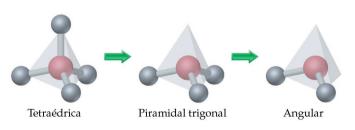
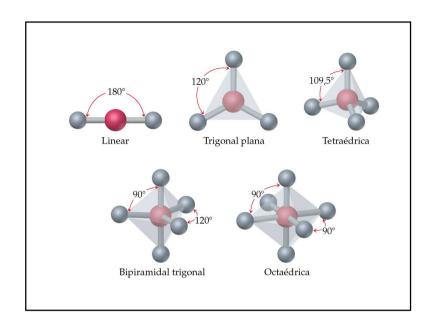

Geometria molecular e teorias de ligação

Formas espaciais moleculares

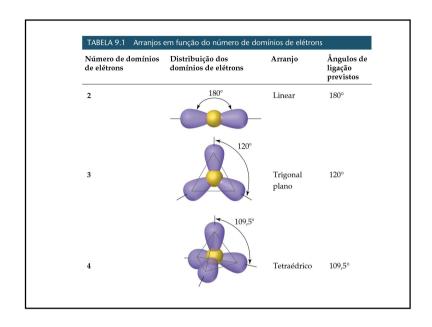
- Para prevermos a forma molecular, supomos que os elétrons de valência se repelem e, conseqüentemente, a molécula assume qualquer geometria 3D que minimize essa repulsão.
- Denominamos este processo de teoria de Repulsão do Par de Elétrons no Nível de Valência (RPENV).
- Existem formas simples para as moléculas AB_2 e AB_3 .

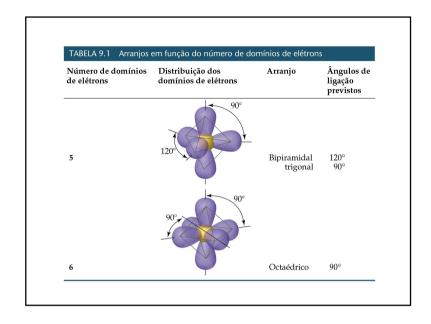
Formas espaciais moleculares As estruturas de Lewis fornecem a conectividade atômica: elas nos mostram o número e os tipos de ligações entre os átomos. A forma espacial de uma molécula é determinada por seus ângulos de ligação.


Formas espaciais moleculares

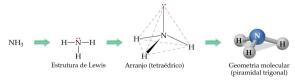

• Existem cinco geometrias fundamentais para a forma molecular:

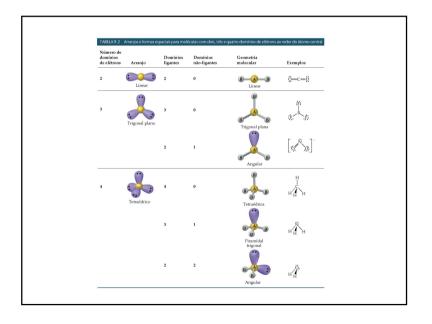
Formas espaciais moleculares


- Ao considerarmos a geometria ao redor do átomo central, consideramos todos os elétrons (pares solitários e pares ligantes).
- Quando damos nome à geometria molecular, focalizamos somente na posição dos átomos.



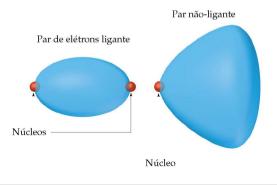
Modelo RPENV


- Para se determinar a forma de uma molécula, fazemos a distinção entre pares de elétrons solitários (ou pares nãoligantes, aqueles fora de uma ligação) e pares ligantes (aqueles encontrados entre dois átomos).
- Definimos o arranjo eletrônico pelas posições no espaço 3D de TODOS os pares de elétrons (ligantes ou não ligantes).
- Os elétrons assumem um arranjo no espaço para minimizar a repulsão e⁻-e⁻.



Modelo RPENV

- Para determinar o arranjo:
 - · Desenhe a estrutura de Lewis,
 - conte o número total de pares de elétrons ao redor do átomo central,
 - ordene os pares de elétrons em uma das geometrias acima para minimizar a repulsão e⁻-e⁻ e conte as ligações múltiplas como um par de ligação.


