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ABSTRACT: This work describes the utility and efficiency of a metabolic profiling pipeline that relies on an unsupervised and
untargeted approach applied to a HS-SPME/GC-MS data. This noninvasive and high throughput methodology enables “real
time” monitoring of the metabolic changes inherent to the biochemical dynamics of a perturbed complex biological system and
the extraction of molecular candidates that are latter validated on its biochemical context. To evaluate the efficiency of the
pipeline five different fermentations, carried on a synthetic media and whose perturbation was the nitrogen source, were
performed in 5 and 500 mL. The smaller volume fermentations were monitored online by HS-SPME/GC-MS, allowing to obtain
metabolic profiles and molecular candidates time expression. Nontarget analysis was applied using MS data in two ways: (i) one
dimension (1D), where the total ion chromatogram per sample was used, (ii) two dimensions (2D), where the integrity time vs
m/z per sample was used. Results indicate that the 2D procedure captured the relevant information more efficiently than the 1D.
It was also seen that although there were differences in the fermentation performance in different scales, the metabolic pathways
responsible for production of metabolites that impact the quality of the volatile fraction was unaffected, so the proposed pipeline
is suitable for the study of different fermentation systems that can undergo subsequent sensory validation on a larger scale.
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■ INTRODUCTION

The monitoring of the fermentation process is a common
procedure in wine research that often requires large samples,
expensive equipment, and skilled labor. Model fermentations
are generally carried out under controlled conditions when
studying yeast metabolism and the accompanying metabolome.
These fermentations are generally carried out on volumes
between 80 and 500 mL and are mostly only analyzed at the
end of fermentation.1−3 The monitoring of the fermentation
process is usually based on optical density and weight loss
measurements as indicators of yeast growth and performance.
Additionally, these fermentations would require at least 3
biological replicates in order to reliably infer meaning from the
data obtained, which reduces the number of perturbations
evaluated.
One of the main objectives of technological research is the

development of equipment and techniques capable of perform-
ing a great number of experiments in the smallest volume, that
is, in high throughput.
The fermentation process is affected by many factors such as

yeast strain, temperature, oxygen, nutrients, among others.4−12

The metabolic effect of these factors on a fermentation have a
major impact on the final product quality and consequently on
its comercial value. The development of a protocol, requiring
only pre-existing equipment, capable of following the online
changes in the volatile fraction may enable the construction of
metabolic networks characteristic of each of the different
fermentation systems. This would be of great interest to aroma
research, as well as to the wine industry.

Many researchers have highlighted the importance of the
nitrogen content of a must, in terms of both the nitrogen
composition and the total nitrogen available.8−10,12−15 The
nitrogen content directly impacts the final aroma composition
in terms of the production of higher alcohols, volatile fatty
acids, esters, and sulfur and carbonyls compounds.14,15

However, this effect is highly complex and the link between a
specific nitrogen composition and the aromatic profile is not
well understood.4,13

Metabolomics studies metabolites and their chemical features
in a biological system in order to identify or discover new
compounds and elucidate the effects their presence has on
biochemical pathways (either known or unknown) leading to a
better understanding of cellular behavior.16−19 Metabolites are
a group of low molecular weight substances (50−1500 Da) that
includes amino acids, fatty acids, lipids, purines, pyrimidines,
carbohydrates, peptides, hormones, volatile metabolites, and
many more organic molecules serving as intermediates/
substrates and products in cellular reactions (the metabolic
pathways). The ultimate aim of metabolomics is to obtain a so-
called metabolic fingerprint leading to an understanding of the
entire metabolic network. To achieve a holistic view of
metabolites in their biochemical context it is necessary to
identify known metabolites under analytical conditions in the
data set. However, in most instances, targeted chemical analysis
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is performed, and due to the complexity of the yeast
metabolome, there is a loss of information because the focus
is not on the overall system. An untargeted approach allows the
visualization of the process and reveals new insights by
detecting as many metabolites as possible in a single step.17,19

