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Introduction · Motivation and Applications

Instantons Classical non-trivial solutions with finite action to equations of motion in Euclidean space-time.

They are non-perturbative process: cannot be seen in any order of perturbation theory!

~ "!
"
ℏ 1 + % ℏdependence essential singularity at ℏ = 0⇒

(imaginary-time)

Several applications:

In one-dimensional QM: semiclassical (SC) description of tunneling processes

In QFT

QCD instantons shape the ground state of strong interactions

Appear in many field theories, from scalar QFTs to supersymmetric Yang-Mills and string theory 

e.g: Yang-Mills instantons display geometrical, topological and quantum effects that have fundamental impact on the
spectrum of nonabelian gauge theories.

In particle physics they have impact on both weak-interaction and hard QCD processes, such as deep inelastic scattering.

In Cosmology they describe the “decay of the false vacuum”.
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Introduction · SCA and WKB method

Semi-classical limit: ℏ → 0

The WKB method, named after Wenzel, Kramers and Brioullin, is a “semiclassical calculation” in QM in which the wave function is
assumed an exponential function with typical wavelength λ small in comparison to the spatial variations of the potential

and

Replacing in Schrodinger equation:

⇒

and expanding

Collecting $ ℏ! , we obtain 

momentum at constant potential
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Introduction · SCA and WKB method
The approximation is good when %(') varies slowly compared to )(')

However, we are interest in tunneling process…

Classical Mechanics Quantum Mechanics

turning point

particle is reflected
non-vanishing probability 

of tunneling!

barrier penetration

But what if we want to describe the barrier penetration with a classical trajectory? This is possible if we 
go to imaginary time!

(classically forbidden region)

Formally, this is identical to the replacement 
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Euclidean Path Integral · Imaginary time
First, let’s remember the propagator at real time: 

matrix element of 
time evolution operator

We will work on
one-dimensional
non-relativistic QM

for time-independent Hamiltonian * ! is the generator of time-translations

This element represent the probability amplitude for the particle to propagate from 

at ⇒ at

The path integral representation is

where the classical action +['] of the path '(.) is: sum over all paths
boundary conditions
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The measure /['] is defined as:

Euclidean Path Integral · Imaginary time

*+[-] = lim
$→&
'→(

3
256ℏ7

'/*
*
!(

(
8-'!+⋯*

!(

(
8-+ 0 . =

1
2
+
1
2
= 1with

SC limit: Classical action is much larger than ℏ
path integral dominated by the paths in the
vicinity of the stationary point(s) of the action

Stationary phase 
approximation

with boundary conditions

action is stationary under variation of the 
critical/classical path

infinitely many neighboring paths add coherently!
Coherence 

region
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However, the stationary-phase approximation cannot describe tunneling processes... 

Euclidean Path Integral · Imaginary time

:[-] has no extrema with tunneling boundary conditions!
forbidden

Solution: analytic continuation to imaginary times

1" = Euclidean time

This procedure is also called Wick Rotation

Note that the imaginary-time evolution operator is NOT unitary does not conserve probability

Statistical Mechanics approach:

partition function ⇒
SC limit:periodic trajectories 



9

Euclidean Path Integral · Energy levels
We are interested in the low-lying energy levels in the SC limit, in particular the ground state (GS)

Energy spectrum:

For large Euclidean time T	, the GS energy dominates: 

⇒

Statistical Mechanics interpretation: the SC limit represents the low temperature limit projects onto the GS

Therefore, to calculate the GS energy (and wave function) we just need to take the 1 → ∞ limit of the imaginary-time matrix 
element. 
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Path integral formulation in imaginary time:

⇒

!" → −% !&
" → −% &

We want to define the measure more formally.  Let’s expand '(C) into a complete, orthonormal set of real functions D'#(C) around 
a fixed path '̅(C)

with

Orthogonality and 
completeness relation

variation

Boundary conditions and

With this parametrization we can write

convenience factor

Euclidean Path Integral · Saddle point approximation
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Euclidean Path Integral · Saddle point approximation
Now, let’s obtain the explicit form of the Euclidean Lagrangian

" → −% &substituting ⇒ ,-
,$ =

,-
,.

,.
,$ = 6 ,-,. ⇒ F'

F.

$
= −

F'
FC

$
≡ −'̇$

∴
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Euclidean Path Integral · Saddle point approximation

The potential changed sign! 