Modelo RPENV

O efeito dos elétrons não-ligantes e ligações múltiplas nos ângulos de ligação

- · Determinamos o arranjo observando apenas os elétrons.
- Damos nome à geometria molecular pela posição dos átomos.
- · Ignoramos os pares solitários na geometria molecular.
- Todos os átomos que obedecem a regra do octeto têm arranjos tetraédricos.

Modelo RPENV

O efeito dos elétrons não-ligantes e ligações múltiplas nos ângulos de ligação

Modelo RPENV

O efeito dos elétrons não-ligantes e ligações múltiplas nos ângulos de ligação

• No nosso modelo experimental, o ângulo de ligação H-X-H diminui ao passarmos do C para o N e para o O:

- Como os elétrons em uma ligação são atraídos por dois núcleos, eles não se repelem tanto quanto os pares solitários.
- Conseqüentemente, os ângulos de ligação diminuem quando o número de pares de elétrons não-ligantes aumenta.

Modelo RPENV

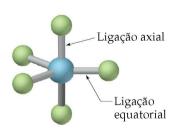
O efeito dos elétrons não-ligantes e ligações múltiplas nos ângulos de ligação

• Da mesma forma, os elétrons nas ligações múltiplas se repelem mais do que os elétrons nas ligações simples.

Modelo RPENV

Moléculas com níveis de valência expandidos

- Os átomos que têm expansão de octeto têm arranjos AB₅ (de bipirâmide trigonal) ou AB₆ (octaédricos).
- Para as estruturas de bipirâmides trigonais existe um plano contendo três pares de elétrons. O quarto e o quinto pares de elétrons estão localizados acima e abaixo desse plano.
- Para as estruturas octaédricas, existe um plano contendo quatro pares de elétrons. Da mesma forma, o quinto e o sexto pares de elétrons estão localizados acima e abaixo desse plano.

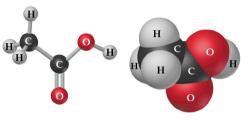

Total de domínios de elétrons	Arranjo	Domínios ligantes	Domínios não-ligantes	Geometria molecular	Exemplos
6	Octaédrico	6	0	B B B B Octaédrica	${ m SF}_6$
		5	1	B B B B Piramidal quadrada	BrF ₅
		4	2	B B B B Quadrática plana	XeF ₄

Total de domínios de elétrons	Arranjo	Domínios ligantes	Domínios não-ligantes	Geometria molecular	Exemplos
5	Bipiramidal	5	0	B B B B B B B B B B B B B B B B B B B	PCl ₅
	îtrigonal	4	1	B B B Gangorra	SF ₄
		3	2	B B Em T'	CIF ₃
		2	3	B B	XeF ₂

Modelo RPENV

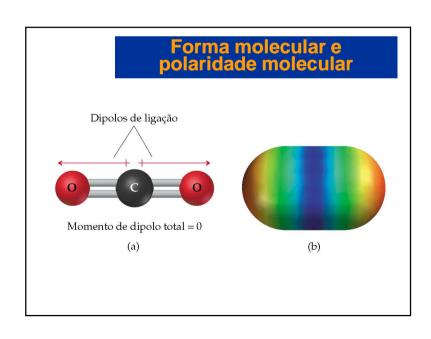
Moléculas com níveis de valência expandidos

 Para minimizar a repulsão e⁻-e⁻, os pares solitários são sempre colocados em posições equatoriais.

