,B,), . (90)
so that to find the magnetic field H, determination of both components of
B is necessary. This determination is generally done automatically by
good CAD systems, and the user need not be explicitly aware of it, until

the need arises to push the limits of the system. The field components are
of course given by

34
Hy=—p = 1)
9y
and
a4
Hy=+v» m.M . (92)

Comparable expressions are easily derived for components in other coor-
dinate systems. In point of fact, most CAD work is conveniently done in
either Cartesian or polar coordinates, as a matter of user preference. The
finite element methods commonly used are substantially coordinate-
independent, but users preferences tend to favor polar coordinates for the
analysis of rotating devices, Cartesians for translational motion or sym-
metry.

Where a magnetic scalar potential function € is employed in solution,
the vector quantity directly obtainable is the magnetic field H, not the flux
density, for

H= —grad & (93)

whose components are clearly obtained by forming the partial derivatives

/1 (94)
ax
and
a8
= - —, 95

To obtain the corresponding components of flux density B, H, and H), are
multiplied by the local material permeability. In nonlinear materials, the
permeability is a function of all components of H, as is evident from (90),
so all components of H must be determined to find any component of B.
While in principle the permeability may be a tensor quantity, few current
CAD systems allow for tensor permeabilities to be taken into account
automatically.
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A Recording Head

An example of the need for local field values may be found in the exami-
nation of a magnetic recording head. The specification of a recording
head must first and foremost be stated in terms of performance, that is, in
terms of the quantity and quality of information it is actually capable of
writing onto the recording medium. Secondary specifications may involve
global values such as terminal impedance. The feasibility of a proposed
design, however, is very much bound up with global values, such as the
power loss in the device, and its associated temperature rise.

The primary point of interest in the analysis of a recording head is
presumably determination of the fields and field gradients within the
recording medium. The magnetization of the recording medium requires
that the field gradient be high enough at the writing point, but it must be
considerably lower clsewhere to avoid destroying information already
recorded. Fig. 17 shows an outline drawing of a perpencicular recording
head and the magnetic field produced by it, assuming the recording
medium to be nonmagnetic. Ideally, the analysis should take care of both
nonlinearity and hysteresis effects and might well include a reasonable
model of the magnetic recording process itself. These requirements unfor-
tunately surpass by a wide margin what currently available CAD systems
are capable of doing. However, while awaiting the ultimate in software,

the engincering analyst can still obtain a great deal of vseful data from
only a nonlinear analysis.

Figure 17. A perpendicular magnetic recording head. The recording medium is
assumed to be nonmagnelic; it is backed by a magnetic materia?! (bottom edge of
drawing),
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Similar requirements as to local field behavior arise in the design of
large magnets for use in particle accelerators or nuclear magnetic reso-
nance diagnostic machines. In these latter devices not only are the local
field values important, but an even more crucial evaluative criterlon is the
uniformity of the field. It might be noted, however, that high field unifor-
mity implies that the vector potential is required to vary linearly with
position. This fact in turn implies that a very fine discretization of the air
gap is not needed, at least for a first analysis!

Components in Local Coordinates

In many devices the local field values of importance are not the field or its
components at a specific point, but rather along some track or contour. In
the magnetic recording head example, the fields at specific points are cer-
tainly interesting; but most designers would consider a more global pic-
ture of greater interest and value than mere spot readings. Thus the first,
essentially qualitative, representation of a solution desired by analysts is a
flux plot, as in Fig. 17. But having examined the overall picture and found
it satisfactory, the designer ordinarily wishes to move on to more quantita-
tive data. In the present example, that probably means a curve such as
Fig. 18, showing the perpendicular component of the magnetic field at the
upper surface of the recording medium.

If the'local values of field prove more or less satisfactory on examina-
tion, the designer may well attempt to modify the shape of the head, in
order to improve.the head performance as expressed by the curve in Fig,
18. The next calculation may very likely seek to determine the ampere-
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Figure 18. Vertical component of magnetic field under the recording head, at the
top surface of the recording medium, plotted against longitudinal distance.
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turn requirement of the iron member of the head itself. In other words,
the designer may wish to evaluate the magnetomotive force M, given by

Miyon = H-dl. (96)

fron

The contour of intsgration must follow an inverted U-shaped path, more
or less as in Fig, 17. This path will not in general coincide with coordinate
directions, and it will be necessary to resolve the vector H into com-
ponents tangential to the path (parallel to the direction of the line seg-
ment di) and normal to it. Only the tangential component then enters the
calculation in (96). This situation is similar to the component calculations
encountered in the Maxwell stress expressions, equations (75) and (76),
where the normal and tangential directions refer to the local orientation of
the surface of integration or, in two-dimensional problems, the contour of
integration.

