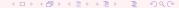
Estatística Matemática

Alexandre Nicolella

Departamento de Economia Universidade de São Paulo, Ribeirão Preto

2011



Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência

Introdução

Tipos de modelos para estudar fenômenos cotidianos

- Determinísticos
- Probabilísticos

Um modelo simplifica o mundo

 $Des = \alpha + \beta_1 horasestudo + \beta_2 qualidade + \beta_3 escpais + \beta_4 raça + \varepsilon$

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência

Introdução

Tipos de modelos para estudar fenômenos cotidianos

- Determinísticos
- Probabilísticos

Um modelo simplifica o mundo

Y = C + I + G

 Probabilísticos - o experimento completamente o resultado,

comportamento probabilistico

 $Des = \alpha + \beta_1 horasestudo + \beta_2 qualidade + \beta_3 escepais + \beta_4 raça + \varepsilon$

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Introdução

Tipos de modelos para estudar fenômenos cotidianos

- Determinísticos
- Probabilísticos

Um modelo simplifica o mundo

Y = C + I + G

completamente o reco

Dec — o | B. haracectuda | Baqualid

 $ade + \beta_3 escpais + \beta_4 raça + \beta_5 raça +$

Introdução

Tipos de modelos para estudar fenômenos cotidianos

- Determinísticos
- Probabilísticos

Um modelo simplifica o mundo

- Deterministicos o experimento determina o resultado ex:
 Y C + I + C
- Probabilísticos o experimento não determina completamente o resultado, determina apenas o comportamento probabilístico

$$Des = \alpha + \beta_1 horasestudo + \beta_2 qualidade + \beta_3 escepais + \beta_4 raça + \varepsilon$$

Introdução

Tipos de modelos para estudar fenômenos cotidianos

- Determinísticos
- Probabilísticos

Um modelo simplifica o mundo

• Deterministicos - o experimento determina o resultado ex:

$$Y = C + I + G$$

 Probabilísticos - o experimento não determina completamente o resultado, determina apenas o comportamento probabilístico

$$Des = \alpha + \beta_1 horasestudo + \beta_2 qualidade + \beta_3 escepais + \beta_4 raça + \varepsilon$$

Introdução

Tipos de modelos para estudar fenômenos cotidianos

- Determinísticos
- Probabilísticos

Um modelo simplifica o mundo

- Deterministicos o experimento determina o resultado ex: Y = C + I + G
- Probabilísticos o experimento não determina completamente o resultado, determina apenas o comportamento probabilístico

$$Des = \alpha + \beta_1 horasestudo + \beta_2 qualidade + \beta_3 escepais + \beta_4 raça + \varepsilon$$

Introdução à Teoria dos Conjuntos Probabilidade Probabilidade Condicional e Independência

Conjuntos

Conjunto: Coleção de objetos, ex.: A = 1, 2, 3, 4; $B = x | 0 \le x \le 1$

Conjuntos

Conjunto: Coleção de objetos, ex.: A = 1, 2, 3, 4; $B = x | 0 \le x \le 1$

- Elementos de A: São os objetos que formam o conjunto. Assim, $a \in A$, quer dizer que a é elemento de A
- Conjunto Universo U: Conjunto de todos os objetos que estejam sendo estudados, U
- Onjunto Vazio : Conjunto que não contém elementos,
- **Subconjunto**: Se ser elemento de A implica em ser elemento de B, $A \subset B$, A é subconjunto de B
- Complemento: A^c é conjunto constituído por todos os elementos que não estão em A, mas esteiam em U

Introdução à Teoria dos Conjuntos
Alguns Conceitos Importantes
Probabilidade
Espaço Finito
Probabilidade Condicional e Independência

Conjuntos

Conjunto: Coleção de objetos, ex.: A = 1, 2, 3, 4; $B = x | 0 \le x \le 1$

- Elementos de A: São os objetos que formam o conjunto. Assim, $a \in A$, quer dizer que a é elemento de A
- Conjunto Universo U: Conjunto de todos os objetos que estejam sendo estudados, U
- Onjunto Vazio : Conjunto que não contém elementos,
- ③ Subconjunto: Se ser elemento de A implica em ser elemento de B, $A \subset B$, A é subconjunto de B
- Complemento: A^c é conjunto constituído por todos os elementos que não estão em A, mas estejam em U

Conjuntos

Conjunto: Coleção de objetos, ex.: A = 1, 2, 3, 4; $B = x | 0 \le x \le 1$

- Elementos de A: São os objetos que formam o conjunto. Assim, $a \in A$, quer dizer que a é elemento de A
- 2 <u>Conjunto Universo U:</u> Conjunto de todos os objetos que estejam sendo estudados, U
- ③ <u>Subconjunto</u>: Se ser elemento de A implica em ser elemento de B, $A \subset B$, A é subconjunto de B
- <u>Complemento</u>: A^c é conjunto constituído por todos os elementos que não estão em A, mas estejam em U

Conjuntos

Conjunto: Coleção de objetos, ex.: A = 1, 2, 3, 4; $B = x | 0 \le x \le 1$

- Elementos de A: São os objetos que formam o conjunto. Assim, $a \in A$, quer dizer que a é elemento de A
- <u>Conjunto Universo U:</u> Conjunto de todos os objetos que estejam sendo estudados, U
- **③** Subconjunto: Se ser elemento de A implica em ser elemento de B, $A \subset B$, A é subconjunto de B
- Complemento: A^c é conjunto constituído por todos os elementos que não estão em A, mas estejam em U

Conjuntos

Conjunto: Coleção de objetos, ex.: A = 1, 2, 3, 4; $B = x | 0 \le x \le 1$

- **1** <u>Elementos de A:</u> São os objetos que formam o conjunto. Assim, $a \in A$, quer dizer que a é elemento de A
- 2 <u>Conjunto Universo U:</u> Conjunto de todos os objetos que estejam sendo estudados, U
- **③** Subconjunto: Se ser elemento de A implica em ser elemento de B, $A \subset B$, A é subconjunto de B
- Complemento: A^c é conjunto constituído por todos os elementos que não estão em A, mas estejam em U

Conjuntos

Propriedades do Conjunto vazio e Universo

- ① $\emptyset \subset A$ para qualquer A
- ② A, considerado na composição de U, tem-se $A \subset U$