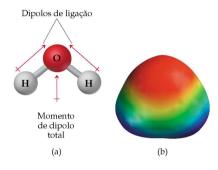


Modelo RPENV Moléculas com níveis de valência expandidos

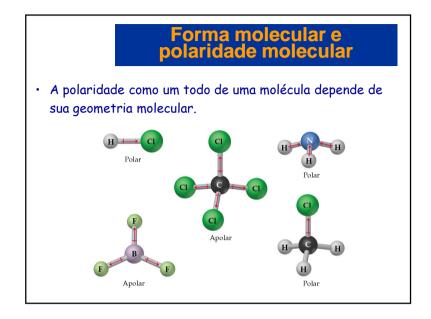
Modelo RPENV

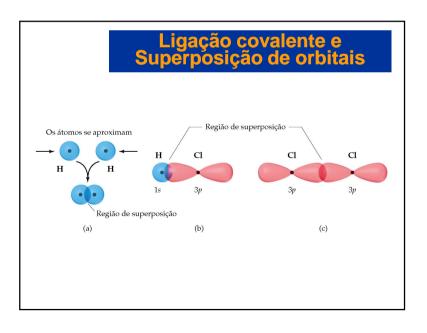

Formas espaciais de moléculas maiores

- No ácido acético, CH_3COOH , existem três átomos centrais.
- Atribuímos a geometria ao redor de cada átomo central separadamente.


Forma molecular e polaridade molecular

- Quando existe uma diferença de eletronegatividade entre dois átomos, a ligação entre eles é polar.
- É possível que uma molécula que contenha ligações polares não seja polar.
- Por exemplo, os dipolos de ligação no CO_2 cancelam-se porque o CO_2 é linear.


Forma molecular e polaridade molecular


- Na água, a molécula não é linear e os dipolos de ligação não se cancelam.
- · Consequentemente, a água é uma molécula polar.

Ligação covalente e Superposição de orbitais

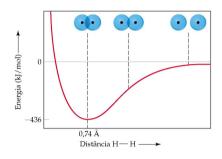
- As estruturas de Lewis e o modelo RPENV não explicam porque uma ligação se forma.
- Como devemos considerar a forma em termos da mecância quântica?
- · Quais são os orbitais envolvidos nas ligações?
- · Usamos a teoria de ligação de valência:
 - As ligações formam quando os orbitais nos átomos se superpõem.
 - Existem dois elétrons de spins contrários na superposição de orbitais.

Ligação covalente e Superposição de orbitais

- À medida que dois núcleos se aproximam, seus orbitais atômicos se superpõem.
- À medida que a superposição aumenta, a energia de interação diminui.
- A uma determinada distância, a energia mínima é alcançada.
- A energia mínima corresponde à distância de ligação (ou comprimento de ligação).
- Quando os dois átomos ficam mais próximos, seus núcleos começam a se repelir e a energia aumenta.

Orbitais híbridos

- Os orbitais atômicos podem se misturar ou se **hibridizar** para adotarem uma geometria adequada para a ligação.
- · A hibridização é determinada pelo arranjo.


Orbitais híbridos sp

 Considere a molécula de BeF₂ (sabe-se experimentalmente que ela existe):

Ligação covalente e Superposição de orbitais

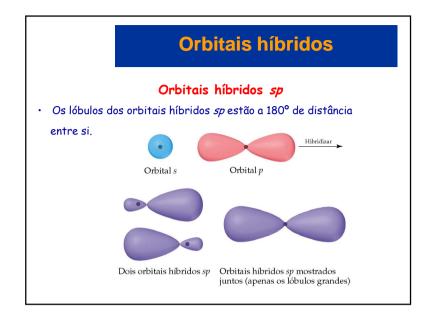
 À distância de ligação, as forças de atração entre os núcleos e os elétrons equilibram exatamente as forças repulsivas (núcleo-núcleo, elétron-elétron).

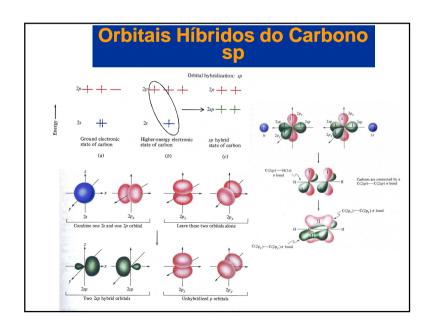
Orbitais híbridos

Orbitais híbridos sp

- · O Be tem uma configuração eletrônica 1s²2s².
- Não existem elétrons desemparelhados disponíveis para ligações.
- Concluímos que os orbitais atômicos não são adequados para descreverem os orbitais nas moléculas.
- Sabemos que o ângulo de ligação $\,$ F-Be-F é de 180 $^\circ$ (teoria de RPENV).
- Sabemos também que um elétron de Be é compartilhado com cada um dos elétrons desemparelhados do F.

