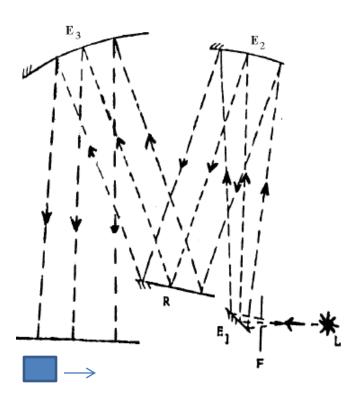
Laboratório de Física Experimental V – 4300313

2º Semestre de 2016


Instituto de Física Universidade de São Paulo

Espectroscopia ótica do Hg, H e Na

Professores:

Antonio Domingues dos Santos Valdir Guimarães Maria Fernanda Araujo de Resende

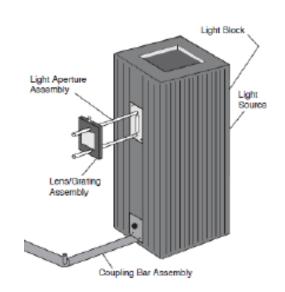
O Espectrômetro

L = lâmpada

F = fenda ajustável

E₁= espelho plano

 E_2, E_3 = espelho esférico

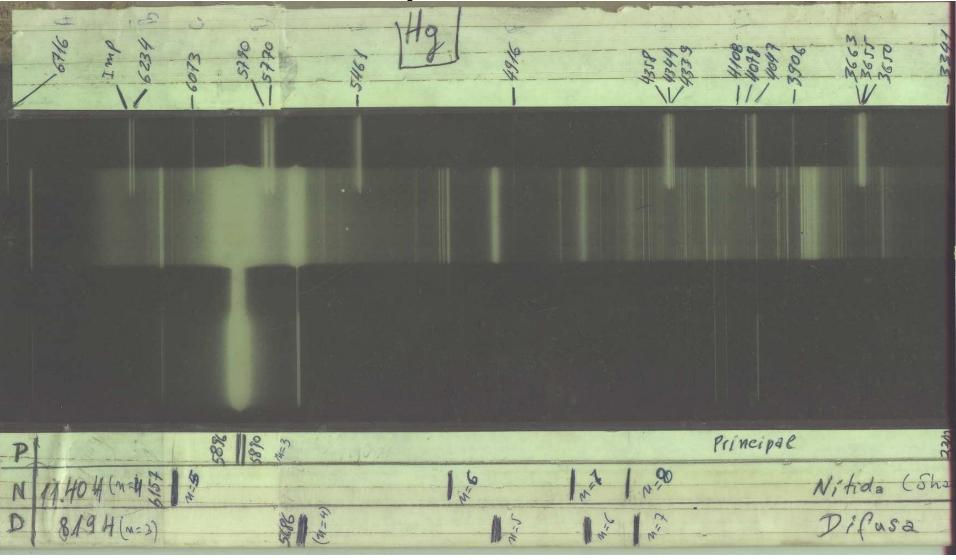

R = rede de difração

C = filme e chassis

fotográfico

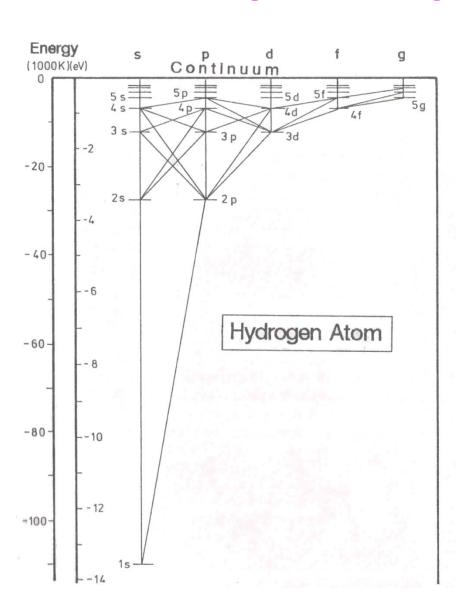
-← - - = raio luminoso

Lâmpada de Mercúrio

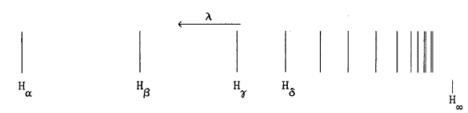


Webcam

Movida por motor de passo


- + Lâmpada de Hidrogênio
- + Lâmpada de Sódio

O Espectro do Na



Olhar também a tabela (do NIST) para o espectro do Hg, disponível no STOA, ou então diretamente no NIST, http://physics.nist.gov/PhysRefData/ASD/lines_form.html

