
Engenharia de Software

2º Semestre 2016

Cronograma

2

Data Conteúdo

1 01-ago-16 Software e Engenharia de Software

2 08-ago-16 Conceitos Básicos de Orientação a Objeto

15-ago-16 Feriado

3 22-ago-16 Herança e Polimorfismo

4 29-ago-16 Diagrama de classes

05-set-16 Semana da Patria - Não há aula

5 12-set-16 Casos de Uso

6 19-set-16 Engenharia de Requisitos

7 26-set-16 Prova 1

8 03-out-16 Generalização, agregação

9 10-out-16 Processo para diagramas de desenvolvimento

10
17-out-16 General Hierarchy; Player-Role; Singleton; Observer;

11 24-out-16 Adapter; Facade; etc.

12 31-out-16 Design de Interfaces de Usuários

13 07-nov-16 Principios de Design

14-nov-16 Recesso - Não há aula

14 21-nov-16 Process Models, Cost Estimation, Teams

15 28-nov-16 Prova 2

16 05-dez-16 Sub

Avaliações

2 Provas – P1, P2

1 Prova Substitutiva - S

6 Trabalhos práticos – TP1, TP2, TP3, TP4, TP5, TP6

Tarefas ao final das aulas – T(i)

Média = a s d

3

Bibliografia

4

Software Engineering, 10th Edition

Ian Sommerville, University of St

Andrews, Scotland

©2016 Pearson

Software Engineering: A Practitioner's Approach, 8/e

Roger S Pressman, R.S. Pressman & Associates, Inc

Bruce R. Maxim, University of Michigan

ISBN: 0078022126

Copyright year: 2015

5

1.1 The Nature of Software...

Software is intangible

• Hard to understand development effort

Software is easy to reproduce

• Cost is in its development

—in other engineering products, manufacturing is the

costly stage

The industry is labor-intensive

• Hard to automate

6

The Nature of Software ...

Untrained people can hack something together

• Quality problems are hard to notice

Software is easy to modify

• People make changes without fully understanding it

Software does not ‘wear out’

• It deteriorates by having its design changed:

—erroneously, or

—in ways that were not anticipated, thus making it

complex

7

The Nature of Software

Conclusions

• Much software has poor design and is getting worse

• We have to learn to ‘engineer’ software

8

Some types of Software

Real time embedded software

• E.g. control and monitoring systems

• Must react immediately

• Safety often a concern

Data processing software

• Used to run businesses

• Accuracy and security of data are key

Game software

Mobile device software

Web-based software

Etc.

9

1.2 What is Software Engineering?...

The process of solving customers’
problems by the systematic development

and evolution of large, high-quality

software systems within cost, time and

other constraints

10

What is Software Engineering?…

Solving customers’ problems

• The goal

• Sometimes the solution is to buy, not build

• Adding unnecessary features often makes software

worse

• Software engineers must communicate effectively to

identify and understand the problem

11

What is Software Engineering?…

Systematic development and evolution

• An engineering process involves applying well

understood techniques in a organized and disciplined

way

• Many well-accepted practices have been formally

standardized

—e.g. by the IEEE or ISO

• Most development work is evolution

12

What is Software Engineering?…

Large, high quality software systems

• Software engineering techniques are needed because large

systems cannot be completely understood by one person

• Teamwork and co-ordination are required

• Key challenge: Dividing up the work and ensuring that the

parts of the system work properly together

• The end-product must be of sufficient quality

13

What is Software Engineering?

Cost, time and other constraints

• Finite resources

• The benefit must outweigh the cost

• Others are competing to do the job cheaper and faster

• Inaccurate estimates of cost and time have caused many

project failures

Top Hat Monocle Question: SE Objectives

14

15

1.3 The Software Engineering Profession

The term Software Engineering was coined in 1968

• People began to realize that the principles of engineering
should be applied to software development

Engineering is a licensed profession

• In order to protect the public

• Engineers design artifacts following well accepted
practices which involve the application of science,
mathematics and economics

• Ethical practice is also a key tenet of the profession

In many countries, much software engineering does not
require an engineering licence, but is still engineering

16

Software Engineering Code of Ethics

Software engineers shall

• Act consistently with public interest

• Act in the best interests of their clients

• Develop and maintain with the highest standards possible

• Maintain integrity and independence

• Promote an ethical approach in management

• Advance the integrity and reputation of the profession

• Be fair and supportive to colleagues

• Participate in lifelong learning

17

1.5 Software Quality...

Usability

• Users can learn it and fast and get their job done easily

Efficiency

• It doesn’t waste resources such as CPU time and

memory

Reliability

• It does what it is required to do without failing

Maintainability

• It can be easily changed

Reusability

• Its parts can be used in other projects, so reprogramming

is not needed

18

Software Quality and Stakeholders

QUALITY

SOFTWARE

Developer:

easy to design;

easy to maintain;

easy to reuse its parts

User:

easy to learn;

efficient to use;

helps get work done

Customer (those who pay):

solves problems at

an acceptable cost in

terms of money paid and

resources used

Development manager:

sells more and

pleases customers

while costing less

to develop and maintain

19

Software Quality: Conflicts and Objectives

The different qualities can conflict

• Increasing efficiency can reduce maintainability or
reusability

• Increasing usability can reduce efficiency

Setting objectives for quality is a key engineering
activity

• You then design to meet the objectives

• Avoids ‘over-engineering’ which wastes money

20

1.6 Software Engineering Projects

Most projects are evolutionary or maintenance projects,

involving work on legacy systems

• Corrective projects: fixing defects

• Adaptive projects: changing the system in response to

changes in

—Operating system

—Database

—Rules and regulations

• Enhancement projects: adding new features for users

• Reengineering or perfective projects: changing the

system internally so it is more maintainable

21

Software Engineering Projects

‘Green field’ projects

• New development

• The minority of projects

22

1.7 Activities Common to Software

Projects...

Requirements and specification

• Includes

—Domain analysis

—Defining the problem

—Requirements gathering

- Obtaining input from as many sources as possible

—Requirements analysis

- Organizing the information

—Requirements specification

- Writing detailed instructions about how the software should

behave

23

Activities Common to Software Projects...

Design

• Deciding how the requirements should be implemented,
using the available technology

• Includes:

—Systems engineering: Deciding what should be in
hardware and what in software

—Software architecture: Dividing the system into
subsystems and deciding how the subsystems will
interact

—Detailed design of the internals of a subsystem

—User interface design

—Design of databases

24

Activities Common to Software Projects

Modeling

• Creating representations of the domain or the software

—Use case modeling

—Structural modeling

—Dynamic and behavioural modeling

Programming

Quality assurance

• Reviews and inspections

• Testing

Deployment

Managing the process

Tarefa 1 – T(1)

1. Leitura do Cap. 1 – Introdução do livro de ES -

Sommerville.

2. Defina processo de software.

3. O que é CASE?

4. Quais são os quatro principais atributos que todos os

produtos de software devem ter? Sugira quatro outros

atributos que podem ser significativos.

25