Sendo C a união entre A e B, tem-se:

$$C = \{x | x \in A \text{ ou } x \in B\}$$
$$C = A \cup B$$

Sendo D a interseção entre A e B, tem-se:

$$D = \{x | x \in A \in x \in B\}$$
$$D = A \cap B$$

Diagrama de Venn

Conjuntos

Propriedades do Conjunto vazio e Universo

- $\emptyset \subset A$ para qualquer A
- ② A, considerado na composição de U, tem-se $A \subset U$

Sendo C a união entre A e B, tem-se:

$$C = \{x | x \in A \text{ ou } x \in B\}$$
$$C = A \cup B$$

Sendo D a interseção entre A e B, tem-se:

$$D = \{x | x \in A \in x \in B\}$$
$$D = A \cap B$$

Diagrama de Venn

Conjuntos

Propriedades do Conjunto vazio e Universo

- ② A, considerado na composição de U, tem-se $A \subset U$

Sendo C a união entre A e B, tem-se:

$$C = \{x | x \in A \text{ ou } x \in B\}$$
$$C = A \cup B$$

Sendo D a interseção entre A e B, tem-se:

$$D = \{x | x \in A \in x \in B\}$$
$$D = A \cap B$$

Diagrama de Venn

Introdução à Teoria dos Conjuntos

Probabilidade Espaço Finito

Probabilidade Condicional e Independência

Conjuntos: Relações e Propriedades

Comutativa

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Associativa

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes

Probabilidade Espaço Finito

robabilidade Condicional e Independênci

Conjuntos: Relações e Propriedades

Comutativa

$$A \cup B = B \cup A$$
$$A \cap B = B \cap A$$

Associativa

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$(A \cap B) \cap C = A \cap (B \cap C)$$

Conjuntos: Relações e Propriedades

Outras Propriedades

$$a)(A \cap B)^c = A^c \cup B^c$$

$$b)(A \cup B)^c = A^c \cap B^c$$

c)
$$A \cap \phi = \phi$$
 , $A \cap \Omega = A$

d)
$$\phi^c = \Omega$$
 , $\Omega^c = \phi$

e)
$$A \cap A^c = \phi$$

f)
$$A \cup A^c = \Omega$$

g)
$$A \cup \phi = A$$
 , $A \cup \Omega = \Omega$

$$h) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

i)
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$j) (A^c)^c = A$$

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência

Conjuntos: Relações e Propriedades

O número de elementos de um conjunto pode ser:

- Finito número finito de elementos
- 2 Infinito enumerável pode ser ordenado (ex inteiros)
- Infinito não enumerável número infinito que não pode ser ordenado.

Introdução à Teoria dos Conjuntos
Alguns Conceitos Importantes
Probabilidade
Espaço Finito
Probabilidade Condicional e Independência
Teorema de Baves

Conjuntos: Relações e Propriedades

O número de elementos de um conjunto pode ser:

- Finito número finito de elementos
- Infinito enumerável pode ser ordenado (ex inteiros)
- Infinito não enumerável número infinito que não pode ser ordenado.

Introdução à Teoria dos Conjuntos
Alguns Conceitos Importantes
Probabilidade
Espaço Finito
Probabilidade Condicional e Independência
Teorema de Baves

Conjuntos: Relações e Propriedades

O número de elementos de um conjunto pode ser:

- Finito número finito de elementos
- 2 Infinito enumerável pode ser ordenado (ex inteiros)
- Infinito não enumerável número infinito que não pode ser ordenado.

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Experimentos Aleatórios

Exemplos

- Jogar dado uma vez e verificar seu valor
- 2 Número de peças defeituosas em retiradas em 24 h
- Número de rebites defeituosos na asa de um avião
- Duração de uma lâmpada

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência

Experimentos Aleatórios

Exemplos

- 1 Jogar dado uma vez e verificar seu valor
- 2 Número de peças defeituosas em retiradas em 24 h
- 3 Número de rebites defeituosos na asa de um avião
- Duração de uma lâmpada

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Experimentos Aleatórios

Exemplos

- Jogar dado uma vez e verificar seu valor
- 2 Número de peças defeituosas em retiradas em 24 h
- 3 Número de rebites defeituosos na asa de um avião
- Duração de uma lâmpada

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Baves

Experimentos Aleatórios

Exemplos

- Jogar dado uma vez e verificar seu valor
- 2 Número de peças defeituosas em retiradas em 24 h
- 3 Número de rebites defeituosos na asa de um avião
- Duração de uma lâmpada

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Experimentos Aleatórios

Exemplos

- Jogar dado uma vez e verificar seu valor
- 2 Número de peças defeituosas em retiradas em 24 h
- 3 Número de rebites defeituosos na asa de um avião
- Duração de uma lâmpada

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Experimentos Aleatórios

Exemplos

- Jogar dado uma vez e verificar seu valor
- 2 Número de peças defeituosas em retiradas em 24 h
- 3 Número de rebites defeituosos na asa de um avião
- Duração de uma lâmpada

- Poderá ser repetido indefinidamente mesmas condições
- 2 Não é possível afirmar sobre um resultado particular, no entanto pode-se descrever todos os resultados possíveis
- Quanto repete-se o experimento um número grande de vezes uma regularidade irá aparecer.

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Experimentos Aleatórios

Exemplos

- Jogar dado uma vez e verificar seu valor
- 2 Número de peças defeituosas em retiradas em 24 h
- 3 Número de rebites defeituosos na asa de um avião
- Duração de uma lâmpada

- Poderá ser repetido indefinidamente mesmas condições
- Não é possível afirmar sobre um resultado particular, no entanto pode-se descrever todos os resultados possíveis
- Quanto repete-se o experimento um número grande de vezes uma regularidade irá aparecer.

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Experimentos Aleatórios

Exemplos

- Jogar dado uma vez e verificar seu valor
- 2 Número de peças defeituosas em retiradas em 24 h
- 3 Número de rebites defeituosos na asa de um avião
- Duração de uma lâmpada

- Poderá ser repetido indefinidamente mesmas condições
- Não é possível afirmar sobre um resultado particular, no entanto pode-se descrever todos os resultados possíveis
- Quanto repete-se o experimento um número grande de vezes uma regularidade irá aparecer.

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Experimentos Aleatórios

Exemplos

- Jogar dado uma vez e verificar seu valor
- 2 Número de peças defeituosas em retiradas em 24 h
- 3 Número de rebites defeituosos na asa de um avião
- Duração de uma lâmpada

- Poderá ser repetido indefinidamente mesmas condições
- Não é possível afirmar sobre um resultado particular, no entanto pode-se descrever todos os resultados possíveis
- Quanto repete-se o experimento um número grande de vezes uma regularidade irá aparecer.

