
Simulation with R

These notes are not a complete introduction to R. They are designed to give you enough information
that in conjuction with Rs built in help you can complete the exercises on sampling distribtuions,
maximum likelihood and bootstrapping.

Finding what you need

The hardest part about learning a new program is trying to find functions you know exist but you
don’t know what they are called. The easiest way to find what you need in R is with,

help.search('keyword')

R also has a HTML version of the help pages that you can access using help.start(). If you have
never used R before this is a good place to start - there is a link to an introductory manual.

If you need more information on any of the functions talked about in these notes, try

?topic

or

help('topic')

This will bring up the relevent help page and hopefully answer any questions.

Simulating random variables

R contains by default many distributions. For example, ?Normal tells us about four functions relating
to the normal distribution,

� pnorm - the distribution function

� rnorm - a function to generate normal random variates

� qnorm - the quantile function

� dnorm - the density function

All of these functions can take arguments to specify the mean and variance of the distribution. In
general, the first letter of the function determines what information about the distribution we want
and then the distribution nickname follows directly. For example, if we want the density function
for the Poisson distribution we use dpois. Some useful distributions are:

For more info Nickname Distribution
?Normal norm the normal distribution
?Possion pois the poisson distribution
?Binomial binom the binomial distribution
?Geometric geom the geometric distribution
?TDist t the Students t distibution
?FDist f the F distribution
?Chisquare chisq the Chi-Squared Distribution

Remember to check the functions define the distribution the way you expect.
Often we want to draw random numbers but want our results to replicable. The set.seed

command lets us set the starting point for the random number generation and if we use the same
seed we will always get the same random numbers (note: sometimes this is not what you want).

1

Example

> rnorm(10)

[1] -0.30125091 -0.23552783 -0.61879922 0.23110361 1.31541443 0.41800526
[7] 0.39434739 1.53440933 -0.37052444 0.03481197

> rnorm(10)

[1] -1.25067676 -1.60956084 0.29984995 -0.58450931 -1.03388333 1.40477092
[7] -0.04511211 1.21148672 0.15405686 -0.42036729

> set.seed(18749)

> rnorm(10)

[1] -0.54555908 1.22938955 2.58249311 1.57057115 -0.03186376 0.32983807
[7] -0.44899542 0.56599635 -0.23902963 0.79350037

> set.seed(18749)

> rnorm(10)

[1] -0.54555908 1.22938955 2.58249311 1.57057115 -0.03186376 0.32983807
[7] -0.44899542 0.56599635 -0.23902963 0.79350037

It is often useful to be able to randomly draw from a set of numbers we have already (for example
when bootstrapping). This is done using the function sample. We supply sample with a vector of
numbers to draw from. Without any other arguments sample will randomly permute the vector. If
in addition we supply an argument size, sample will randomly draw size numbers from our vector
without replacement. There is also an argument replace that specifies whether drawing should be
with replacement (by defualt without replacement). The argument prob can be used to specify a
probability distribution other than uniform with which to draw the numbers.

Example

> sample(1:10)

[1] 10 7 8 9 3 2 6 1 4 5

> sample(1:10, size = 5)

[1] 5 8 6 1 10

> sample(1:10, size = 15, replace = TRUE)

[1] 9 5 1 4 5 10 1 2 1 8 1 2 7 5 10

Basic functions

Being a statistical package R has plenty of built in functions for preforming basic statistical opera-
tions. Some are given below and you can probably guess many others.

2

Example

> x <- rnorm(20, mean = 10, sd = 20)

> mean(x)

[1] 8.144194

> sd(x)

[1] 17.36403

> sqrt(var(x))

[1] 17.36403

> median(x)

[1] 8.448636

> quantile(x, probs = c(0.05, 0.95))

5% 95%
-18.35355 31.73562

> summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-18.630 -6.728 8.449 8.144 25.220 36.880

There are also some basic mathemathical functions that will be useful.