Saddle point approximation:

real time imaginary time

Consequence: now we have solutions to the imaginary-time 
equation of motion with tunneling boundary conditions!

�

�(�)

�

�(�)−

These solutions carry a conserved quantum number: 

Euclidean 
energy
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Euclidean Path Integral · Saddle point approximation
Finally, we can perform the saddle-point approximation explicitly.

SC limit: the only nonvanishing contributions 
com from a neighborhood of '%&

( least suppressed from Boltzmann weight )

Fluctuation around the classical path:

Expanding the action to order $(J$)

where we defined the operator
For deduction

see (2.32)

This operator drives the dynamics of the fluctuation around the classical path.
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Euclidean Path Integral · Saddle point approximation
Now we expand the fluctuations into the basis of real eigenfunctions of KL

with
boundary conditions

We can then write the action as
For deduction

see (2.35)

Using the definition of measure

⇒

performing the Gaussian integrals:

functional determinant
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Instanton Solution · The Double Well Potential
We will first study tunneling process between degenerate potential minima

Classically, we have 2 degenerate energy levels, located at the two 
degenerate minima: parity symmetry is spontaneously broken.

Instantons have the ability to lift perturbation 
theory degeneracies! 

Tunneling is responsible for the splitting between these levels.

But we know that the GS can't be degenerate!

The GS wavefunction must corresponds to the symmetric combination 
of the two perturbative vacua.

even/odd eigenfunctions

Let’s consider the potential

Extracted from Ref. [7].
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Instanton Solution · The Double Well Potential

-��� -��� -��� ��� ��� ���
�

-��

-�

�

��

�(�)

3 = 1 ; > = 4 ; -& = 1

potential:

Saddle point solutions:

trivial static
solutions

They do not contribute to tunneling. But they contribute to 
or

The other saddle point is time-dependent and correspond to the tunneling solution that interpolates between the minima:

tunneling boundary 
conditions (or in the opposite direction)

To obtain an analytic solution we start with the Euclidean energy M" = 0
correspond to lim1 → ∞, because vanishing initial 
velocity requires infinite time. 
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Instanton Solution · The Double Well Potential

⇒ ⇒
If we integrate, we obtain:

integration 
constant

We choose C! to be the “center” of the solution by requiring '%& C! = 0

− instanton solution

+ anti-instanton solution
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Instanton Solution · The Double Well Potential

��=-���

��=�

��=���

-��� -��� -��� ��� ��� ��� �

-���

-���

���

���

x(�)

Note that the tunneling transition happens very fast, almost 
instantaneous name “instanton”

from M" = 0 ⇒

At large C we expand the potential around −'! (using )

For deduction
see (2.54)-(2.57)⇒ where we defined the deviation

The characteristic time scale of the decay becomes arbitrarily small for large N.

“abruptness” of the transition increases with the coupling parameter, related to the height of the potential barrier. 

-&

−-&
2 ( !"

Euclidean action of the 
instanton solution 
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Instanton Solution · The Zero Mode 
From the e.o.m: ⇒

time 
derivative

⇒
eigenvalue O! = 0

Zero 
mode!

The zero mode eigenfunction, correctly normalized, is:

Interpretation: unlike the constant solutions, the instanton solution is well localized in imaginary time. Due to the time-translation 
invariance of the Hamiltonian, they form a one-parameter family of degenerate saddle points related by continuous time-translations, 
whose members are parametrized by their time center C!.

we need to sum over the contributions from all C! !

We also know that the spectrum of a Schrodinger operator has the property that the GS has no nodes, the first excited state has 
one node, etc. 

In the double-well potential, '̇' never vanishes must correspond to the GS and all other eigenvalues are positive!

Therefore, the fluctuation determinant is well behaved (Gaussian) 
for all O# (P ≠ 0), but we still need to deal with the R! integration: 

collective coordinate 



20

Instanton Solution · The Zero Mode 
However, this kind of divergence is exactly what we expect from integrating over the infinite set of saddle points!