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Espaço Amostral

Definição

Seja ε um experimento, o espaço amostral será:

Conjunto de todos os possíveis resultados do experimento ε e será representado por Ω ou S

Espaço Amostral

Exemplos

1 ε_1 =Jogar o dado 1 vez

$$\Omega_1 = \{1, 2, 3, 4, 5, 6\}$$

2 ε_2 =Jogar uma moeda 4 vezes e verificar o número de caras

$$\Omega_2 = \{0, 1, 2, 3, 4\}$$

9 ε_3 =Duração de vida de uma lâmpada

$$\Omega_3 = \{ t | t \ge 0 \}$$

Espaço Amostral

Exemplos

• ε_1 =Jogar o dado 1 vez

$$\Omega_1 = \{1, 2, 3, 4, 5, 6\}$$

2 ε_2 =Jogar uma moeda 4 vezes e verificar o número de caras

$$\Omega_2 = \{0, 1, 2, 3, 4\}$$

 \circ ε_3 =Duração de vida de uma lâmpada

$$\Omega_3 = \{t | t \ge 0\}$$

Espaço Amostral

Exemplos

• ε_1 =Jogar o dado 1 vez

$$\Omega_1 = \{1, 2, 3, 4, 5, 6\}$$

2 ε_2 =Jogar uma moeda 4 vezes e verificar o número de caras

$$\Omega_2 = \{0,1,2,3,4\}$$

③ ε_3 =Duração de vida de uma lâmpada

$$\Omega_3 = \{t | t \ge 0\}$$

Espaço Amostral

Exemplos

 \bullet $\varepsilon_1 = Jogar o dado 1 vez$

$$\Omega_1 = \{1, 2, 3, 4, 5, 6\}$$

 $\mathbf{2}$ $\varepsilon_2 = \mathbf{J}$ ogar uma moeda 4 vezes e verificar o número de caras

$$\Omega_2 = \{0, 1, 2, 3, 4\}$$

3 ε_3 =Duração de vida de uma lâmpada

$$\Omega_3 = \{t | t \ge 0\}$$

Espaço Amostral

Assim:

 $\Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$ onde ω_i são os elementos ou pontos amostrais.

Cada experimento pode possuir diversos espaços amostras. Assim, existe <u>um</u> espaço amostral associado a um experimento. O resultado do experimento pode ser numérico, alfanumérico ou mesmo uma função. Sendo o número de resultados possíveis de um espaço amostral:

- Finito (ex. dados e moedas)
- 2 Infinito enumerável (ex. peças fabricadas até obter uma defeituosa)
- Infinito não enumerável (ex. lâmpada).

Espaço Amostral

Assim:

 $\Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$ onde ω_i são os elementos ou pontos amostrais.

Cada experimento pode possuir diversos espaços amostras. Assim, existe <u>um</u> espaço amostral associado a um experimento. O resultado do experimento pode ser numérico, alfanumérico ou mesmo uma função. Sendo o número de resultados possíveis de um espaço amostral:

- Finito (ex. dados e moedas)
- Infinito enumerável (ex. peças fabricadas até obter uma defeituosa)
- Infinito não enumerável (ex. lâmpada).

Espaço Amostral

Assim:

 $\Omega = \{\omega_1, \omega_2, \dots, \omega_n, \dots\}$ onde ω_i são os elementos ou pontos amostrais.

Cada experimento pode possuir diversos espaços amostras. Assim, existe <u>um</u> espaço amostral associado a um experimento. O resultado do experimento pode ser numérico, alfanumérico ou mesmo uma função. Sendo o número de resultados possíveis de um espaço amostral:

- Finito (ex. dados e moedas)
- Infinito enumerável (ex. peças fabricadas até obter uma defeituosa)
- Infinito não enumerável (ex. lâmpada).

Eventos

Exemplos

Um evento A é um subconjunto de um espaço amostral Ω de um experimento ε

① $\varepsilon_1 = \text{Jogar o dado 1 vez}$

$$\Omega_1 = \{1, 2, 3, 4, 5, 6\}$$

$$A_1$$
= par ocorre, $A_1 = \{2, 4, 6\}$

1 ε_3 =Duração de vida de uma lâmpada

$$\Omega_3 = \{ t | t \ge 0 \}$$

 A_3 = queima em menos de 3 horas, $A_3 = \{t \mid t \leq 3\}$

Eventos

Exemplos

Um evento A é um subconjunto de um espaço amostral Ω de um experimento ε

• ε_1 =Jogar o dado 1 vez

$$\Omega_1 = \{1, 2, 3, 4, 5, 6\}$$

$$A_1$$
= par ocorre, $A_1 = \{2, 4, 6\}$

1 ε_3 =Duração de vida de uma lâmpada

$$\Omega_3 = \{ t | t \ge 0 \}$$

 A_3 = queima em menos de 3 horas, $A_3 = \{t \mid t \leq 3\}$

Eventos

Exemplos

Um evento A é um subconjunto de um espaço amostral Ω de um experimento ε

• $\varepsilon_1 = \text{Jogar o dado 1 vez}$

$$\Omega_1 = \{1, 2, 3, 4, 5, 6\}$$

$$A_1$$
= par ocorre, $A_1 = \{2, 4, 6\}$

1 ε_3 =Duração de vida de uma lâmpada

$$\Omega_3 = \{t | t \ge 0\}$$

 A_3 = queima em menos de 3 horas, $A_3 = \{t | t \le 3\}$

Eventos

Definição

Dois eventos A e B são denominados mutuamente exclusivos se não puderem ocorrer juntos, ou seja:

$$A \cap B = \emptyset$$
.

Dado um evento A qualquer não será possível dizer se ele irá ocorrer ou não. O que pode ser feito é associar um valor ao evento que indique quão provável é a sua ocorrência

Frequência Relativa

Definição

Considere que o experimento ε tenha sido repetido n vezes

Sejam A e B dois eventos quaisquer e n_A e n_B o número de vezes que ocorreram nas n repetições.

٠.

 $f_A = \frac{n_A}{n}$ é a freqüência relativa do evento A nas n repetições do experimento ε .