In rotating electric machines, most contours of interest are either circu-
lar, or follow the complicated outline of some machine part. Probably the
most commonly required field component plot in such equipment is the
air gap flux density, for it has served generations of designers as a tradi-
tional working tool and has the immense advantage of familiarity. The
radial component of flux density in particular gives both a qualitative and
quantitative indication of the coupling across the machine air gap and
may also be used in the calculation of the forces exerted on the shaft. The
tangential component contributes to the calculation of the thrust forces,

Where field or potential values are required along a contour, for pur-
poses of display or calculation, the Cartesian vector components can be
resolved to yield tke normal and tangential component values. Two rea-
sonable ways of proceeding may be suggested: contours likely to be
needed may be predefined in the CAD system, or the user may be given
facilities for defining his own. Air-gap fluxes of machines, for example,
are a very common requirement and justify inclusion of circular arcs as
standard contours in general-purpose CAD systems; the same may be said
of straight-line segments. Other, less common, shapes are probably better
catered for by allowing them to be defined as needed.

Local field values to be displayed or further processed may be selected
by location, or by value. Selection by location—choosing values at points
or along contours—has already been discussed at some length. Selection
by value typically implies searching, For example, the designer may
inquire after the highest value of flux density and the place where it
occurs; or, more broadly, he may wish to examine all regions where the
Slux density exceeds 90% of its peak value. Selection by value is often com-
bined with selection by location, as in highest flux density within the
recording medium, or loss density above average value in the left half.

To permit selection by location, interactive CAD systems may include
facilities for the user to identify chosen sections of the problem model.
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These sections may be two-dimensional portions AnoﬂEnH areas) im.:::
the model, such as might be needed in the calculation of the _o.mm in a
tooth; or one-dimensional portions, i.e. contours, m_osm EEQ._ the &m:&:-
tion of the field is required; or zero-dimensional pieces, ic. points, at
which the local value of the field (or its component in a given a:.on:.oa
might be needed. The geometric entities as Ew: as :.5 Em?n?mgnm_
operations required are similar in principle, but different in details in each
case. .

To permit selection by value, control languages for postprocessing need
to include suitable command verbs. This matter will be dealt with in some
detail in connection with the structure of postprocessing programs them-
selves.

Determination of Terminal Voltage

Finding the motionally induced terminal voltage of rotating Em.oE:% is a
design requirement t-aditionally fulfilled by calculating the air-gap nz.x
density. In CAD systems which solve for the vector potential, this
approach is feasible, but usually bad. It does ?.cacnm results, _uE.n_Onw
through tortuous computations what can be achieved simply m.ua quickly,
and with better accuracy, through a calculation based on flux linkages.

The induced motional voltage in a thin electric machine coil of n turns
is easily calculated. Let the coil have one side placed at a particular point
L in the r—@ plane, the other side at a point R. If the axial length of the
machine is Z, then the flux linkages of this coil at any particular moment
are given by

nd =nZ (Ag — AL). (15)

The coil voltage is, as usual, given by Faraday's law,

e=—2(np). (1)

In a rotating machine, the points R and L will move along circular .vm:_m
of fixed radii rg and ry, with their angular positions changing by an incre-
ment df in time dr. Thus, by the chain rule of differentiation,

df d
e=— S5 = (ng). ®7)
The first factor on the right will of course be recognized immediately as
the rotational speed of the machine. . .
Where coils of substantial cross-sectional area, and possibly :o:::_w.o:d
winding density, are employed, the above nqunmmmo: may be generalized
by employing the broader definition (20) of flux linkages. A small current
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i is imagined to flow in the coil, causing a current density J, to exist in it.
Integrating over S, the entire area occupied by the coil, (97) then becomes

a g LAJds

e= — —

a @/ L ©8)

The computational procedure implied by this expression is simple: the
flux linkages are evaluated for two positions of the rotor. They are sub-
tracted and divided by the angular displacement so as to form an approxi-
mation to the rate of change of flux linkages with angle. Multiplication by
the rotational speed then yields the generated voltage directly.

In most practical cases the generated voltage can be found from a sin-
gle field solution. It is not necessary to compute two solutions for two dis-
tinct positions of the rotor, for it usually suffices to leave the rotor and sta-
tor alone but to shift the position of the winding by one slot pitch. An
exception to this general rule occurs when both rotor and stator are slot-
ted, and the air gap is small. The generated voltage then includes a
significant slot ripple component, which will be ignored if the rotor is
effectively rotated by exactly one slot pitch. Recomputation of course
involves extra work. There is consolation, however, in th= fact that the
conventional air-gap flux density method would not exhibit the slot ripple
at all.

The traditional method of computing generated voltage examines the
air-gap flux density, and in effect computes the generated voltage that
would result if the coil were located in the air gap. The accuracy of this
technique is lower than can be expected of direct flux linkage computa-
tion as above, and of course the amount of work is considerably larger,
Unless there is some particular reason to the conirary, the air-gap flux
method is therefore not to be recommended.