In an attempt to get as close as possible to this holistic
metabolic view of a complex biological process, the aim of the
present work is to build a metabolic profiling pipeline able to
identify metabolites from a perturbed data set and latter
validate them in their biochemical context. This newly
developed methodology reproduces in a micro scale (5 mL)
the same metabolic events that are usually monitored in a larger
scale enabling the high throughput analysis of samples. The 5
mL fermentations were monitored online and noninvasively
through the continuous sampling of the volatile fraction by
headspacesolid phase microextraction (HS-SPME) analyzed
by gas chromatography coupled to a mass spectrometry
detection system (GC-MS) in order to capture as much
information regarding the fermentation process as possible.
In order to evaluate the proposed pipeline a commercial stain

of Saccharomyces cerevisiae fermented synthetic grape must
containing the same concentration (200 mg/L) of different
sources (ammonium and amino acids) of yeast assimilable
nitrogen. These 5 mL fermentations were analyzed and the
pipeline was validated by comparing them to a second set of
fermentations performed on a larger scale (500 mL). The
metabolic information was subjected to preprocessing through
algebraic normalization (Pareto) using MarkerLynx, both in
one dimension (1D), where the total ion chromatogram per
sample was used and in two dimensions (2D), where the
integrity time vs m/z per sample was used. Multivariate variable
analysis (MVA) was used to evaluate the potential of a high
throughput pipeline. This type of approach needs validation
with the study of real time perturbations in a time course of
some chemical compounds (targeted approach).

■ MATERIALS AND METHODS
Chemicals. The highest purity chemicals were used throughout the

experiments. All chemicals were from Sigma-Aldrich (Germany) or
Merck (Germany) unless otherwise stated.
Strain, Media, and Culture Conditions. The yeast strain used in

this study was Saccharomyces cerevisiae VIN13 (Anchor yeast, Cape
Town, South Africa). The yeast preculture was grown in the
fermentation medium described below and containing NH4Cl (1g/
L) as nitrogen source. The yeast, precultured to the logarithmic
growth phase, was centrifuged and resuspended in saline solution.
Fermentation vessels were inoculated with the preculture to an OD600
of 0.1 (final cell density of approximately 106 cells/mL).
Fermentations were carried out in grape juice medium adapted from

Jiranek et al.20 The synthetic media was prepared by the combination
of two aqueous solutions prepared and sterilized separately. The first
solution contained glucose (100 g/L), fructose (100 g/L), citric acid
(0.2 g/L), malic acid (3 g/L), K2HPO4 (1.14 g/L), MgSO4·7H2O
(1.23 g/L), CaCl2·2H2O (0.44 g/L), KH tartrate (2.5 g/L). All the
compounds were dissolved in distilled water, and the pH was set to 3.3
with KOH 10 M. This solution was autoclaved for sterilization. The
second solution contained NH4Cl and/or amino acids as described in
Table 1, trace elements stock (final concentration in the synthetic
grape must: MnCl2·4H2O 200 μg/L, ZnCl2 135 μg/L, FeSO4 36 μg/L,
CuCl2 15 μg/L, H3BO3 5 μg/L, Co(NO3)2.6H2O 30 μg/L,
NaMoO4.2H2O 25 μg/L, and KIO3 10 μ/L) and vitamin stock
(final concentration in the synthetic grape must: myo-inositol 100 mg/
L, pyridoxine HCl 2 mg/L, nicotinic acid 2 mg/L, Ca pantothenate 1
mg/L, thiamine HCl 0.5 mg/L, K para-aminobenzoate 0.2 mg/L,
riboflavin 0.2 mg/L, biotin 0.125 mg/L, and folic acid 0.2 mg/L).20

This second solution was filter sterilized and added to the first
solution.

Experimental Data Set. The synthetic grape must for each
treatment (M1−5) contained 200 mg/L of a nitrogen source which
varied in its composition (Table 1). For the evaluation of the scale
effect each fermentation treatment was performed in two volumes, 5
and 500 mL. Each 5 mL sample (M1−5 × 3 replicates) was sampled
and analyzed directly after one another nine times (intervals of almost
45 min). The 500 mL samples (M1−5 × 3 replicates) were sampled
daily for volatile fraction analysis.

In order to monitor and synchronize all the fermentations, two
additional sets of the 5 mL fermentations were carried out. One set
was frequently sampled for optical density (OD) measurements at 600
nm. The second set of the 5 mL fermentation replicates was used only
for weight measurements. The 500 mL fermentations were monitored
frequently for both OD and weight measurements. For logistical
reasons, the 5 mL fermentations were only monitored for the first 150
h after inoculation. The 500 mL were monitored to the end in order to
evaluate whether the yeast was able to complete the fermentation
process under the conditions tested.