Frequência Relativa

Propriedades

- **1** $0 \le f_A \le 1$
- ② $f_A = 1$ se A ocorrer em todas as n repetições
- $f_A = 0$ se A não ocorrer nas n repetições
- ③ Se A e B são mutuamente exclusivos e $f_{A \cup B}$ a freqüência relativa de $A \cup B$, então $f_{A \cup B} = f_A + f_B$

Frequência Relativa

Propriedades

- **1** $0 \le f_A \le 1$
- ② $f_A = 1$ se A ocorrer em todas as n repetições
- ① Se A e B são mutuamente exclusivos e $f_{A \cup B}$ a freqüência relativa de $A \cup B$, então $f_{A \cup B} = f_A + f_B$

Frequência Relativa

Propriedades

- **1** $0 \le f_A \le 1$
- ② $f_A = 1$ se A ocorrer em todas as n repetições
- ① Se A e B são mutuamente exclusivos e $f_{A \cup B}$ a frequência relativa de $A \cup B$, então $f_{A \cup B} = f_A + f_B$
- ⑤ f_A converge em certo sentido probabilístico para P(A) quando $n \to \infty$

Frequência Relativa

Propriedades

- **1** $0 \le f_A \le 1$
- ② $f_A = 1$ se A ocorrer em todas as n repetições
- **③** Se A e B são mutuamente exclusivos e $f_{A \cup B}$ a freqüência relativa de $A \cup B$, então $f_{A \cup B} = f_A + f_B$
- ⑤ f_A converge em certo sentido probabilístico para P(A) quando $n \to \infty$

Frequência Relativa

Propriedades

- **1** $0 \le f_A \le 1$
- ② $f_A = 1$ se A ocorrer em todas as n repetições
- $f_A = 0$ se A não ocorrer nas n repetições
- Se A e B são mutuamente exclusivos e $f_{A \cup B}$ a freqüência relativa de $A \cup B$, então $f_{A \cup B} = f_A + f_B$
- **⑤** f_A converge em certo sentido probabilístico para P(A) quando $n \to \infty$

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Baves

Probabilidade: Exemplo

Exemplos

Queremos estudar as freqüências relativas de ocorrências das faces de um dado. Um procedimento a adotar seria lançar o dado certo número de vezes, n, e depois contar o número ni de vezes em que ocorre a face i, i = 1,2,...,6. As proporções $f_i = \frac{n_i}{n}$ determinam a distribuição de freqüências relativas do experimento realizado. Lançando o dado um número n' ($n' \neq n$) vezes, teríamos outra distribuição de freqüências relativa, mas com um padrão que esperamos ser muito próximo do anterior

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Probabilidade: Exemplo

Dessa forma f_A fornece uma medida precisa de quão verossímil é a ocorrência do evento A.

Com repetições f_A se estabiliza em algum ponto p

Essa abordagem possui dois problemas

- Qual deve ser o valor de n para que estabilize
- ② O número *p* não deveria depender do experimentador ou da sua sorte ou azar

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Probabilidade: Exemplo

Dessa forma f_A fornece uma medida precisa de quão verossímil é a ocorrência do evento A.

Com repetições f_A se estabiliza em algum ponto p

Essa abordagem possui dois problemas

- Qual deve ser o valor de *n* para que estabilize
- ② O número *p* não deveria depender do experimentador ou da sua sorte ou azar

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Probabilidade: Exemplo

Dessa forma f_A fornece uma medida precisa de quão verossímil é a ocorrência do evento A.

Com repetições f_A se estabiliza em algum ponto p

Essa abordagem possui dois problemas

- Qual deve ser o valor de *n* para que estabilize
- ② O número *p* não deveria depender do experimentador ou da sua sorte ou azar

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Probabilidade: Exemplo

O modelo probabilístico pode ser construído por meio de premissas, por exemplo:

- Só podem ocorrer seis faces
- 2 Temos um dado perfeitamente equilibrado, de modo a não favorecer nenhuma face em particular.

Com essas suposições, cada face deve ocorrer o mesmo número de vezes quando o dado é lançado *n* vezes, e, portanto, a proporção de ocorrência de cada face deve ser 1/6.

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Probabilidade: Exemplo

O modelo probabilístico pode ser construído por meio de premissas, por exemplo:

- Só podem ocorrer seis faces
- 2 Temos um dado perfeitamente equilibrado, de modo a não favorecer nenhuma face em particular.

Com essas suposições, cada face deve ocorrer o mesmo número de vezes quando o dado é lançado *n* vezes, e, portanto, a proporção de ocorrência de cada face deve ser 1/6.

Probabilidade

Todo experimento (ε) terá seu modelo probabilístico especificado quando estabelecermos:

1 <u>um espaço amostral</u>, Ω, que é o conjunto de todos os resultados possíveis do experimento ε:

$$\Omega = \{\omega_1, \omega_2, ..., \omega_n, ...\},\$$

onde ω são os pontos amostrais ou eventos elementares.

1 uma probabilidade, $P(\omega)$, para cada ponto amostral, de tal sorte que seja possível encontrar a probabilidade P(A) de qualquer subconjunto A de Ω . Isto é, caso $A \subset \Omega$, por exemplo $A = \{\omega_1, \omega_3, \omega_5\}$, então pode-se definir a P(A), que é a probabilidade do evento aleatório A ocorrer.

Probabilidade

Todo experimento (ε) terá seu modelo probabilístico especificado quando estabelecermos:

• <u>um espaço amostral</u>, Ω, que é o conjunto de todos os resultados possíveis do experimento ε:

$$\Omega = \{\omega_1, \omega_2, ..., \omega_n, ...\},\$$

onde ω são os pontos amostrais ou eventos elementares.

1 uma probabilidade, $P(\omega)$, para cada ponto amostral, de tal sorte que seja possível encontrar a probabilidade P(A) de qualquer subconjunto A de Ω . Isto é, caso $A \subset \Omega$, por exemplo $A = \{\omega_1, \omega_3, \omega_5\}$, então pode-se definir a P(A), que é a probabilidade do evento aleatório A ocorrer.