Fields in Axisymmetric Problems

Many problems encountered in magnetic devices have some form of axial
symmetry. Solution in cylindrical coordinates actvally produces true
three-dimensional solutions in such cases. For example, the magnetic
bearing and the ballistic actuator discussed above are actually axisym-
metric devices,

When postprocessing operations are carried out on axisymmetric fields,
care must be exercised on two counts. First, the common vector operators
grad, curl, and div have forms which are different from those encountered
in Cartesian coordinates. Secondly, most axisymmetric sdiver programs do
not actually compute the vector potential, but a closely relzted potential-
like function weighted by the radial coordinate r.

Differentiation and integration of vector quantities in cylindrical coordi-
nates are not difficult operations, and their general forms can be found in
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standard books on electromagnetics. The classical mxm&aanﬂo problem
has purely solenoidal corrent densities, with the vector potential A purely
azimuthal, that is, possessing only a single component 4. In this EE.Q.
special situation, the curl operation is simplified, so that the flux density
components are now rlerived as

A
B =2 (99)
az
and
B,=12 4. (100)
r or

The azimuthal component of B, which would have to be derived purely
from r and z directed components of A, does not exist. .
Most CAD systems do not solve for the magnetic vector ﬁﬁ.:o::m_
directly because the axisymmetric Poisson and Laplace equations include
a singulanity at » = 0. The singularity arises from a multiplier of the wQHB
r~! and is removed by modifying the potential by a similar but opposite
multiplier. In the MagNet system, for example, the modified potential

v="20 (101)

is used. The components of B for this case are obtained by direct substitu-
tion into equations (99) and (100), as

B, =—r ﬁ A—CNV
0z

and

FHNQ-_....@|Q. (103)
or

In these expressions, it is interesting to note that r appears as a Bc_:_u:o.n
thus U does not have to vanish along the axis of rotational symmetry in
order for Ay to vanish. That is to say, the modified potential U can cw a
regular function at the axis, which is precisely the reason for mEHo.aanm
it in the first place. The flux density components are regular &mc“. in fact,
at the axis itself, B, is proportional to U, as can be seen readily from
equation (102). . . .

Some older CAD systems solve directly for the vaﬁ:.:m_ A, ignoring the
singularity whenever it can be ignored and dealing with it in an ad hoc
fashion wherever it cannot. In some special-purpose programs which solve
for A directly, the regions modelled are in fact simply mo_.va.ann from
including the axis of symmetry. There also exist 052. quite useful
modified potentials different from U of equation (101). While the several
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ways of regularizing the differential equations all make solution feasible, it
is important to be aware which modified potential is used before attempt-
ing to derive flux densities or any other quantities from it.

In axisymmetric problems, flux lines are not lines of constant A, but

rather lines of constant r4. This fact easily follows from the general rela-
tionship

o= FA-dl. (13)

Consider a closed contour which proceeds radially outward from the axis
of symmetry, then follows a circular arc at » = constant, z = constant for
an angular distance of 6y, and finally returns to the starting point along a
radial path. The flux ¢g contained within this wedge-shaped contour may
be evaluated by reference to (13). Since the vector potential A is every-
where purely azimuthal, no contribution accrues to the integral along the
two radial sides, where A is orthogonal to the distance element dl. Along
the circular arc, A and d! are exactly parallel, so the integral evaluates to
exactly r40y. Thus, in this particular case,

$g =rA 6. (104)

If the circular arc is displaced to some other point in the r-z plane in such
a way as to keep ¢y constant, then the new point must lie on the same
flux line as the old, for if it did not, moving from one point to the other
must have changed the flux linked. Flux lines in an axisymmetric problem
are therefore lines of constant 4, not lines of constant 4, and it is neces-
sary to keep track of which are plotted in any given situation, Further-

more, if the modified potential U of equation (101) is employed, it follows
that

do=r* U 6. (105)

In other words, flux lines are lines of constant r2U, and it is these which
designers commonly wish to inspect. As a corollary, the requirement that
the flux density B remain unchanged in the air gap of a magnet is
equivalent to requiring that U remain constant. The modified potential U,
in other words, is smoother than the vector potential A itself, hence com-
putationally better behaved.

All the foregoing discussions for the calculation of terminal conditions,
mechanical effects, and local values in the x-y plane remain valid in the
axisymmetric case, provided due care is taken to use the correct forms of
the differential operators, as well as the correct potential function.

Linear Time-Varying Problems

Many magnetic devices are initially analyzed on the assumption that the
fields are essentially static, that is, no induced currents flow anywhere. For
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some devices refined analysis is subsequently required to determine the
effect of eddy currents which actually do occur. Still other devices cannot
work at all if no induced currents are allowed to exist. Most CAD systems
therefore permit time-varying as well as static fields to be mamaﬁma..