We can interchange the integration dR! FC! by comparing the deviations F' from a given path '(C) :

⇒

Therefore:

= #
!"/$

"/$ $% %&
2 'ℏ) *+' =

$% %&
2 'ℏ) ,

and we obtain

determinant without 
the zero mode

in the lim1 → ∞: this divergence is not disturbing since it will be cancelled by other infinities. 
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Instanton Solution · Functional Determinant
Finally, we need to compute:

To this purpose we will use the result of the harmonic oscillator functional determinant:

⇒
lim, → ∞

For deduction
see eq. (2.70)-(2.85)

from which we recover, using ⇒

To compute T' we will write the normalization as 

⇒
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Instanton Solution · Functional Determinant
To calculate det KL ['']’ , we have to deal with the spectrum of the operator 

where

So, we have to solve

⇒
boundary conditions

Because this eq. is of “Schrodinger type”, we know that the eigenvalue spectrum will be discrete for the “bound” states with 
O < 4 N$ and continuous when O > 4 N$

lim(→*
Y%(C) = 4 N$

./(&)

We can solve this equation analytically, first we substitute:

⇒ where
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Instanton Solution · Functional Determinant
The solutions are

associated Legendre functions of the first and second kind

discrete levels:
zero mode ⇒ associated with ∝ ̇-/

(“bound states”)

continuum states: : the associated Legendre functions are no longer convenient...

re-writing + ⇒ (⋯) see eq. (2.99) – (2.102)

⇒ hypergeometric 
differential equation 

solution:

Z = 2

where
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Instanton Solution · Functional Determinant
For Z = 2:

⇒ see eq. (2.104) – (2.113)

Now we use the fact that the eigenvalue eq. is a local equation, so we can obtain the eigenvalues in the asymptotic region |C| → ∞, 
where the potential induced by the instanton field vanishes:

where

solution: “plane waves” 

Elastic scattering ⇒ only effect of the potential can be a \-dependent phase shift 
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Instanton Solution · Functional Determinant
Therefore: lim & → −∞

where we can read the phase shifts

Now, to obtain the relation of the phase shifts with the eigenvalues \, we write:

imposing the boundary conditions:

⇒ ⇒

see eq. (2.120) – (2.123)

Due to the boundary conditions the \# are discrete for finite 1 and become continuous in the limit 1 → ∞ .
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Instanton Solution · Functional Determinant
Now, finally, we are able to calculate the functional determinant! (Remember )

discrete eigenvalue = 3(#

(] = 2N)

and . To perform the calculation, we write:

(⋯ )

where ⇒

see eq. (2.126) – (2.136)

Replacing in T':
propagator of the double-well
tunneling problem to $(ℏ) in
the SCA around a single
instanton.
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Multi-Instantons · Dilute Instanton Gas
Beyond the single-instanton solutions, there are additional saddle points which also contribute to SC tunneling amplitude for large 1.

approximate solutions of the stationary eq. involving further anti–instanton/instanton pairs: “multi-instanton solutions” 

Instantons are well localized deviates only in the interval ∆C = 1/ (2N) appreciably from '! or −'!
very small overlap between neighboring instantons and anti-instantons 

So we can write the multi-(anti-)-instanton solutions as a chain of N alternating instantons and anti-instantons, sufficiently far separated 
in time by the interval 

N tunneling processes, back and forth between both minima of the potential. 

⇒ solution:
N must be odd to satisfy 

boundary conditions 

DILUTE INSTANTON GAS 
APPROXIMATION 

(DIGA)−'!

'!

Extracted from Ref. [7].
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Multi-Instantons · Dilute Instanton Gas
Due to the “diluteness”, the (anti-)instantons have too little overlap to interact and we can write:

fluctuations around the constant
fluctuations around the
single (anti-) instantons 

⇒

N Zero modes: we write

we need to integrate in each time center, but respecting the temporal ordering

Instantons behave like 
identical particles!
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Multi-Instantons · Dilute Instanton Gas
Therefore

⇒

To collect all the multi-instantons contributions we must sum over all odd N

Analogously, we can compute   
summing even numbers of instantons:

Combining the results:

−3$ −3$ −3$ −3$ −3$ −3$a b b ba a
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Multi-Instantons · Dilute Instanton Gas
Finally, to obtain the two lowest energy levels of the system, we can compare: 

±-& −-&

and

symmetric

anti-symmetric

the effect of tunneling is 
to split the degenerate 

GS energies! 

⇒

The artificially broken parity in the absence of tunneling is restored. 
Extracted from Ref. [7].
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Multi-Instantons · Periodic Potential

Let’s consider now the periodic potential with degenerate minima:

Resembles the QCD vacuum situation.