Probabilidade

Exemplos

Lançamos uma moeda duas vezes. Se *C* indicar cara e *R* indicar coroa, então um espaço amostral será:

$$\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\},\$$

onde $\omega 1 = (C,C)$, $\omega 2 = (C,R)$, $\omega 3 = (R,C)$, $\omega 4 = (R,R)$. É razoável supor que cada ponto ω_i tenha probabilidade $\frac{1}{4}$. Sendo A o evento que consiste nas faces iguais:

$$P(A) = P\{\omega_1, \omega_4\} = 1/4 + 1/4 = 1/2.$$

Se A for qualquer evento de Ω , então:

Probabilidade

Exemplos

Experimento: retirar uma lâmpada de um lote e medir o "tempo de vida" antes de queimar. Um espaço amostral conveniente é

$$\Omega = \{t \in \Re : t \ge 0\},\$$

O conjunto de todos os números reais não negativos. Se A indicar o evento "o tempo de vida é inferior a 20 horas", então:

$$A = \{t : 0 \le t < 20\}.$$

$$P(A) = P(0 \le t \le 20)$$

Observe que P(A) pode ser próximo de f_A , caso esse seja baseado em um número grande de repetições.

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes **Probabilidade** Espaço Finito Probabilidade Condicional e Independência

Probabilidade: Algumas Propriedades

Sendo o modelo probabilístico um modelo teórico para as freqüências relativas. Tem-se as seguintes propriedades gerais:

Probabilidade: Algumas Propriedades

Definição

Dado ε e Ω , para cada evento A associa-se um número real, P(A), denominado probabilidade de A e irá satisfazer:

O Como a frequência relativa está entre 0 e 1, tem-se:

$$0 < P(A) < 1$$

2 Quanto ao espaço amostral, Ω , temos:

$$P(\Omega) = 1$$

Probabilidade: Algumas Propriedades

Definição

Dado ε e Ω , para cada evento A associa-se um número real, P(A), denominado probabilidade de A e irá satisfazer:

• Como a freqüência relativa está entre 0 e 1, tem-se:

$$0< P(A)<1$$

2 Quanto ao espaço amostral, Ω , temos:

$$P(\Omega) = 1$$

$$P(A \cup B) = P(A) + P(B)$$

Probabilidade: Algumas Propriedades

Definição

Dado ε e Ω , para cada evento A associa-se um número real, P(A), denominado probabilidade de A e irá satisfazer:

• Como a freqüência relativa está entre 0 e 1, tem-se:

$$0 < P(A) < 1$$

2 Quanto ao espaço amostral, Ω , temos:

$$P(\Omega) = 1$$

$$P(A \cup B) = P(A) + P(B)$$

Probabilidade: Algumas Propriedades

Definição

Dado ε e Ω , para cada evento A associa-se um número real, P(A), denominado probabilidade de A e irá satisfazer:

O Como a frequência relativa está entre 0 e 1, tem-se:

2 Quanto ao espaço amostral, Ω , temos:

$$P(\Omega) = 1$$

$$P(A \cup B) = P(A) + P(B)$$

Consequências das Propriedades Gerais

Teorema 1

Se \emptyset for conjunto vazio, então $P(\emptyset) = 0$

Prova

Pode-se escrever para qualquer evento A, sendo $A = A \cup \emptyset$. Como A e \emptyset são mutuamente exclusivos de iii) tem-se

$$P(A) = P(A \cup \emptyset) = P(A) + P(\emptyset) = P(A)$$

Observação: $P(A) = 0 \Rightarrow A = \emptyset$

Consequências das Propriedades Gerais

Teorema 1

Se \emptyset for conjunto vazio, então $P(\emptyset) = 0$

Prova

Pode-se escrever para qualquer evento A, sendo $A=A\cup\emptyset$. Como A e \emptyset são mutuamente exclusivos de iii) tem-se

$$P(A) = P(A \cup \emptyset) = P(A) + P(\emptyset) = P(A)$$

Observação: $P(A) = 0 \Rightarrow A = \emptyset$

Consequências das Propriedades Gerais

Teorema 2

Se A^c for o complementar de A, assim:

$$P(A) = 1 - P(A^c)$$

Prova

Sendo $\Omega = A \cup A^c$ e utilizando ii) e iii) tem-se

$$P(\Omega) = P(A) + P(A^c)$$
 que é igual a $1 = P(A) + P(A^c)$

Observação: Algumas vezes é mais fácil trabalhar com A^c e $P(A^c)$

Consequências das Propriedades Gerais

Teorema 2

Se A^c for o complementar de A, assim:

$$P(A) = 1 - P(A^c)$$

Prova

Sendo $\Omega = A \cup A^c$ e utilizando ii) e iii) tem-se

$$P(\Omega) = P(A) + P(A^c)$$
 que é igual a $1 = P(A) + P(A^c)$

Observação: Algumas vezes é mais fácil trabalhar com A^c e $P(A^c)$

Consequências das Propriedades Gerais

Teorema 3

Se *A* e *B* forem dois eventos quaisquer:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Prova

Decompondo em eventos mutuamente exclusivos:

$$B = (A \cap B) \cup (A^c \cap B)$$

$$A \cup B = (A^c \cap B) \cup A$$

Consequências das Propriedades Gerais

Teorema 3

Se *A* e *B* forem dois eventos quaisquer:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Prova

Decompondo em eventos mutuamente exclusivos:

$$B = (A \cap B) \cup (A^c \cap B)$$

$$A \cup B = (A^c \cap B) \cup A$$

Consequências das Propriedades Gerais

Prova

Assim:

$$P(B) = P(A \cap B) + P(A^c \cap B) \tag{1}$$

$$P(A \cup B) = P(A^c \cap B) + P(A) \tag{2}$$

Substituindo (1) de (2) vem:

$$P(A \cup B) = P(B) - P(A \cap B) + P(A)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Consequências das Propriedades Gerais

Teorema 4

Se *A*, *B* e *C* forem três eventos quaisquer, então:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) +$$

$$P(A \cap B \cap C)$$

Prova

Reescrever $A \cup B \cup C$ como $(A \cup B) \cup C$ e utilizar o Teo 3.

Consequências das Propriedades Gerais

Teorema 4

Se *A*, *B* e *C* forem três eventos quaisquer, então:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) +$$

$$P(A \cap B \cap C)$$

Prova

Reescrever $A \cup B \cup C$ como $(A \cup B) \cup C$ e utilizar o Teo 3.

Consequências das Propriedades Gerais

Teorema 5

Se $A \subset B$, então $P(A) \leq P(B)$

Prova

Decompondo *B* em eventos mutuamente exclusivos:

 $B = A \cup (B \cap A^c)$ pois $A \subset B$ Assim:

 $P(B) = P(A) + P(B \cap A^c) \ge P(A)$ pois $P(B \cap A^c)$ é maior ou igual a 0 pela propriedade i).