> y <- 1:20

> length(y)

[1] 20

> max(y)

[1] 20

> min(y)

[1] 1

> log(y)

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379 1.7917595 1.9459101
[8] 2.0794415 2.1972246 2.3025851 2.3978953 2.4849066 2.5649494 2.6390573
[15] 2.7080502 2.7725887 2.8332133 2.8903718 2.9444390 2.9957323

> sum(y)

[1] 210

> prod(y)

[1] 2.432902e+18

3

Plots

There are lots of ways to create plots in R. Functions like hist, boxplot and qqnorm produce
standard statistical plots given some data. plot can be adjusted to plot a lot of different types of
plot (and there are often defaults for different R objects, for example try plot(log)). There are also
a number of functions that will add things to a plot: points, lines, text. The most useful one for
the exercises is abline which will add a straight line to a plot.

> z <- rnorm(100)

> s <- 2 * z + 4 + rnorm(100)

> par(mfrow = c(2, 2))

> hist(z)

> plot(s, z)

> qqnorm(z)

> qqline(z)

> curve(log(x), from = 0, to = 10)

> abline(v = 4, col = "red", lty = "dashed")

Histogram of z

z

F
re

qu
en

cy

−2 −1 0 1 2

0
5

10
15

20

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

−
2

−
1

0
1

s

z

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

s

0 2 4 6 8 10

−
2

−
1

0
1

2

x

lo
g(

x)

4

Optimizing functions

Most of the functions in R for optimization are minimizers. You generally have to rewrite your
problem so that it is one of minimization. For example, to maximise a likelihood you minimize
the negative likelihood. Or, to find a root of a function you could minimize its square. There are
many functions that will do this: nlm, optim, optimize, nlminb and constrOptim. My favourite is
nlminb because it handles both one parameter and multiparameter problems and it is easy to place
constraints on the parameters. At the very least you need to give the function a place to start and
a function to minimize.

Example - Maximum Likelihood

Imagine we have 20 observations from an exponential distribution with unknown parameter λ (we’ll
simulate this data). We want to find the maximum likelihood estimate for λ We know the density
for an exponential distribution is

f(x|λ) = λe−λx x ≥ 0.

We can write the log likelihood as,

l(λ) =
20∑

i=1

(log λ− λxi)

= n log λ− λ
20∑

i=1

xi

So in R we want to minimize the negative of this function,

> x <- rexp(20, rate = 4)

> n <- length(x)

> nllhood = function(lambda) {

+ -1 * (n * log(lambda) - lambda * sum(x))

+ }

> fit <- nlminb(6, nllhood)

> fit

$par
[1] 3.491674

$objective
[1] -5.007625

$convergence
[1] 0

$message
[1] "relative convergence (4)"

$iterations
[1] 6

$evaluations

5

function gradient
8 9

> fit$par

[1] 3.491674

apply

apply is an incredibly useful function when you are making the same calculation repeatedly over
the columns or rows of an object. It takes three arguments. The first the object you wish to apply
the function to, the second either 1 or 2 depending on whether you are working across the rows or
down the columns, and the third the function you wish to apply.

Example

> x <- matrix(rep(1:5, 5), ncol = 5)

> x

[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 2 2 2 2 2
[3,] 3 3 3 3 3
[4,] 4 4 4 4 4
[5,] 5 5 5 5 5

> apply(x, 1, mean)

[1] 1 2 3 4 5

> apply(x, 2, mean)

[1] 3 3 3 3 3

> apply(x, 2, function(y) c(mean(y), sd(y)))

[,1] [,2] [,3] [,4] [,5]
[1,] 3.000000 3.000000 3.000000 3.000000 3.000000
[2,] 1.581139 1.581139 1.581139 1.581139 1.581139

Also look at lapply, sapply, tapply and mapply.

Reading in data

> p.data <- read.table("http://www.stat.berkeley.edu/~wickham/poisson.txt")

> head(p.data)

V1
1 4
2 2
3 4
4 4
5 11
6 8

6