The postprocessing operations applicable to static field solutions, as
described this far, are for the most part equally valid for time-dependent
problems. However, there are several new quantities that a designer Bmm_.:
require, which only have value in time-varying cases. Some of these will
be reviewed in the following.

Time-Harmonic Analysis

In general, computer software for time-varying problems can be n_..,ammmna
into time-domain and frequency-domain programs. Time-domain pro-
grams work by generating a sequence of solutions, one for each of a series
of time values; frequency-domain programs solve for sinusoidal excita-
tions at one or more fixed frequencies. This distinction may be familiar
from circuit theory, where a corresponding classification of programs is
possible. The time-domain approach is capable of dealing i:r.m&:ﬁ@
excitations applied to nonlinear devices, but its very generality is also its
disadvantage: it generates extremely large data files at the cost of great
quantities of computer time. In essence, it produces a movie film of the
field behavior, one frame per time instant; all the frames need to be com-
puted ‘and stored. The frequency-domain technique is very compact m:.a
cheap, for the volume of data to be stored is just double that of a static
solution, while the computing time required is greater than that for static
solutions, but greater only by a modest amount. It is unfortunately appli-
cable only to linear problems, because it is based on the premise that alf
time-dependent phenomena are sinusoidal, a premise satisfied only by
linear systems. . .

Most present CAD systems make provision for analysis of time-
harmonic phenomena in linear materials, but they do not Eoiam.mm:m:.w
extensive facilities for the general time-varying case. This restriction is
not nearly so draconian as might seem, for many design %a&mnm:o.nm and
many concepts on which system evaluation is based rely on notions &.
impedance, phase delay, and amplitude, notions which are ﬁ:o.zu\ <m:a
only for sinusoidally time-varying phenomena. The present discussion
will therefore be confined to frequency-domain analysis.

As discussed in the chapter The Potential Eguations of Magnetics,
sinusoidally varying fields are conveniently described by combining m.:n
magnetic vector potential A and (sometimes) the electric scalar _H.:o:m_m_
V. The vector potential is determined by solving the complex diffusion
equation

VAt jupgh = —plo (106)

which is obtained from the general time-varying case through replacement
of the time derivative by the phase quadrature operator je . The vector
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potential A is still assumed entirely z directed, but it is now a complex
number rather than a pure real as was the case in static field problems.
Here, as earlier, J, represents the current density that would exist at
extremely low frequencies, i.e., the current distribution that would obtain
if the excitations zll took place so slowly that no induced currents existed
and all convection currents assumed a spatial distribution in accordance
with material resistivities only. Briefly, though not totally accurately, J, is
sometimes referred to as the dc distribution of current density.

Of course, it must not be forgotten that the solution to Equation (106)
really represents two solutions to two problems,

V’Re[A] — wp g Im[A] = — pRe[Jp] (107)

and
vV Im[A] + wp g Re[A) = ~puIm{Jo]. (108)

The point here is that Re[A], the Solution of (107), represents the magnetic
field at that momsnt in the a-c cycle when the real part of the driving
current, Re[Jo], reaches its peak and its imaginary part Im[Jo] vanishes.
This solution is altogether independent of the other solution Im[A], which
represents the field at the moment when the imaginary part Im[Jy]
reaches its peak and Re[Jo] vanishes. At all other times, the real time-
varying vector potential A(f), which might alternatively have been found
by using a time-demain solution, can be determined by superposing suit-
ably weighted components. Its value for any time ¢ is given by

A(r) = Re[A] cosw? + Im[A] sin w1. (109)

By choosing a sequence of time values ¢, say at every 10° of the ac cycle,
and evaluating the potential A(t) at each time instant in the sequence, a
series of “snapshows™ of the field can be generated. The two solutions
Re[A] and Im[A] suffice for this purpose, no other field solution is
required. Often, experienced analysts take the sequence of time values to
lie at 90° intervals; in other words, they plot only Re[A] and Im[A] and do
not bother with intermediate values. This abbreviated approach is suitable
for anyone who has acquired considerable familiarity with time-harmonic
field problems and is therefore capable of performing the required inter-
polation (*how A gets from Re[A] to Im[A]") mentally. Mest engineers are
well advised to generate at least two or three intermediate plots as well, so
as to gain a clearer appreciation of how the flux lines of one plot gradu-
ally merge and split in time to produce the time-quadrature picture,

As time goes on, magnetic flux lines in time-harmonic problems do not
merely puisate, thev shift and twist about in space. The plotting of field
patterns through time is therefore an important tool in learning how mag-
netic devices behave and how to make design improvements in them. As
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suggested above, one good way of . plotting the .mn_% is _o.w_dasnorm
sequence of time “snmapshots”, movie frames as it were, which nm:w e
viewed in succession. Such sequences of snapshots can even be nﬁ.vE_uEan_
into motion pictures. Although actually making a Iotion picture is a very
demanding technical task best turned over to ?o_..mmm_osm_.m, the motion
picture can sometimes communicate in seconds things which cannot be
got across in minutes or hours of explanation. It is therefore of potentially
very great value in management Enmn:smo.:m or mm_.nw. work. The device
designer is well advised to keep in mind, while examining ma.E plots, that
novel devices or even design changes will need to be oxw_mion at some
time motion pictures can communicate some things very effectively!

