PME3380 | Modelagem de Sistemas Dinâmicos

Enzo Rozenti Nunes - 10771604 Gabriel Rodrigues Camargo - 10772460 Lucas Nigro Matheo - 10772911

SISTEMA DE FREIOS DE TRENS

01/11/2020

SUMÁRIO

1.	Introdução	03
2.	Considerações	06
3.	Diagrama de Blocos	08
4.	Cilindros de Volume Fixo	10
5.	Cilindros de Volume Variável	14
6.	Linearização	19
7.	Resultados	26
8.	Análise de estabilidade e frequência	31
9.	Modelo final da frenagem	35
10	. Conclusão	37
11	Referências	38

INTRODUÇÃO

FREIOS PNEUMÁTICOS A AR DIRETO

- O maquinista deve acionar a alavanca de freio com a intensidade adequada
- Funcionamento é baseado nas diferenças de pressão entre o reservatório principal e os cilindros de freio
- Reservatório principal é alimentado por um compressor e apresenta diferença de pressão em relação ao cilindro de freio
- Após a alimentação dos cilindros, sua força é distribuída para o sistema de sapatas que gera a frenagem
 Reservatório Principal

DESVANTAGENS

- Acionamento assíncrono dos cilindros de freio
- Frenagem tardia dos últimos vagões
- Choque nos elementos de conexão entre os vagões
- Risco de acidentes em caso de parada emergencial
- Sistema comprometido em caso de ruptura do encanamento geral

OBJETIVOS

- Elaboração de um modelo matemático
- Estudar o comportamento da pressão nos reservatórios dos cilindros de freio
- Estudar a frenagem de um trem simples

MOTIVAÇÃO

Importância dessa matriz de transporte para o desenvolvimento nacional

CONSIDERAÇÕES

SIMPLIFICAÇÕES

- Volume do reservatório dos cilindros fixo (a princípio)
- Reservatório principal de volume infinito e pressão P_0 constante
- Seções dos dutos com propriedades uniformes
- Simulação de uma única frenagem
- Fluido utilizado para frenagem é um gás ideal, incompressível e em regime permanente
- Escoamento laminar
- Processo de transferência de ar comprimido é adiabático
- Frenagem considera apenas atrito com roda
- Parâmetros usados na frenagem são usados como constantes

MODELOS

- Determinação das características e considerações adotadas
- Avaliar impactos no resultado final
- Variação da complexidade
- Reflexo no comportamento da pressão
- Aproximação de um sistema real
- Realização da frenagem final após todos desenvolvimentos e análises

DIAGRAMA DE BLOCOS

3.1 DIAGRAMA DE BLOCOS

- Relação entre os sistemas
- Compreensão dos modelos que querem ser desenvolvidos

CILINDROS DE VOLUME FIXO

- Equacionamento
- Processo isotérmico

 $\frac{\partial P_1}{\partial t} = \dot{m}_1 \frac{RT}{V1} = \frac{\dot{m}_1}{C1}$ $\frac{\partial P_2}{\partial t} = \dot{m}_2 \frac{RT}{V2} = \frac{\dot{m}_2}{C2}$

• Diferença de pressão

$$P_{1'} - P_1 = \dot{m}_1 R_{1'-1}$$
$$P_{2'} - P_2 = \dot{m}_2 R_{2'-2}$$

Analogamente

$$\frac{\partial P_{1'}}{\partial t} = \dot{m}_{1'} \frac{RT}{V1'} = \frac{\dot{m}_{1'}}{C_{1'}}$$

L01'

L1'2'

11

L1'1

$$\frac{\partial P_{2'}}{\partial t} = \dot{m}_{2'} \frac{RT}{V_{2'}} = \frac{\dot{m}_{2'}}{C_{2'}}$$

$$P_0 - P_{1'} = (\dot{m}_2 + \dot{m}_{2'} + \dot{m}_1 + \dot{m}_{1'})R_{0-1'}$$
$$P_{1'} - P_{2'} = (\dot{m}_2 + \dot{m}_{2'})R_{1'-2'}$$