Consequências das Propriedades Gerais

Teorema 5

Se $A \subset B$, então $P(A) \leq P(B)$

Prova

Decompondo *B* em eventos mutuamente exclusivos:

$$B = A \cup (B \cap A^c)$$
 pois $A \subset B$ Assim:

$$P(B) = P(A) + P(B \cap A^c) \ge P(A)$$
 pois $P(B \cap A^c)$ é maior ou igual a 0 pela propriedade i).

Exercícios

Exercício 1

Para dois eventos *A* e *B* quaisquer, tem-se:

$$P(A)=1/2 P(B)=1/3 P(A \cap B) = 1/4$$

Calcular:

a) P(Ac); P(Bc): b) $P(A \cup B)$: c) $P(A^c \cap B^c)$ d) $P(A^c \cup B^c)$ e)

 $P(A^c \cap B)$

Exercícios

Exercício 2

Indique se as afirmações são verdadeiras ou falsas:

- a) Se $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{4}$ e A e B são mutuamente exclusivos, então temos $P(A \cap B) = \frac{1}{8}$. (Dica: pense nos eventos em um diagrama de Venn).
- b) Se $P(A) = \frac{1}{2}$, P(B) = 1/3 e $P(A \cap B) = \frac{1}{4}$, então $P(A^c \cap B^c) = \frac{5}{12}$.

Probabilidade

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência

IMPORTANTE

IMPORTANTE

P(A) e f_A não são as mesmas coisas, será utilizado f_A para aproximar P(A). Sendo que P(A) será sempre o valor postulado e f_A uma aproximação.

Espaço Finito

Para um espaço finito $\Omega = \{\omega_1, ..., \omega_n\}$ é formado por m número finito de elementos.

Considerando um evento elementar ou simples $A = \{\omega_i\}$, pode-se associar uma probabilidade p_i que satisfaça:

- $p_i \geq 0$
- $p_1 + p_2 + \ldots + p_n = 1$

Espaço Finito

Para um espaço finito $\Omega = \{\omega_1, ..., \omega_n\}$ é formado por m número finito de elementos.

Considerando um evento elementar ou simples $A = \{\omega_i\}$, pode-se associar uma probabilidade p_i que satisfaça:

- $p_i \geq 0$
- $p_1 + p_2 + \ldots + p_n = 1$

Espaço Finito

Dadas as propriedades acima, suponha um evento A constituído por k resultados, $0 \le k \le n$, assim:

$$A = \{\omega_{j1}, \omega_{j2}, \dots, \omega_{jk}\} e$$

$$P(A) = p_{j1} + p_{j2} + \dots p_{jk}$$

Suponha que todos os resultados de Ω são igualmente verossímeis, assim $p_i = \frac{1}{n}$ e $p_1 + p_2 + \ldots + p_n = 1 \Rightarrow np_i = 1$.

Assim, para qualquer evento A com k resultados possíveis, tem-se:

$$P(A) = \frac{k}{n} = \frac{fav}{tot}$$

Exemplo

Joga-se duas vezes a moeda e anota-se se foi cara. O espaço amostral será $\Omega = \{0, 1, 2\}$. Busca-se o evento $A = \{uma\ cara\}$. Qual a probabilidade de A?

$$P(A) = \frac{1}{3}?$$

Exemplo

Joga-se duas vezes a moeda e anota-se se foi cara. O espaço amostral será $\Omega = \{0, 1, 2\}$. Busca-se o evento $A = \{uma\ cara\}$. Qual a probabilidade de A?

$$P(A) = \frac{1}{3}?$$

Errado resultados acima não são igualmente prováveis.

Reconstruindo o espaço amostral, Ω' , do experimento tem-se:

$$\Omega' = \{CC, CR, RC, RR\} \rightarrow \text{Resultados igualmente prováveis.}$$

Agora
$$P(A) = \frac{2}{4} = 0,5$$

Questão: Qual é o número de casos favoráveis ao evento A? Vejamos as possibilidades de cálculo

Análise Combinatória

Regra da Multiplicação

Evento 1 pode ocorrer de *n*1 formas. Após o Evento 2, pode ocorrer de *n*2 formas. Sendo assim, o total de maneira que podem ocorrer numa determinada ordem é:

$$n_1 \times n_2$$
.

Análise Combinatória

Regra da Adição

Evento 1 pode ocorrer de *n*1 formas um Evento 2, pode ocorrer de *n*2 formas. No entanto não é possível que ambos sejam realizados em conjunto. Assim, o total de maneira que pode-se realizar 1 ou 2 será:

$$n_1 + n_2$$
.

Análise Combinatória

Fatorial

Define-se como fatorial de um número n (n!), sendo esse número um inteiro maior do que 1:

$$n! = n \times (n-1) \times (n-2) \times ... \times 1$$

Análise Combinatória

Permutação

O número de permutações de *n* objetos diferentes será:

$$P_n = n!$$

Permutação com grupos

É o caso quando temos n objetos com subgrupos, n1, n2, ..., então:

$$\frac{n!}{n_1! \times n_2! \times ...}$$
 , onde $n = n1 + n2 + ...$

Análise Combinatória

Permutação

O número de permutações de *n* objetos diferentes será:

$$P_n = n!$$

Permutação com grupos

É o caso quando temos n objetos com subgrupos, n1, n2, ..., então:

$$\frac{n!}{n_1! \times n_2! \times ...}$$
, onde $n = n1 + n2 + ...$

Análise Combinatória

Arranjo

Quando se quer k objetos entre os n objetos e permutar os k escolhidos, será utilizado o arranjo.

Utiliza-se um arranjo quando se quer formar grupos a partir de um conjunto maior em que a ordem é importante.

$$A_{n,k} = \frac{n!}{(n-k)!}$$

Análise Combinatória

Combinação

Formar grupos a partir de um conjunto de elementos sendo que a ordem <u>não importa</u>.

Considera-se n objetos e extrai-se k entre os n, não importando a ordem.

$$C_{n,k} = \frac{n!}{k!(n-k)!}$$

Outra notação que é utilizada para combinações é:

$$C_{n,k} = \begin{pmatrix} n \\ k \end{pmatrix}$$

<u>Observação</u>: Note que Cn,k = Cn,n-k.