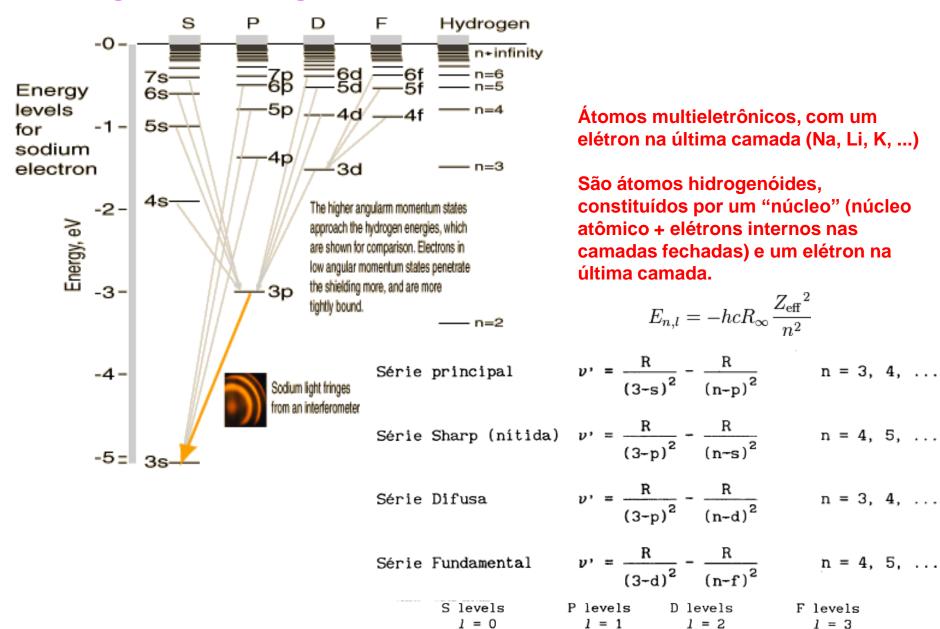
Diagrama de energias de átomos isolados

Para a região do visível - H

$$\nu' = \frac{1}{\lambda} = R_H \left[\frac{1}{2^2} - \frac{1}{n^2} \right]$$

Bohr, em 1913

$$n = 3, 4, 5..$$


$$R_{_{
m H}}$$
 = cte. de Rydberg

$$E_n = -hcR_\infty \frac{Z^2}{n^2}$$

$$\frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

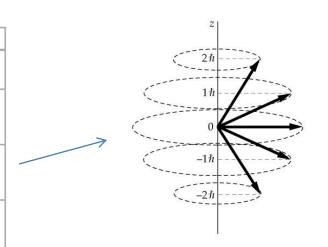
Diagrama de energias do Sódio

Correção de Rydberg

Quantum

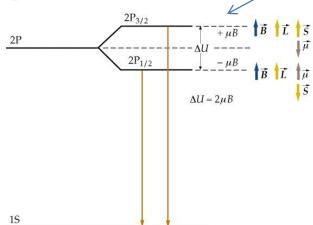
defect

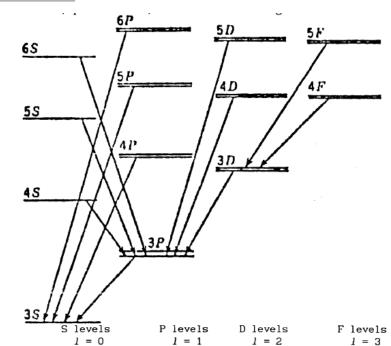
1.37


0.87

0.01

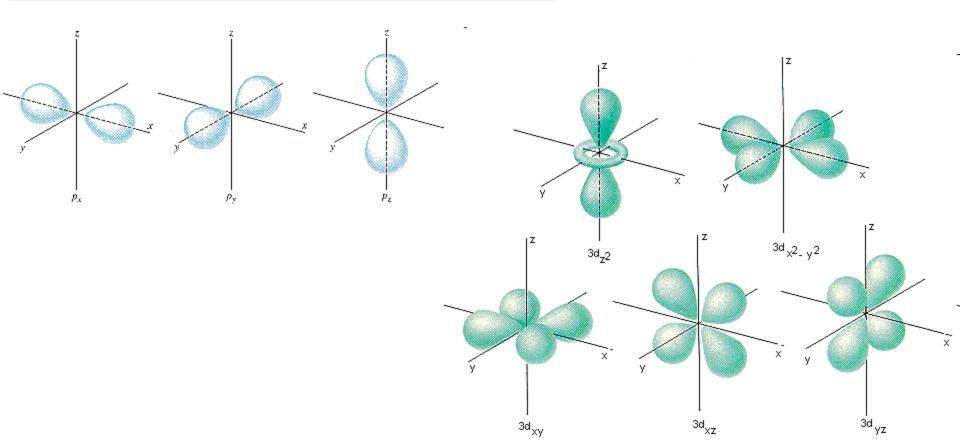
0.00


Números quânticos


name	symbol	orbital meaning	range of values	value example	
principal quantum number	n	shell	$1 \le n$	n = 1, 2, 3	
azimuthal quantum number (angular momentum)	ℓ	subshell (s orbital is listed as 0, p orbital as 1 etc.)	$(0 \le \ell \le n-1)$	for $n = 3$: $\ell = 0, 1, 2 (s, p, d)$	
magnetic quantum number, (projection of angular momentum)	m_ℓ	energy shift (orientation of the subshell's shape)	$-\ell \le m_\ell \le \ell$	for $\ell = 2$: $m_{\ell} = -2, -1, 0, 1, 2$	
spin projection quantum number	m_s	spin of the electron (-1/2 = counter- clockwise, 1/2 = clockwise)	$-\frac{1}{2},\frac{1}{2}$	for an electron, either: $-\frac{1}{2}, \frac{1}{2}$	

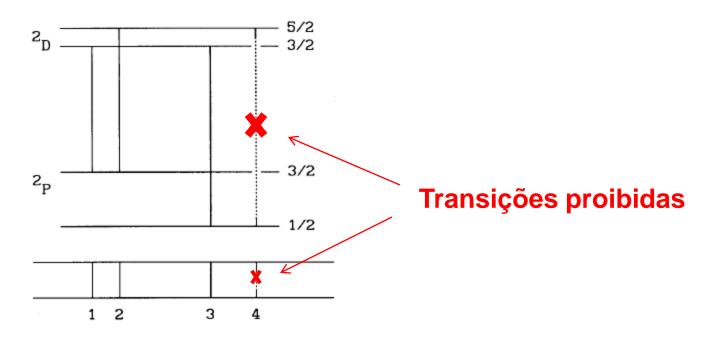
momento angular total \vec{j} =

$$\vec{j} = \vec{\ell} + \vec{s}$$



Tipos de orbitais

name	symbol	orbital meaning	range of values	value example
principal quantum number	n	shell	$1 \le n$	n = 1, 2, 3
azimuthal quantum number (angular momentum)	ℓ	subshell (s orbital is listed as 0, p orbital as 1 etc.)	$0 \le \ell \le n - 0$	for $n=3$: $\ell=0,1,2(s,p,d)$