Current Densities

A quantity of frequent interest in time-harmonic fields is the density of
induced (eddy) currents, and the density of total currents that results, In
classical terminology, eddy currents are pgenerally E:_GEBOA to be
currents induced in conductive material which would not otherwise carry
any current; the term skin effect is used to denote current m.onm:w
distribution in material that carries both excitation oE.S.E Jo in the
above) and eddy currents. Here the term induced currents is nEEowa.a to
denote cutrents that arise from time-varying magnetic fields in both situa-

tions. o .
The induced currents that result from time variations in the magnetic
field can always be obtained by combining Ohm’s law,

J=gE, (110)
with the general rule for electric fields

m..HIlm%[mEa V. (111)

Combining, and replacing the time derivative by the complex operator
valid in the time-harmonic case,

J=—joug A—ggrad V. (112)

Here J is the total current density, attributable to all the an:m._im:._m that
make current flow. However, the two terms on the right-hand side may be
identified separately, as the dc current distribution

Jo=—ggrad V (113)
and the induced current density
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It should be noted that the general equation (112) relies only on the
definition of A as a vector whose curl produces the flux density B; it is
therefore quite independent of the choice of gauge.

Considerable interest attaches to plotting the eddy current densities that
occur in conductive parts of various magnetic devices. In the two-
dimensional cases discussed here for the most part, A is z directed or (in
axisymmetric problems) ¢ directed, so the induced current density J; must
therefore be z directed or  directed also. Plotting is therefore not a fun-
damental problem—there is still only one component of J for a single-
component A—but it is slightly more complicated because the form of
display is less well established conventionally. While it is perfectly possi-
ble to draw contours of equal magnitude of current density, such lines do
not always convey the desired information. A better choice, in CAD sys-
tems which permit it, is to produce a zone plot. Tn such a plot, the space to
be plotted is divided into a set of zones, so that one zone includes all that
portion of space in which the current density lies between its maximum
value and (say) 90% of maximum; another zone in which the current den-
sity lies between 90% and 80% of maximum, and so on down to zero.
Plotting is then done by filling in the highest-density zone with a very
bright color, the next zone with a less bright color, .. .,and the zero-
density zone with a dark color. People generally find it easy to associate
bright colors with high densities, dark colors with low ones, and can there-
fore interpret zone plots rather easily,

Equiphase plots of current density values can sometimes be quite
Hlluminating, These will be considered more fully later, in connection with

equiphase plots of cther phasor quantities such as fields and the Poynting
vector.

Power Flow and the Poynting Vector

The Poynting vector is a quantity generaily associated with the flow of
energy in electromagnetic devices and used to measure power transferred,
It is established by considering the stored energy and the power dissipated
in a device and relating them through the law of energy conservation.

Let ¥, be the magnetically stored energy in a closed region of space
U. If the region contains magnetically linear materials, as it must if time-
harmonic analysis is to be useful, then this energy is given by

I
W ”Whﬂ.: au, (115)

while the electrically stored energy W, in the same region is

I
We = = ‘D dU.
2 .h__m D 4U (116)




216 Postprocessing Operations in CAD

The power P, dissipated in the region U is similarly given by
P.= .P E-JdU. (117)

Now the law of conservation of energy clearly requires that the input
power P into the region U must equal the dissipation plus the rate of
increase of stored energy. That is,

mn5+%§a+§v. (118)

Substituting the explicit expressions for P,, W, and W, from above, the
input power turns out to be

P=f E- w|w+._ av+ f H-

aB
ar

du. (119)

But the factor in parentheses, and the time derivative of B, are readily
recognized as right members of the Maxwell curl equations. Substituting,
there finally results

P={ E-curlHdU~ { He-curlE aU. (120)
4 7]

A well-known vector identity permits rewriting the latter in terms of the
cross-product of the vectors E and H as !

P= H: div (E X H) dU, (121

which may be converted, making use of the divergence theorem, into the
closed surface integral over the bounding surface 3U of the region U:

P= %q (E X H) -dS. (122)

The vector in parentheses is usually known as Poynting’s vector and
denoted by S,

S=E X H. (123)

The Poynting vector is conventionally thought to measure local power
flow, much as W, and W,, are held to measure local stored energy densi-
ties. It is often plotted and viewed as a m:m::ﬁ E&nm%n.&. the
performance of a device, especially in so far as portions of a device may
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be concerned. If some part of a device hardly matters in power flow or
energy transformation, should it be there at ali?