Growth Measurement. Cell proliferation was determined with a
spectrophotometer (Powerwavex, Bio-Tek Instruments, Bedfordshire,
U.K.) by measuring the optical density (600 nm) over the
experimental period.

Volatile Analysis. A small-scale fermentation setup (5 mL) was
designed using the 15 mL SPME vials for the CombiPAL auto sampler
(CTC Analytics AG, Zwingen, Switzerland). Fermentations were
carried out on the 32-sample tray and were left to ferment at ambient
temperature (20 °C ± 2). In order to avoid the influence of any
additional stress, such as heating and agitation, sampling took place
directly out of the tray. A SPME (CAR/DVB Carboxen) fiber
(Supelco, Bellefonte, PA) was used to collect headspace volatiles every
24 h from each sample. Elevated pressure due to CO2 production was
avoided by inserting a small piece of fused silica GC column in the
septum of the vial-cap.

An automated system for the online process monitoring was used
thus allowing the monitoring of the fermentation evolution over time.
The 5 mL samples taken daily from the 500 mL fermentation were
placed in identical vials and analyzed through the same procedure as
the 5 mL fermentations. Sampling took place from the headspace of
the fermentation vials with an extraction time of 10 min at ambient
temperature (20 ± 2 °C) directly from the sample tray. Afterward the
SPME fiber was thermally desorbed in the injection port of the GC-
MS instrument (Agilent Technologies, Little Falls, Wilmington,
U.S.A.) for 1 min at 240 °C in splitless mode and left for a further
9 min in the split mode to clean the fiber. The carrier gas used was
helium, the split flow was 50 mL·min−1, and the flow through the
column was 1.2 mL·min−1. The column used was a J&W FFAP (Free
Fatty Acid phase, Agilent Technologies) of 60 m length, 0.25 mm
inner diameter, with a film thickness of 0.5 um. The GC oven
temperature program was as follows: 40 °C held for 2 min and then
ramped to 240 °C at 10 °C·min−1 and held for 2 min. The transferline
to the MS was heated to 250 °C, and the ion source temperature and
the quadrupole temperature was set to 240 and 150 °C, respectively.

Table 1. Different Fermentation Media (M1−5)

media description

M1 without amino acids just 200 mg N/L of NH4Cl (50 mg/L) (control)
M2 NH4Cl (50 mg/L) and cysteine, alanine, arginine, asparagine, aspartic

acid, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine,
lysine, methionine, phenylalanine, proline, serine, threonine,
tryptophan, tyrosine, and valine (150 mg/L)

M3 NH4Cl (50 mg/L) and the preferred amino acids (arginine,
asparagine, aspartic acid, glutamine, glutamic acid) (150 mg/L)

M4 NH4Cl (50 mg/L) and the amino acids precursors of “aroma
compounds” (isoleucine, leucine, phenylalanine, tyrosine, valine)
(150 mg/L)

M5 NH4Cl (50 mg/L) and S-containing amino acids (cysteine and
methionine) (150 mg/L)
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The MS was operated in full-scan mode, scanning from 35 to 650 amu,
with and ionization energy of 70 eV and an electron multiplier voltage
of 1541 V.
Data Preprocessing. The ASCII file of chromatographic data

obtained from each sample was extracted and a matrix created
containing all the Total Ion Count features (TIC-Fingerprint). The
normalized matrix was then imported into The UnscramblerX 10.1
(Camo, Norway) where baseline correction was performed and the
first stage of the alignment of chromatograms done using correlation
optimized warping. This algorithm aligns chromatograms by means of
sectional linear stretching and compression, which shifts the peaks of
one chromatogram to correlate with those of the other chromatograms
in the data set.21