magnetic quantum number, (projection of angular momentum)	m_ℓ	energy shift (orientation of the subshell's shape)	$-\ell \le m_\ell \le \ell$	for $\ell = 2$: $m_{\ell} = -2, -1, 0, 1, 2$
spin projection quantum number	m_s	spin of the electron (-1/2 = counter- clockwise, 1/2 = clockwise)	$-\frac{1}{2},\frac{1}{2}$	for an electron, either: $-\frac{1}{2}, \frac{1}{2}$



ℓ=0 **s**

Regras de seleção

As regras de seleção para átomos de um elétron óptico são: $\Delta \ell = \pm$ 1, $\Delta j = 0$, ± 1 .

Tripletos

Objetivos do Experimento

- 1) Calibrar o espectrômetro com o espectro do Hg.
- 2) Analisar o Espectro de Emissão do H.
- 3) Analisar o Espectro de Emissão do Na.

Segundo dia:

- Repita o arranjo experimental, porém com a Lâmpada de Sódio.
- faça uma varredura completa do espectro, usando o motor de passo e identifique as raias mais intensas do espectro de Na.
- zere o motor de passo, na posição extrema esquerda e meça as posições em número de passos, para um grande número de raias do Na.
- use a calibração feita para o espectro do Hg, para calcular os comprimentos de onda do espectro do Na.
- faça gráficos correlacionando os comprimentos de onda das raias de cada sub-espectro. (Como deve ser este gráfico)
- Determine a constante de Rydberg.
- Determine os valores dos defeitos quânticos.

Síntese a ser entregue através do site de reservas, até sexta-feira.

Em arquivo pdf, apresente a tabela de dados para o Na, identificando as linhas de cada série, os gráficos dos sub-espectros e os valores obtidos para a constante de Rydberg e os defeitos quânticos.