The Poynling vector may be written in terms of the vector potential A,
so0 as to facilitate its evaluation in CAD systems. Substituting from (12)
and (111) for the magnetic and electric quantities respectively, equation
(123) assumes the form

S=—jla/p) A X curl A —(1/p) grad V X curl A, (124)

which only involves the potentials normally available from field solutions.

The Poynting vector is generally a two-component quantity even in
problems where oaly a single component of vector potential exists. It is
difficult to plot in a graphic display, because there is no conventional form
of representation for time-varying multicomponent vectors. One fashion
in which the Poynting vector, and indeed other planar vectors such as B
or H, can be displayed is in two independent plots, shewing phase and
magnitude.

Equal-magnitude plots of vector quantities are often best arranged as
zone plots, while equiphase contours are best left as line contours. The
reasons are almost solely those of ease in visual perception and interpreta-
tion. Energy transport (power flow) in a time-harmonic system is essen-
tially a wave phenomenon: a packet of energy is sent off from its source
and allowed to propagate toward its eventual sink, possibly attenuating
through dissipation as it travels. In one period, any point in the region U
executes one full cycle of time events. Conversely, the wave or energy
packet propagates during one period precisely as far as it is necessary to
go to find another space point where clectrical events are 360° lagging in
phase. In other werds, energy travels in one period from one equiphase
contour to the next one 360" removed. Plotting the equiphase contours
thus makes evident the flow of energy through the device, and thereby

exhibits to the experienced designer whether and how device performance
might be improved.

Exploiting Superposition

In time-harmonic problems the assumption of magnetic linearity is essen-
tial, for in its absence the notions of sinusoidal phasor analysis become
invalid. However, if linearity is assumed, then superposition may be used,
permitting simplification of many problems,

Where a magnetically linear device has altogether N distinct excitation
ports—windings, conductors, or other current-carrying en:ities—at most a
total of N distinct field solutions is required at any one frequency to cover
all possible cases. To choose a specific example, consider a transformer
with N windings, in which eddy current losses may occur in the lamina-
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tions or in other conductive materials. Now any possible excitation state
of this transformer may be described by specifying all its winding
currents, all of which jointly may be viewed as the driving current density
Jo of equation (106). If Joy is the current density distribution caused by a
wnit current in winding k, then any set of winding currents
{i, k=1,..., N} will cause the excitation current distribution in the
transformer to have the value

N

Jo= 32 i Jor(x,p). (125)
k=1

Now a solution may be sought to equation (106) in the presence of only
one of the winding currents. That is to say, all but one of the i may be
st to zero, that one being given unity value. Equation (106) then assumes
the form

VA4 jopg A= —p Jo. (126}

In the presence of many different currents i, the solutions Ay, each valid
for a single unit current, superpose. For the combined current J, of (125),
the relevant differential equation is thus (106), and its solution is immedi-
ately obtained as

N
A= iy Ar. (127)
k=1

There is never any need to solve more than N field problems, for once the
N basis solutions of (126) have been generated, any and all other solutions
can be obtained as in (127). It should be noted that any eddy currents
which may exist in conductive parts of the device are included in the solu-
tions of (126), and therefore also of (127).

When solutions are constructed by superposition, it is worth noting that
the solver phase of the CAD system may at times not be used to produce
any actual solution at all. It may be employed solely as a generator of
basis solutions, with the composite solutions, as in equation (127), created
by a postprocessing program. Considerable computation time may be
saved by this approach since the fastest available solvers operate in
approximately O(N?) time whereas scaling and adding operations occur in
O(N) time.

Electrostatic Calculations

The operations and solution systems described eatlier in this book have
all referred to magnetic systems. However, many problems of an electro-
Static nature are also described by either the Laplace or Poisson equation.
Such electric field problems can be solved by using magnetostatic pack-
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ages provided the user can determine the appropriate equivalences. To
illustrate, a simple capacitor with mixed dielectrics may be considered.

A Parallel-Plate Capacitor

A parallel-plate capacitor, imagined to extend infinitely into the paper, is
illustrated in Fig. 19. Initially, the model is defined with a dielectric of air
and only one of the possible symmetries in the problem is used. The
equation to be solved is a scalar Laplace equation in which the scalar
potential is the voltage in the system. The electric field E is related to the
electric scalar potential by

E=—grad V, (128)

a special case of (111), with no time variations.
When an equivalence is drawn with magnetostatics problems, the scalar
potential V' in the electrostatic model is substituted for the vector

potential A of magnetostatics. The magnetostatic Poisson equation for
nonlinear materials may be written

curl » curl A = J, (129)

whose mixed-dielectric electrostatic equivalent is
div e grad V= —p, (130)

In a two-dimensional Cartesian coordinate system these two equations
reduce to identical form, when written out in detail. Hence an equivalence
may be drawn between the current and charge densities, the vector and
scalar potentials, as well as the material properties (reluctivity and permit-
tivity). The latter equivalence is obvious but must be treated with caution
if modelling of material property curves is required, for most magnetic
material modelling programs allow permeability, rather than reluctivity, to
be specified by the user. That is, the user needs to specify an E against D
curve.