Orbitais híbridos

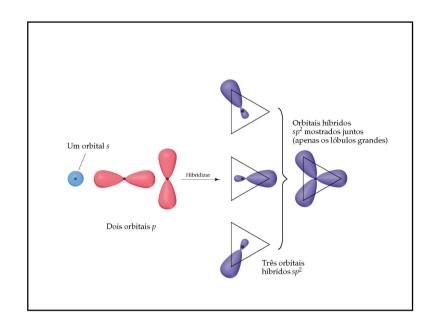

Orbitais híbridos sp


- Admitimos que os orbitais do Be na ligação Be-F estão distantes de 180°.
- Poderíamos promover um elétron do orbital 2s no Be para o orbital 2p para obtermos dois elétrons desemparelhados para a ligação.
- · Mas a geometria ainda não está explicada.
- Podemos solucionar o problema admitindo que o orbital 2s e um orbital 2p no Be misturam-se ou formam um orbital híbrido.
- O orbital híbrido surge de um orbital s e de um orbital p e é chamado de orbital híbrido sp.

Orbitais híbridos

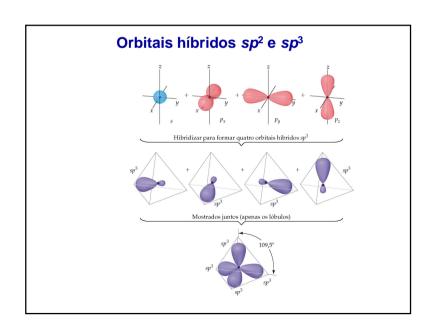
Orbitais híbridos sp

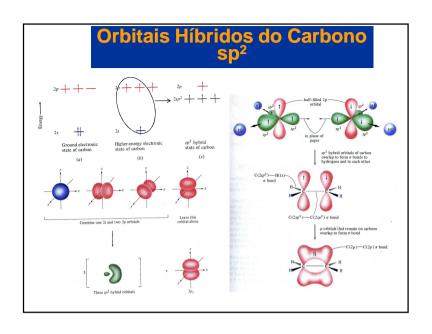
 Já que somente um dos orbitais 2p do Be foi utilizado na hibridização, ainda existem dois orbitais p nãohibridizados no Be.

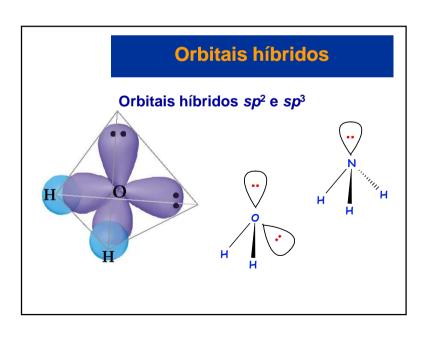


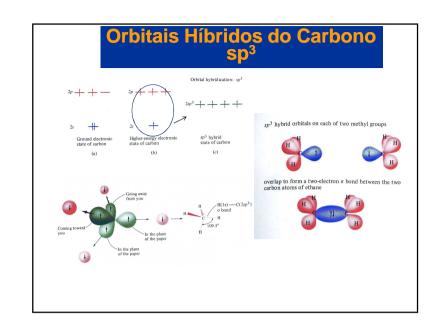
Orbitais híbridos

Orbitais híbridos sp² e sp³


- *Importante*: quando misturamos *n* orbitais atômicos, devemos obter *n* orbitais híbridos.
- Os orbitais híbridos sp^2 são formados com um orbital se dois orbitais p. (Conseqüentemente, resta um orbital p não-hibridizado.)
- Os grandes lóbulos dos híbridos sp^2 encontram-se em um plano trigonal.
- Todas as moléculas com arranjos trigonais planos têm orbitais sp^2 no átomo central.




Orbitais híbridos


Orbitais híbridos sp² e sp³

- Os orbitais híbridos sp³ são formados a partir de um orbital se três orbitais p. Conseqüentemente, há quatro lóbulos grandes.
- Cada lóbulo aponta em direção ao vértice de um tetraedro.
- $\bullet\,$ O ângulo entre os grandes lóbulos é de 109,5°.
- Todas as moléculas com arranjos tetraédricos são hibridizadas sp³.