MarkerLynx XS (version 4.1, Waters, U.S.A.) was also used for peak
deconvolution, peak integration (using apex track peak detection), and
sample alignment. The peaks from different samples were aligned so
that the same peaks (defined with retention time and m/z), most
probably the same compound, are placed in the same row for all
samples. The parameters used were XIC window 0.50 Da, peak width
at 5% height 20 s, intensity threshold 1000 counts, mass window 0.45
Da, retention time window 0.10 min and noise elimination level 10.
The list of features originated was then subjected to multivariate
analysis. The matrix resulted from MarkerLynx underwent correla-
tional analysis using Excel.
Normalization Methods. The fingerprint data (TIC) and the

matrix generated in MarkerLynx were subjected to normalization:
mean centering and Pareto normalization (dividing each feature by the
square root of the standard deviation).
Statistical Analysis. The relative growth rates and CO2 liberation

in different volumes and different media were evaluated via two-way
analysis of variance (ANOVA), using Microsoft Office Excel, version
2010.
Data was analyzed with PCA (principal component analysis), and

OPLS-DA, using SIMCA-P+ (version 12.0.1, Umetrics, Sweden). Due
to the large number of variables and few observations these methods
highlight important information by correlating the variables.
PCA is an unsupervised technique that classifies samples according

to their common spectral characteristics facilitating the observation of
relationships between samples and highlighting the variables
responsible for the variation (it projects the total variation on a
plane, onto a smaller set of variables, called principal components
(PCs), which are a linear combination of all the initial variables). The
scores (the original data in the new system, a projection of the

samples) and loadings (the weights applied, the original variables)
plots may reveal clusters or outliers and the corresponding variables
that have influence on the distribution of samples.

OPLS-DA is a modified version of PLS (partial least-squares), a
supervised method, allowing the extraction of more information used
for group classification/separation. The advantage is that the
information about the discriminating classes is presented in its first
component which makes easier to understand which variables are the
responsible for this same separation due to the separation of
systematic variation into a predictive and an orthogonal compound.22

The sequence presented in this section is the metabolomics pipeline
applied as represented in Figure 1.

■ RESULTS/DISCUSSION

Fermentation Kinetic Parameters. For logistical reasons,
the 5 mL fermentations were only monitored for the first 150 h
of the fermentation (Figure 2c, g). The 500 mL fermentations
were monitored to the end in order to evaluate whether the
yeast was able to complete the fermentation process under the
nutrient conditions tested (Figure 2a, e). The percent weight
loss (CO2 production) was measured in order to evaluate the
fermentation kinetics in both fermentation sets (Figure 2e, g).
The relative rates of CO2 production were calculated using the
slope of CO2 production vs time (Figure 2h). For the 500 mL
fermentation, the slope was calculated for the 150 h period
(Figure 2f). When the monitoring of the 5 mL fermentations
cessed, they had lost 43% of the total CO2 released by the 500
mL fermentations. Therefore, only this period is the focus of
this study. A two-way analysis of variance (ANOVA) was
applied to the relative rates of CO2 production and the data
showed that there were no significant differences between
different media or different volumes (p > 0.05).
The yeast growth was also monitored for the entire

fermentation process in 500 mL and until yeasts reached a
quasi-stationary phase (OD of about 6) in 5 mL fermentations.
The relative rates of cell growth were calculated using the slope
of OD (600 nm) vs time in the exponential growth phase
(Figure 2d). Once again for the 500 mL fermentations, only the
data for the first 150 h was considered (Figure 2b). A two-way

Figure 1. Metabolomic analysis pipeline.
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analysis of variance (ANOVA) was applied to this data, and it
was concluded that although there were no significant
differences between media (p > 0.05) there were significant
differences between volumes (p < 0.05).
Data from the entire 500 mL fermentations process (Figure

2a, e) showed that despite the differences in the nitrogen
composition of different media, Saccharomyces cerevisiae was
able to perform the fermentation process in all media. In a

media completely deficient in amino acids the yeast has the
ability to use precursor metabolites, carbon skeletons originated
from the central metabolic pathways, as starting substrates for
the synthesis of amino acids. The tricarboxylic acid cycle is not
functional during fermentation, so yeasts replace the cycle
intermediates through anaplerotic reactions.23,24

Screening by TIC. Our initial goal with the fingerprint
analysis (TIC) was to examine the intrinsic variation in both