Once the analogous quantities have been identified, solution of the elec-
trostatic problem proceeds exactly as if the problem were magnetostatic.

air

v///////////////
)))

dielectric 2
Figure 19. A simple parzllel-plate capacitor.
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For the capacitor of Fig. 19, an equipotential plot is shown in Fig. 20.
Both dielectric slabs are assumed to be air in this case. The analogy with
magnetics problems is immediately apparent on inspection of the solution.
Although the finite element subdivision employed for the solution is not
explicitly shown, it can be seen from Fig. 20 that the elements are gen-
erally quite large. An analogous solution, for the same geometric shapes
but two different dielectrics, appears in Fig, 21. The lower portion of the
dielectric space in this case has a relative permittivity of 20. The electric
field can be seen to be considerably lower in the dielectric than it is in air.

The capacitance of multi-dielectric systems is probably the quantity of
major interest, analogously to inductance in magnetics problems. It may
be calculated by using substantially similar techniques, as will now be dis-
cussed in some detail.

Determination of Capacitance

The capacitance of an electrostatic device may be determined in either of
two ways, which ars analogous to the ways of computing inductance in

L

p—— s

— I\

Figure 20. Electric field of the capacitor, with all dielectric material having the
permittivity of air.

Electrostatic Calculations 221

magnetics problems. One approach requires a calculation of the stored
energy, the other a determination of the total electric flux. The capaci-
tance C may be defined in two corresponding ways, either in terms of the
electrically stored energy W,

W= w Cv3, (131)

or as the ratio of charge to potential difference V; between the electrodes,
c=-1. 132

7 (132

The total electric flux is, by definition, equal to the total charge ¢. To

determine it, one or the other electrode may be encased in a closed sur-
face S, to which Gauss’ law is then applied:

g= .ﬁc.nm. (133)

L

I
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L
A0

rd

Figure 21. Electric field of the capacitor with mixed dielectrics,
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The capacitance C is then found by combining (132) and (133) to yield

.@. e grad V-dS
C=_"5 , (134)
Vo ’

where (128) has been employed to eliminate the flux density and to sub-
stitute the computed quantity V. It should be noted that any surface S
which completely encloses the electrode is equivalent to any other in prin-
ciple, since Gauss’ law is equally applicable in all cases. In two dimen-
sions, the surface integral of course reduces to a closed contour integral in
the x-p plane.

Finding the capacitance via the energy route involves use of equation
(116} to determine the stored electric energy, then equation (131) to deter-
mine C. Combining the two, there is obtained

QI . ~WM

Because finite element methods generally are energy-based methods, (135)
usually provides the more accurate basis for calculation.

To illustrate, the capacitance was determined for 2 capacitor having a
plate width of 0.1 m and a plate separation of 0.01 m. The gap is half
filled with air and half filled with a dielectric of given relative permittivity,
taken as either unity (to correspond with Fig. 20) or 20. Both an energy
calculation and a contour integration were used. In the latter case, two
contours were chosen, both the full width of the model; the first passed
through the upper half of the air gap, the second through the lower half,
Thus, for the dielectric model, the second contour passed through the
diclectric layer. Values for all three calculations are given in Table 5.
These results may, of course, be checked roughly by the usual simple for-
mula for a parallel-plate capacitor, provided that the fringing at edges is
neglected. This calculation gives a value of 88.5 pF for the air capacitance
and 168.6 pF when the dielectric is present. The actual values, when fring-
ing is considered, should of course be higher,

Characteristic Impedance and Phase Velocity

A two-dimensional problem of some interest is that of a parallel-strip
transmission line similar to the mixed-dielectric capacitor described above,

Table 5. Capacitance (pF) of parallel-plate capacitor

Contour integral

Stored

Permittivity 1 2 energy
1.0 9934 98381 11094
200 181.95 19434 196.12
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If a quasi-TEM wave is assumed to propagate along such a line, the wave
impedance and phase velocity may be determined directly from the two
capacitance values computed above. The characteristic impedance of any
transmission line is given by

7
0 (136)

Zy

while its phase velocity, for quasi-TEM waves, is

1
= . 137
V= G (137)

When the dielectric material is ajr throughout, the phase velocity must be
equal to the velocity ¢ of light. If Cy is the capacitance in that case, then

_ |
c= .m,hﬁ.|0v_m. (138)

and hence the line inductance is
L=, (139)

Since both dielectrics have the permeability of free space, the inductance
value is unaffected by the presence of the dielectric, Thus, the characteris-
tic impedance of (136) becomes

1

Zy = 140
" TGO (140)
and the phase velocity
G
v= (141)
C?¢

For the device described above the characteristic impedance is then 22.6
ohms,

Effects of Numerical Approximations

Finite element metkods form the mathematical basis for nearly all current
general-purpose CAD systems intended for magnetics problems. In post-
processing, the various mathematical operations—differentiation, integra-
tion, multiplication, and whatever else may be required—cannot be per-
formed on the exact fields themselves, but must use the finite element
approximations computed by solver programs instead. The precision of
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results, and even their interpretation, may be affected by the numerical
approximations involved, and some brief consideration of the nature of
these approximations may not be out of place here.