- Para dois eventos quaisquer A e B a probabilidade condicional do evento B dado que o evento A ocorreu será P(B|A).
- Assim, P(B | A) é a P(B) calculada em relação ao espaço amostral reduzido A ao invés do espaço original Ω.
- ullet P(B) Quão provável é o evento B em relação a estar em Ω
- P(B|A) Quão provável é o evento B em relação a estar em A (o espaço reduziu de Ω para A)
- Assim, queremos os valores que estão nos eventos A e B simultaneamente, em relação a estar em A.

- Para dois eventos quaisquer A e B a probabilidade condicional do evento B dado que o evento A ocorreu será P(B|A).
- Assim, P(B|A) é a P(B) calculada em relação ao espaço amostral reduzido A ao invés do espaço original Ω .
- ullet P(B) Quão provável é o evento B em relação a estar em Ω
- P(B | A) Quão provável é o evento B em relação a estar em A (o espaço reduziu de Ω para A)
- Assim, queremos os valores que estão nos eventos A e B simultaneamente, em relação a estar em A.

- Para dois eventos quaisquer A e B a probabilidade condicional do evento B dado que o evento A ocorreu será P(B|A).
- Assim, P(B|A) é a P(B) calculada em relação ao espaço amostral reduzido A ao invés do espaço original Ω .
- P(B) Quão provável é o evento B em relação a estar em Ω
- P(B|A) Quão provável é o evento B em relação a estar em A (o espaço reduziu de Ω para A)
- Assim, queremos os valores que estão nos eventos A e B simultaneamente, em relação a estar em A.

- Para dois eventos quaisquer A e B a probabilidade condicional do evento B dado que o evento A ocorreu será P(B|A).
- Assim, P(B|A) é a P(B) calculada em relação ao espaço amostral reduzido A ao invés do espaço original Ω .
- P(B) Quão provável é o evento B em relação a estar em Ω
- P(B|A) Quão provável é o evento B em relação a estar em A (o espaço reduziu de Ω para A)
- Assim, queremos os valores que estão nos eventos A e B simultaneamente, em relação a estar em A.

- Para dois eventos quaisquer A e B a probabilidade condicional do evento B dado que o evento A ocorreu será P(B|A).
- Assim, P(B|A) é a P(B) calculada em relação ao espaço amostral reduzido A ao invés do espaço original Ω .
- P(B) Quão provável é o evento B em relação a estar em Ω
- P(B|A) Quão provável é o evento B em relação a estar em A (o espaço reduziu de Ω para A)
- Assim, queremos os valores que estão nos eventos A e B simultaneamente, em relação a estar em A.

Probabilidade Condicional

Definição

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
 desde que $P(A) \ge 0$

Probabilidade Condicional

Definição

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
 desde que $P(A) \ge 0$

Se
$$A=\Omega$$
, então $P(B|\Omega)=\frac{P(\Omega\cap B)}{P(\Omega)}=P(B)$ pois $P(\Omega)=1$ e $\Omega\cap B=B$

② Se A e B forem eventos mutuamente exclusivos
$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(\emptyset)}{P(A)} = 0$$

$$\bigcirc$$
 Se $B \supset A$, então $P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A)}{P(A)} = 1$

Probabilidade Condicional

Definição

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
 desde que $P(A) \ge 0$

• Se
$$A = \Omega$$
, então $P(B|\Omega) = \frac{P(\Omega \cap B)}{P(\Omega)} = P(B)$ pois $P(\Omega) = 1$ e $\Omega \cap B = B$

② Se A e B forem eventos mutuamente exclusivos
$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(\emptyset)}{P(A)} = 0$$

Se
$$B \supset A$$
, então $P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A)}{P(A)} = 1$

Probabilidade Condicional

Definição

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
 desde que $P(A) \ge 0$

- Se $A = \Omega$, então $P(B|\Omega) = \frac{P(\Omega \cap B)}{P(\Omega)} = P(B)$ pois $P(\Omega) = 1$ e $\Omega \cap B = B$
- ② Se A e B forem eventos mutuamente exclusivos $P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(\emptyset)}{P(A)} = 0$
- Se $B \supset A$, então $P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A)}{P(A)} = 1$

Probabilidade Condicional

Definição

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
 desde que $P(A) \ge 0$

- Se $A = \Omega$, então $P(B|\Omega) = \frac{P(\Omega \cap B)}{P(\Omega)} = P(B)$ pois $P(\Omega) = 1$ e $\Omega \cap B = B$
- ② Se A e B forem eventos mutuamente exclusivos $P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(Q)}{P(A)} = 0$
- **③** Se $B \supset A$, então $P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A)}{P(A)} = 1$

Teorema da Multiplicação

Definições

$$P(A \cap B) = P(B) \times P(A \mid B)$$

De maneira geral, para os eventos A, B e C:

$$P(A \cap B \cap C) = P(A) \times P(B|A) \times P(C|A \cap B)$$

Para n eventos quaisquer A1, A2, ..., An:

$$P(A_1 \cap ... \cap A_n) = P(A_1) \times P(A_2 | A_1) \times ... \times P(A_n | A_1 \cap ... \cap A_{n-1})$$

Método da Composição do Evento

Definição

Os eventos B_1, B_2, \ldots, B_k sendo

- ② $B_i \cap B_j = \emptyset$ para $i \neq j$

Então a coleção de eventos $\{B_1, B_2, \dots, B_k\}$ representa uma partição do espaço amostral Ω .

Se A for qualquer subespaço de Ω e $\{B_1, B_2, \dots, B_k\}$ é a partição de Ω , então pode-se decompor A como:

$$A = (A \cap B_1) \cup (A \cap B_2) \cup \ldots \cup (A \cap B_k)$$

Método da Composição do Evento

Definição

Os eventos B_1, B_2, \ldots, B_k sendo

②
$$B_i \cap B_j = \emptyset$$
 para $i \neq j$

Então a coleção de eventos $\{B_1, B_2, \dots, B_k\}$ representa uma partição do espaço amostral Ω .

Se A for qualquer subespaço de Ω e $\{B_1, B_2, \dots, B_k\}$ é a partição de Ω , então pode-se decompor A como:

$$A = (A \cap B_1) \cup (A \cap B_2) \cup \ldots \cup (A \cap B_k)$$

Método da Composição do Evento

Definição

Os eventos B_1, B_2, \ldots, B_k sendo

Então a coleção de eventos $\{B_1, B_2, \dots, B_k\}$ representa uma partição do espaço amostral Ω .

