

HOW REDOX POTENTIALS ARE MEASURED

One beaker (*left*) contains substance A, with an equimolar mixture of the reduced ($A_{reduced}$) and oxidized ($A_{oxidized}$) members of its redox pair. The other beaker contains the hydrogen reference standard ($2H^+ + 2e^- \rightleftharpoons H_2$), whose redox potential is arbitrarily assigned as zero by international agreement. (A salt bridge formed from a concentrated KCI solution allows the ions K⁺ and Cl⁻ to move between the two beakers, as required to neutralize the charges in each beaker when electrons flow between them.) The metal wire (*red*) provides a resistance-free path for electrons, and a voltmeter then measures the redox potential of substance A. If electrons flow from $A_{reduced}$ to H^T, as indicated here, the redox pair formed by substance A is said to have a negative redox potential. If they instead flow from H₂ to $A_{oxidized}$, the redox pair is said to have a positive redox potential.

SOME STANDARD REDOX POTENTIALS AT pH7

By convention, the redox potential for a redox pair is designated *E*. For the standard state, with all reactants at a concentration of 1 M, including H⁺, one can determine a standard redox potential, designated E_0 . Since biological reactions occur at pH 7, biologists use a different standard state in which $A_{reduced} = A_{oxidized}$ and $H^+ = 10^{-7}$ M. This standard redox potential is designated E_0 . A few examples of special relevance to oxidative phosphorylation are given here.

redox reactions	redox potential E' ₀
$NADH \rightleftharpoons NAD^+ + H^+ + 2e^-$	–320 mV
$\begin{array}{c} reduced \\ ubiquinone \end{array} \rightleftharpoons \begin{array}{c} oxidized \\ ubiquinone \end{array} + 2H^+ + 2e^- \end{array}$	+30 mV
$\begin{array}{rcl} \mbox{reduced} & \rightleftharpoons & \mbox{oxidized} \\ \mbox{cytochrome } c & \rightleftharpoons & \mbox{cytochrome } c & + e^- \end{array}$	+230 mV
$H_2 O \rightleftharpoons \frac{1}{2}O_2 + 2H^+ + 2e^-$	+820 mV

CALCULATION OF ΔG° FROM REDOX POTENTIALS

 $\Delta G^{\circ} = -n(0.023) \Delta E'_0$, where *n* is the number of electrons transferred across a redox potential change of $\Delta E'_0$ millivolts (mV)

Example: The transfer of one electron from NADH to ubiquinone has a favorable ΔG° of -8.0 kcal/mole (-1.9 kJ/mole), whereas the transfer of one electron from ubiquinone to oxygen has an even more favorable ΔG° of -18.2 kcal/mole (-4.35 kJ/mole). The ΔG° value for the transfer of one electron from NADH to oxygen is the sum of these two values, -26.2 kcal/mole.

THE EFFECT OF CONCENTRATION CHANGES

The actual free-energy change for a reaction, ΔG , depends on the concentration of the reactants and generally is different from the standard free-energy change, ΔG° . The standard redox potentials are for a 1:1 mixture of the redox pair. For example, the standard redox potential of -320 mV is for a 1:1 mixture of NADH and NAD⁺. But when there is an excess of NADH over NAD⁺, electron transfer from NADH to an electron acceptor becomes more favorable. This is reflected by a more negative redox potential and a more negative ΔG for electron transfer.