Finite Element Approximations

Finite element methods invariably produce polynomial approximations to
field solutions. Over each finite element, the potential field is computed as
a polynomial expression in the coordinate quantities, whose degree is usu-
ally fairly low. The approximations are so constructed that the potential
solution is continuous everywhere; but its derivatives are not continuous
across the element edges. If the potential is imagined to describe a sur-
face above the x-y plane, the surface is described by a polynomial over
each of a set of patches. At the patch edges, the pieces of surface join so
there are no “holes”, but the joints are not necessarily smooth; there may
be creases. Thus, if elements of order N are used, the potential is given by
polynomials of order N within each element, but it is € continuous glo-
bally. Arithmetic and analytic operations in postprocessing operate
directly on the polynomials, and the operations may on occasion trespass
on the limits of the possible.

One immediate result of piecewise continuity is that the flux density
distribution along 2 specified contour through a problem model will not
be smooth. The flux density plots shown at various points throughout this
book make this phenomenon quite evident. It is of course perfectly possi-
ble to beautify the results by polynomial (or other) interpolative smooth-
ing. In general, the plots shown in this book have not been subjected to
any cosmetic improvement, in the belief that raggedness in results, should
it occur, conveys information about the reliability of results, and it would
be a mistake to destroy this additional information.

The postprocessing operations outlined in this chapter include a broad
variety of mathematical operations. Not all of these are permissible on
piccewise polynomial functions in all cases; and not all produce piecewise
polynomial results from piecewise polynomial arguments. At least the fol-
lowing elementary mathematical operations are included in the list of
requirements:

Arithmetic: addition and subtraction of potential or vector ficlds, multipli-
cation of fields by scalars.

Arithmetic: multiplication and division of potential (scalar) field quanti-
ties.

Vector Operations: cross and dot products of vector fields.

#unctional Operations: absolute values, square roots, trigonometric func-
tions, and other general functions of potential fields.

Differential Calculus: gradients of potential fields; curls and divergences of
vector fields.

Integral Calculus: line and surface integrals over defined geometric
regions.
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These will be briefly examined in the following, with a view particularly
to the accuracy to be expected in practical cases.

Arithmetic Operations

The elementary arithmetic operations fortunately do not affect the nature
of finite element approximations. When piecewise polynomial functions of
degree N or lower are added, the result is always a field of piecewise poly-
nomials of similar degree. Thus the elementary arithmatic operations—
addition, subtraction, and multiplication by a scalar—may be performed
without effect on the nature of numerical approximation. As always, how-
ever, a cautionary note must be sounded regarding subtraction: small
differences of large numbers may exhibit round-off error accumulation to
a considerable extent. Wherever possible, it is thus preferzble to formulate
problems in such a way as to avoid numerical formation of small
differences.

Multiplication of fields invariably produces results which are piecewise
polynomial, but not of the same degree as the argumentis. For example,
multiplication of a first-degree polynomial field by itself, thus creating, say
v3(x,y) from v(x,y), produces a piecewise polynomial field of degree 2. No
existing CAD system can handle the growth in polyncmial order that
results from sequences of repeated multiplications, and the only practical
approach is to approximate the high-order polynomials by others of lower
order.

Division of piecewise polynomial fields can only yield piecewise polyno-
mials in rare cases. In general, the result is a piccewise rational fraction,
continuous but not necessarily bounded. Again, no CAD system is capa-
ble of handling such functions, and the usual technique is to approximate
them by piecewise polynomials in a least-squares sense. It is clear that
some of the fundamental properties of the functions being approximated
might be lost in the process. For example, the quotient ulx, )/ v(x,p) will
be unbounded if v(x,p) vanishes anywhere in the region of interest; but an
approximation to the quotient cannot be unbounded if it is to be expressi-
ble in terms of polynomials. The division operation therefore requires par-
ticular caution.

Operations on vector quantitics are not inherently different from opera-
tions on scalars. The inner product of two vector fields, after all, is expres-
sible as the combination of products of scalars, the vector components;
thus, any problems likely to arise with scalar fields are likely to recur
when vectors are considered. However, it must be noted that troubles aris-
ing from the division operation are entirely absent, since division of vec-
tors is undefined.

Differentiation and Integration

Finite element methods produce piecewise polynomial approximations
continuous in function value, but not necessarily continuous in any