Figure 2. Profiles of yeast growth obtained through OD measurements at 600 nm in (a) 500 mL fermentations for the entire fermentation process
and (b) for the first 150 h, (c) in 5 mL fermentations for 150 h and (d) relative rates of growth; % weight loss (CO2 production) in 500 mL
fermentations (e) for the entire fermentation process and (f) for the first 150 h (g) in 5 mL fermentations for 150 h and (h) relative rates of CO2
production.
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data sets to determine if the volatile fraction of the samples
followed similar trends and/or media clustering prior to feature
extraction techniques.
The raw data was first evaluated by PCA using the non-

normalized data (data not shown) to verify the samples, and to

detect outliers or trends within the different media applied in
the TIC-Fingerprint matrix. For the 5 mL data set, the first
three principal components showed 97% of the total variation
and it was possible to observe a cluster with samples related to
M4 (branch chain and aromatic amino acids). However, it was

Figure 3. (a) PCA score plots of normalized raw data. (i) PC1 vs PC2; (ii) PC2 vs PC3. (b) PCA loading plots of normalized raw data for (i) PC1,
(ii) PC2, (iii) PC3 for (1) ethyl acetate; (2) ethanol; (3) unknown 1; (4) isobutyl acetate; (5) ethyl butanoate; (6) methyl thiolacetate; (7) 2-
methyl-1-propanol; (8) ethyl thiolacetate; (9) isoamyl acetate; (10) 3-methyl-1-butanol; (11) unknown 3; (12) ethyl hexanoate; (13) acetoin; (14)
unknown 4; (15) ethyl octanoate; (16) benzaldehyde; (17) dihydro-2-methyl-3(2H)-thiophenone; (18) ethyl decanoate; (19) 3-
methylsulfanylprop-1-ene; (20) unknown (74//60/41); (21) methionol; (22) phenylethyl acetate; (23) benzyl alcohol; (24) 2-phenylethanol.
(c) PCA score plots of normalized data after preprocessing with MarkerLynx and normalization by Pareto (i) 5 mL, (ii) 500 mL. (d) Biplot of the
two first PC after preprocessing with MarkerLynx and normalized by Pareto (5 mL fermentations).
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necessary to reach component 6 to visualize another cluster
with the data of M5 (sulfur-containing amino acids) (just 0.37%
of the variation was explained by this component). In the case
of the 500 mL data set, the first three principal components
showed 95% of the total variation, with M4 forming a cluster.
To see another cluster it was necessary to reach component 4
(2% of variation explained). The second cluster found was for
M5 as seen with the 5 mL fermentations. This suggests that
metabolites, such as the volatile compounds produced in M4,
may dominate and in so doing obscure others (such as the
volatile compounds from S-containing amino acids medium).
This may be overcome performing a mathematical normal-
ization on data to minimize these differences. Pareto normal-
ization is used to avoid problems such as baseline influence and
variations in peak shapes, among others; the raw data was
compared to this data set. The results confirmed that some
metabolites hide others. The plots (Figure 3a, b) show that the
second component separates the data from M4 and the third
explains the medium containing sulfur amino acids (M5), while
the first component is explained by fermentation products
(with 79% and 88% (data not shown) of the total variation for
the 5 and 500 mL samples, respectively).
2D “Landscape” Data Preprocessing. Effect of Sample

Discrimination. In PCA, each chromatogram and all its
information is compressed and projected onto a single point.
Each point represents the entire exogenous volatile metab-
olome at a moment. PCA was performed to understand how
samples cluster together (scores) (Figure 3c). These PCA score

plots show that the metabolism of yeast is affected by the amino
acids supplied in the media but not by the volume of media. In
the case of the 5 mL data set, three principal components
explained 67% of the total variation while in the 500 mL data
set this explained 44%. For both fermentation volumes, the first
component (x vector) describes the fermentations over time
(kinetics). Indeed, at the beginning of fermentation (initial
sampling point) there were no differences in the volatile
metabolome, suggesting that the yeast is initiating metabolic
pathways in response to the different fermentation media. In
the second component, orthogonal to the first one, the result
was, once again, similar for both 5 and 500 mL samples. It was
possible to distinguish three clusters: M5 samples (cysteine and
methionine), M4 samples (phenylalanine, tyrosine, valine,
leucine, and isoleucine), and a cluster consisting of M1, M2,
and M3. This suggests that it is possible to track the different
metabolic pathways that yeast follows over time due to nutrient
variation. When evaluating each medium (M) separately, a time
dependent expression pattern emerged. For example, in the 5
mL fermentation score plot (Figure 3c(i)), medium M4
displays a time separation between sampling points 3, 4, and 5
whereas the last ones (6, 7, 8, and 9) are grouped in a shorter
time range. These differences in volatile compound synthesis
are potentially related to variations in gene expression between
yeast subjected to different nutrient conditions. Differences in
gene expression and consequent proteomic and metabolomic
changes enable yeast to survive regardless the nutrient
availability.23,24