Se A for qualquer subespaço de Ω e $\{B_1, B_2, \dots, B_k\}$ é a partição de Ω , então pode-se decompor A como:

$$A = (A \cap B_1) \cup (A \cap B_2) \cup \ldots \cup (A \cap B_k)$$

Método da Composição do Evento

Definição

Como $(A \cap B_1)$,..., $(A \cap B_k)$ são mutuamente excludentes, tem-se:

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \ldots + P(A \cap B_k)$$

Teorema da Probabilidade Total

$$P(A) = P(A|B_1) P(B_1) + P(A|B_2) P(B_2) + ... + P(A|B_k) P(B_k)$$

Método da Composição do Evento

Definição

Como $(A \cap B_1)$,..., $(A \cap B_k)$ são mutuamente excludentes, tem-se:

$$P(A) = P(A \cap B_1) + P(A \cap B_2) + \ldots + P(A \cap B_k)$$

Teorema da Probabilidade Total

$$P(A) = P(A|B_1) P(B_1) + P(A|B_2) P(B_2) + ... + P(A|B_k) P(B_k)$$

Probabilidade

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Método da Composição do Evento: EXERCÍCIO

Os votantes em determinada cidade, 40% dos eleitores eram da coligação do PT e 60% eram da coligação PSDB. Entre os eleitores do PT 70% são favoráveis a lei antitabagismos e 80% dos eleitores do PSDB são favoráveis. Ao selecionar um eleitor aleatoriamente, qual a probabilidade desse eleitor ser favorável a lei?

Independência

Saber da ocorrência de um evento A pode gerar informação que seja capaz de:

- Alterar a probabilidade de ocorrência de B.
- Não alterar a probabilidade de ocorrência de B.

Definicão

Dois eventos são ditos independentes se uma das condições abaixo for validas:

$$P(B|A) = P(B)$$

$$P(A|B) = P(A)$$

$$P(A \cap B) = P(A) \times P(B)$$

Caso contrário os eventos são não independentes

Independência

Saber da ocorrência de um evento A pode gerar informação que seja capaz de:

- Alterar a probabilidade de ocorrência de B.
- Não alterar a probabilidade de ocorrência de B.

Definicão

Dois eventos são ditos independentes se uma das condições abaixo for validas:

$$P(B|A) = P(B)$$

$$P(A|B) = P(A)$$

$$P(A \cap B) = P(A) \times P(B)$$

Caso contrário os eventos são não independentes

Independência

Saber da ocorrência de um evento A pode gerar informação que seja capaz de:

- Alterar a probabilidade de ocorrência de B.
- Não alterar a probabilidade de ocorrência de B.

Definição

Dois eventos são ditos independentes se uma das condições abaixo for validas:

$$P(B|A) = P(B)$$

$$P(A|B) = P(A)$$

$$P(A \cap B) = P(A) \times P(B)$$

Caso contrário os eventos são não independentes

Independência

Definição

Três eventos, A, B e C, são ditos independentes dois a dois se *todas* as condições abaixo forem validas:

$$P(A \cap B) = P(A) \times P(B)$$

$$P(A \cap C) = P(A) \times P(C)$$

$$P(B \cap C) = P(B) \times P(C)$$

Para que os eventos sejam mutuamente independentes, além das condições anteriores precisamos da condição:

$$P(A \cap B \cap C) = P(A) \times P(B) \times P(C)$$

Independência

Definição

Então, dizemos que n eventos $A_1, A_2, ..., A_n$ são independentes se e somente se:

$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1) \times P(A_2) \times ... \times P(A_n) = \prod_{i=1}^n P(A_i),$$
 para $i = 1,...,n$.

Independência

Teorema

Sendo A e B dois eventos independentes então A e \bar{B} , B e \bar{A} e \bar{A} e \bar{B} também serão independentes.

Notas

Para dois eventos A e B com P(A) > 0 e P(B) > 0, independentes, \Rightarrow que esses não são mutuamente exclusivos

Independência

Teorema

Sendo A e B dois eventos independentes então A e \bar{B} , B e \bar{A} e \bar{A} e \bar{B} também serão independentes.

Notas

Para dois eventos A e B com P(A)>0 e P(B)>0, independentes, \Rightarrow que esses não são mutuamente exclusivos.

Teorema de Bayes

Teorema

Admitindo que $\{A_1, A_2, \dots, A_k\}$ é uma partição de Ω , então a regra de Bayes pode ser assim descrita:

$$P(A_i|B_j) = \frac{P(A_i \cap B_j)}{P(B_j)} = \frac{P(B_j|A_i) \times P(A_i)}{\sum_{l=1}^k P(B_j|A_i) \times P(A_i)}.$$

Teorema de Bayes

Prova

A prova segue da definição da probabilidade condicional e do teorema da probabilidade total, ou seja:

$$P(A_i \cap B_j) = P(B_j | A_i) \times P(A_i) e$$

$$P(B_j) = P(B_j | A_1) \times P(A_1) + \dots + P(B_j | A_k) \times P(A_k)$$

$$P(B_j) = \sum_{i=1}^k P(B_i | A_i) \times P(A_i)$$

Probabilidade

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Teorema de Bayes: EXERCÍCIO

Exercício 1

Três máquinas *A*, *B* e *C* produzem 50%, 30% e 20%, respectivamente, do total de peças. A porcentagem de peças defeituosas de cada uma é 3%, 4% e 5%, respectivamente. Seleciona-se uma peça e constata-se que é defeituosa. Qual é a probabilidade de ser uma peça da máquina *A*?

Probabilidade

Introdução à Teoria dos Conjuntos Alguns Conceitos Importantes Probabilidade Espaço Finito Probabilidade Condicional e Independência Teorema de Bayes

Teorema de Bayes: EXERCÍCIO

Exercício 2 - Paradoxo de Monty Hall

Você esta em um show de televisão e o apresentador apresenta a você três portas. Uma delas contém um prêmio colocado aleatoriamente e as outras duas não. Depois que escolheu uma das portas o apresentador que sabe o que está atrás das portas escolhe uma para ser aberta. Existem duas possibilidades se o carro está em uma das duas restantes ele abre com certeza a que não tem nada. Se as duas não tiverem o prêmio ele abre uma delas aleatoriamente. Depois que abre a porta ele pergunta se você gostaria de trocar ou ficar com a sua primeira opção. Ou seja, suponha que você tenha escolhido a porta 2 e ele tenha aberto a porta 3, ele perguntaria "Você gostaria de mudar da porta 2 para a porta 3?" É vantajoso trocar?