Condensed matter physics: electrons in crystal lattices

The main difference is that now instantons and anti-instantons can 
arbitrarily follow each other:

Instantons: - = E - = E − 1

- = E - = E + 1Anti-instantons: 
-� -� � � �

�

�(�)

10-1 2-2

Boundary conditions

where

=



Multi-Instantons · Periodic Potential
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Then, we write the SC propagator as:

⇒

see eq. (2.163) – (2.169)

Now, we can obtain the low-lying energy levels from the 1 → ∞ limit: 

continuous “band” of energies 
parametrized by c

and the eigenstates are the Bloch waves:

state localized at the P-th minimum of the potential 
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Decay of a Meta-stable State · Bounce Solution 

Example: consider the quartic anharmonic oscillator potential

�=��

�=-��

-��� -��� ��� ��� x

-����

-����

-����

����

����

����
V(x)

F - =
1
2
-* +

G
4
-0

For negative coupling O < 0, the Hamiltonian is no longer 
bounded from below, and then

! ∝ #+,% = exp −) *
2 -̇

$ + / - 01 diverges

To solve this problem we analytic continuate M(O) from O > 0 to O < 0.

A particle in the GS at the bottom of the local unstable minimum will decay
by tunneling through the barrier.−F -

We want to obtain the mean lifetime of the particle 
imaginary part of 

the GS energy! 

In general, a meta-stable state arises due to the existence of a
local minimum of the potential, which is not the global minimum.

We want the saddle point solution with boundary conditions: ' ± -
$ = 0BOUNCE
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Decay of a Meta-stable State · Bounce Solution 

⇒

saddle-point equation Let’s first consider constant solutions: '̇ = 0

−#’ % = − % − ' %- = 0

% 1 − ' %. = 0
' C = 0

' C = ±
1
−O

But what about the boundary conditions ' ± -
$ = 0 ?? These paths do not appear, but they “nearly” do.

We are interest in the non-constant solutions. Taking the lim1 → ∞, and M = 0, 
i.e. particle arrives to the turning point with zero energy, we obtain:

% *
cosh(* − */)

bounces

G < 0

(where O → −O > 0 andf = 0)

�=��

-� � �

x(�)

I&

zero of %(')
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Decay of a Meta-stable State · Negative Mode
Now, similarly to what we did with the double well we want to examine the spectrum of the operator:

where / - = 1
2-

$ + 34-
.with the eigenvalue eq.

Zero mode:

�=��

-� � �

x�(�)The mode with O = 0 is proportional to the imaginary time derivative '̇'

However, note that now '̇' posses one node, this means that it must correspond 
to the first excited state!  

So, we have a negative mode that 
corresponds to the GS!!

The negative mode will be responsible to the imaginary part contribution! 

Negative mode: using that 

56 = − 0$
01$ + 1 −

6
cosh$(1 − 1!) ⇒ J-& =

1
cosh*(I)

and OP J-&= −3 J-&
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However the integral for this mode is not Gaussian anymore…

1 ∝
negative mode

divergent!

To perform this integral we will use analytic continuation using the steepest descent method.

⇒
G&

(⋯ )

Finally, combining all the pieces, we obtain:

where

⇒

Decay of a Meta-stable State · Negative Mode
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Conclusion
• Instantons are localized, non-perturbative processes with several applications in many areas of physics.

• In QM, we can use instantons to describe tunneling/decay phenomena in the SC approximation if we analytic
continue to imaginary/Euclidean time.

The formal effect is to change the potential sign, so we can interpret the instanton solution as a classical particle moving in 
the inverted potential!  

• We can extract the low-lying energy levels from the path integral/partition function in the SC approximation by
taking the limit R → ∞.

• For potentials with degenerate minima (double-well), the effect of tunneling is to split the degenerate energy
levels. In this case we can calculate the instanton solution analytically.

• The spectrum of the fluctuation operator reveals the appearance of a zero mode, related to the translational
invariance. The instanton solutions then form a one-parameter family parametrized by a collective coordinate.

• Due to their localized behavior we can consider multi-instantons solutions   Dilute Instanton Gas Approximation 

• For the decay of an unstable state, we call the instanton solution “the bounce”. Beyond the zero mode, a negative
mode appear, responsible for the imaginary part of the partition function, where we extract the decay width.
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Thank you for your kind attention!
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BACKUP
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Decay of a Meta-stable State



42

⇒

⇒
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