Figure 4. Fold changes relative to M1 (control) in 5 and 500 mL fermentations for (a) methionol, (b) 2- phenylethanol, (c) isoamyl acetate, and (d)
benzaldehyde.
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A biplot was constructed in order to understand and analyze
how samples cluster together (scores) and identify which
variables (metabolites) most contributed to their separation
(loadings) (Figure 3d). This potentially allows metabolic
discovery through the identification of possible biomarkers.25

The biomarkers identified in each media were the same in both
5 and 500 mL samples. It was possible to identify ethyl acetate
and ethanol for the cluster formed with M1, M2, and M3.
Ethanol is one of main products of fermentation and ethyl
acetate is formed from ethanol and acetyl-CoA by alcohol
acyltransferase and is the most abundant ester produced during
alcoholic fermentation.13,26 This cluster contains media that
placed fewer nutrient constraints on yeast growth as they
contained glutamate and ammonia, which are the principal
precursors for the synthesis of nitrogenous compounds.24 This
may somewhat contribute to the similarities in the volatile
profiles detected. The compounds identified as being
responsible for the clustering of M5 were sulfur containing
compounds which originated from cysteine and methionine
metabolism, such as methyl thioacetate, ethyl thiolacetate,
dihydro-2-methyl-3(2H)-thiophenone, and methionol (a prod-
uct of methionine degradation via Ehrlich pathway27) (Figure
4a). These may have a negative contribution to aroma due to
the formation of thiols and sulfides.28

The clustering of M4 was due to the presence of some
products resulting from the Ehrlich pathway, namely isoamyl
alcohol and 2-phenylethanol (Figure 4b) together with
hexanoic acid and benzyl alcohol. The higher alcohols isoamyl
alcohol and 2-phenylethanol are formed by the decarboxylation
and subsequent reduction of α-keto acids produced as
intermediates of the amino acids leucine, isoleucine, and
phenylalanine catabolism (Ehrlich pathway). Since their
production from the corresponding amino acids is coupled to
the oxidation of NADH, in anaerobic conditions yeasts use
them as alternative electron acceptors.29 These results are in
agreement with literature.30−32

In order to gain more information and to contextualize each
pathway in the global yeast metabolome an OPLS-DA between
media was applied. The results generated with this approach
corroborate the presence of the compounds identified in the
PCA plots. Additionally, it was also possible to identify other
compounds (with a correlation greater than 0.7) such as
isoamyl acetate (Figure 4c), benzaldehyde (Figure 4d), and
phenylethyl acetate in the case of M4 while for M5 was possible
to observe isobutyl acetate and 3-methylsulfanylprop-1-ene.
These were also confirmed by an OPLS with determined
compounds (phenylethanol representing M4 and methionol
representing M5) (data not shown). Phenylethyl acetate is the
product of the esterification of phenylethanol and acetyl-CoA
enzymatic by acetyltrasferase.33,34 Isoamyl acetate is the
enzymatic esterification product of acetyl-CoA with isoamyl
alcohol. Isoamyl alcohol is produced from leucine, via the
Ehrlich pathway or from α-ketoisocaproic acid through the
anabolic pathway.30,31 As expected, the production of both
acetate esters increased dramatically in M4, as the amino acid
precursors were present in great quantities.35 The production of
benzaldehyde (Figure 4e) by Saccharomyces cerevisiae was
previously reported by Delfini et al.36 Thereafter, several
research groups have studied the mechanisms behind that
process in different microorganisms and in vitro,37 and several
metabolic pathways have been proposed. While in some species
this process is enzyme catalyzed,37 in others it is also a chemical
reaction involving metal ions and O2.

38 Based on the

fermentation conditions employed in this study (relatively
low temperature, acidic pH, and anaerobic conditions), some of
the possibilities referred in literature may be excluded; however,
the data we possess does not allow the formation of a
hypothesis regarding the mechanism behind benzaldehyde
formation. However, the data shows that benzaldehyde
production was favored in a medium containing phenylalanine
(M4), which has been suggested as a possible precursor in
several studies.36−38 Further work should be done to confirm
this observation. Benzaldehyde in turn can be reduced to benzyl
alcohol, explaining its presence in the same medium.38,39

Isobutyl acetate results from the combination of acetyl-CoA
with isobutyl alcohol produced from valine, via the Ehrlich
pathway or from the anabolic pathway via α-ketoisovaleric
acid.40 This compound was significantly affected by sulfur
containing amino acids, an effect that was also observed,
although to a lesser extent, in isoamyl acetate. In M5 neither
valine nor leucine was available, thus isobutyl and isoamyl
alcohol were synthesized from the corresponding α-ketoacids
generated through the de novo synthesis pathway from
glucose.23 According to the literature the production of acetate
esters is more closely related to acetate than to higher alcohol
production.26 Therefore, the formation of high concentrations
of acetates in media supplemented with sulfur containing amino
acids may be due to the high production of acetyl-CoA from
cysteine. Several pathways of cysteine degradation lead to
pyruvate formation41 that is converted to acetyl-CoA via
cytosolic pyruvate dehydrogenase (PDH) bypass, which is an
alternative route to the PDH reaction for the conversion of
pyruvate to acetyl-CoA during fermentation.29 Further work is
needed to clarify this result. 3-methylsulfanylprop-1-ene is a
sulfur compound resulting from the metabolism of cysteine or
methionine, the only amino acids containing sulfur atoms. The
compounds observed using a targeted strategy were the same
ones described in the untargeted approach, which validates this
untargeted approach. The results also show that although the
fermentation performance is affected by the fermentation
volume, there are no scale differences concerning the quality
and formation kinetics of the volatile compounds identified
using the applied workflow. It would be necessary to perform
further work in order to validate its applicability in complex
media. Additionally, the implications of these perturbations on
a sensory level would need to be validated using greater
volumes.
Since the scale effect seems not to affect the quality of the

volatile fraction, this workflow may lead to the discovery of new
compounds or the possible modification of known pathways
and showing the systemic response to perturbations. To check
this hypothesis, the correlation between the coexpression of
metabolites were analyzed for the 5 mL data set in the matrix
generated by MarkerLynx. In this study, these correlations did
not identify the presence any new compounds. The highest
correlations observed were between metabolically related
volatile compounds, for example, ethyl hexanoate and ethyl
octanoate (0.998), isobutyl acetate and ethyl octanoate (0.985),
ethyl thiolacetate and ethyl octanoate (0.984). No negative
correlations were found, which might be due to the duration of
the period monitored. More alterations would have occurred
over the time, changing the ultimate chemical profile.

Time Profile of Volatile Synthesis. The high throughput
procedure presented in this study allowed the acquisition of
snapshots of the biochemical events related to the fermentation
process. The linking of the kinetic profile of each volatile
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compound obtained in “real time” by GC-MS for 5 mL
fermentations and the corresponding yeast growth curves
obtained by OD measuring at 600 nm (Figure 2c) enabled the
establishment of the metabolic time profile of the volatile
fraction. A detailed description of the M4 data follows, but a
similar approach could be done for each of the five media.
During the first 20 h after the inoculation, during the lag phase,
yeasts are adapting to the new media conditions, so there is no
increase in the yeast population (OD remains unchanged).
Although no growth occurs, yeast immediately begins to
metabolize sugars and other nutrients present in media with
consequent production of ethanol. There are several metabo-
lites whose concentration start to increase during this phase
namely hexanol, propanol, isobutyric, and hexanoic acids
(Figure 5a). Hexanol is usually formed during the prefermen-
tative stage of winemaking and is believed to be reductively
formed by yeast from hexanal, which in turn is formed from
linoleic acid.42 Propanol reach maximum concentration few
hours after inoculation and in agreement with the literature its
increase was greater in the media without amino acids43 and
lower in the media containing only sulfur containing amino
acids which may be related to the negative relationship between
n-propanol production and H2S formation from methionine
and cysteine metabolism (Figure 5b).44,45 After an adaptation
period, yeast start growing. This exponential growth phase is
influenced by several factors such as temperature, concentration
of ammonia, amino acids, and other nutrients, and also by the

oxygen level. During this phase yeasts use all the available
nutrients to obtain energy and increase their population, which
may reach 107−108 cells/mL. At the beginning of the
exponential growth phase the concentration of higher alcohols
and acids resulting either directly from sugars or from amino
acid metabolism trough the Ehrlich pathway starts to increase
or in some cases has already reached its maximum due to the
yeast’s high demand for new proteins needed for growth and
reproduction. Isoamyl alcohol and isobutyric acid reached
maximum concentrations about 24 h after inoculation and their
concentrations remained constant (Figure 5a, d). The
concentrations of isobutanol (Figure 5e), 2-phenylethanol,
and benzyl alcohol (Figure 5c) started to increase at the
beginning of this stage and their concentration continued
increasing for the period monitored, indicating a possible
continued increase in their production during the stationary
phase.
During fermentation two groups of esters are synthesized:

acetate esters and ethyl fatty acid esters. The synthesis of
acetate esters isoamyl acetate and isobutyl acetate starts when
their substrates, isoamyl alcohol, and isobutyl alcohol, are
available in the media, and their time of expression is parallel to
that of their precursor alcohols (Figures 5d, e).
The synthesis of ethyl fatty acid esters (ethyl hexanoate, ethyl

octanoate, and ethyl decanoate) only started almost toward the
end of the exponential growth phase (Figure 5f). According to
literature the rate of ethyl ester formation is influenced by the

Figure 5. Kinetic profile of (a) 1-hexanol, isobutyric, and hexanoic acid in M4, (b) propanol in five media (M1−5), (c) 2-phenylethanol and benzyl
alcohol in M4, (d) isoamyl acetate and isoamyl alcohol in M4, (e) isobutyl acetate and isobutyl alcohol in M4, (f) ethyl butanoate and ethyl
octanoate in M4.
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concentrations of the two cosubstrates (acyl coenzyme A
component and ethanol) and the activity of the enzymes
involved in their synthesis and hydrolysis (e.g., acyl-CoA:
ethanol O-acyltransferases, Eeb1 and Eht1). It has been
suggested that the fatty acid precursor level rather than the
activity of the biosynthetic enzymes is the major limiting factor
for ethyl ester production.46 Ethyl butanoate is formed from
ethanol and propanoic acid derived from α-ketobutyrate,47 an
intermediate in the metabolism of several amino acids. Unlike
other ethyl fatty acid esters, its concentration rises continuously
from the beginning of the exponential growth period, probably
due to the availability of both cosubstrates in the media since
the beginning of the fermentation process (Figure 5f). After
this period, yeast stops growing probably due to some nutrient
deficiencies and the toxic effects of ethanol and other
substances produced during alcoholic fermentation, resulting
in a stationary phase. Finally yeast start dying and the
population gradually decreases (decline phase).
The proposed methodology proved to be a useful tool

capable of generating new insights concerning the implications
of a given nutrient on the final product’s volatile fraction. This
knowledge can be quite useful for wine industry since it allows
the possibility of modifying wine aroma by either increasing the
desirable or eliminating the undesirable odors. This work
culminates with the development a new metabolic profiling
pipeline that relies on an unsupervised and untargeted
approach applied to data acquired by a noninvasive method-
ology (HS-SPME/GC-MS) utilizing a small fermentation
volume which allows the high throughput analyses that enables
“real time” monitoring of the metabolic changes inherent to the
biochemical dynamics of a perturbed complex biological system
and the extraction of molecular candidates that are latter
validated on its biochemical context. The pipeline proposed has
several practical applications such as yeast phenotyping studies
or exploring the impact of nutrient availability on yeast
metabolism and subsequent volatile fraction quality. These
results do require sensory validation on a larger scale.
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(10) Hernańdez-Orte, P.; Ibarz, M. J.; Cacho, J.; Ferreira, V. Effect of
the addition of ammonium and amino acids to musts of Airen variety
on aromatic composition and sensory properties of the obtained wine.
Food Chem. 2005, 89 (2), 163−174.
(11) Torija, M.; Beltran, G.; Novo, M.; Poblet, M.; Guillamoń, J. M.;
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