L2'2

2

Vazão mássica

n

$$\dot{n}_{i} = \frac{Vi}{RT} \frac{\partial P_{i}}{\partial t} = \frac{(P_{i'} - P_{i})}{R_{i'-i}}$$
$$\dot{m}_{i'} = Ci' \frac{\partial Pi'}{\partial t}$$

• Equacionamento final (4 variáveis)

$$\frac{dP_1}{dt} = \frac{\pi d^4 P_1 (P_{1'} - P_1)}{V_1 L_{11'} 128\mu}$$

$$\frac{dP_2}{dt} = \frac{\pi d^4 P_2 (P_{2'} - P_2)}{V_2 L_{22'} 128\mu}$$

$$\frac{dP_{2'}}{dt} = \frac{(P_{1'} - P_{2'})P_{2'}\pi d^4}{128\mu L_{2'1'}V_{2'}} - \frac{(P_{2'} - P_2)P_2\pi d^4}{128\mu L_{2'2}V_{2'}}$$

$$\frac{dP_{1'}}{dt} = \frac{(P_0 - P_{1'})P_{1'}\pi d^4}{128\mu L_{01'}V_{1'}} - \frac{(P_{1'} - P_1)P_1\pi d^4}{128\mu L_{11'}V_{1'}} - \frac{(P_{1'} - P_{2'})P_{2'}\pi d^4}{128\mu L_{1'2'}V_{1'}}$$

4.3 n CILINDROS

• Equacionamento

$$\begin{cases} \frac{\partial P_{i}}{\partial t} = \frac{(P_{i'} - P_{i})}{CiR_{i'-i}} \\ P_{i'} - P_{i} = \dot{m}_{i}R_{i'-i} \\ \frac{\partial P_{i'}}{\partial t} = \dot{m}_{i'}\frac{RT}{Vi'} = \frac{\dot{m}_{i'}}{C_{i'}} \\ P_{i'-1} - P_{i'} = \left(\sum_{j=i}^{n} \dot{m}_{i} + \dot{m}_{i'}\right)R_{(i-1)'-i'} \end{cases}$$

(para o i – ésimo reservatório

CILINDROS DE VOLUME VARIÁVEL

5.1 MODELO VARIÁVEL

Adição do pistão ao sistema

Aumento de variáveis no sistema

Sistema massa mola amortecido

- Cilindro de freio é completamente fechado, sem saída de fluido de seu interior
- Hipóteses mantidas

• Equacionamento

$$\begin{cases} \frac{\partial P_i}{\partial t} = \dot{m}_i \frac{RT}{Vi} = \frac{\dot{m}_i}{C_i} \\ P_{i'} - P_i = \dot{m}_i R_{i'-i} \\ \frac{\partial P_{i'}}{\partial t} = \dot{m}_{i'} \frac{RT}{Vi'} = \frac{\dot{m}_{i'}}{C_{i'}} \\ P_{i'-1} - P_{i'} = \left(\sum_{j=i}^n \dot{m}_i + \dot{m}_{i'}\right) R_{(i-1)'-i} \end{cases}$$

(para o i – ésimo reservatório)

 $V_i = A_{Pistão} x_i$

TMB (Teorema do movimento do Baricentro):

$$M_{pistão}\ddot{x}_{i} = (P_{i}(t) - P_{0i}(t))A_{pistão} - kx_{i} - c\dot{x}_{i}$$

Processo isotérmico

$$P_{0i_0}V_{0i_0} = P_{0i}(t)V_{0i}(t) \Rightarrow P_{0i}(t) = P_{inicial} \frac{V_{inicial}}{V_{inicial} - (x_i - 0.2)A_{pistão}}$$

т 7

Equacionamento

$$M_{pist\tilde{a}o}\ddot{x}_{i} = \left(P_{i}(t) - P_{inicial}\frac{V_{inicial}}{V_{inicial} - (x_{i} - 0.2)A_{pist\tilde{a}o}}\right)A_{pist\tilde{a}o} - kx_{i} - c\dot{x}$$

Equacionamento final

$$\begin{cases} \ddot{x}_{1} = \frac{A_{pistao}}{m} \left[p_{1} - \frac{p_{inicial}V_{aux}}{V_{aux} - (x_{1} - 0, 2)A_{pistao}} \right] - \frac{k}{m}x_{1} - \frac{c}{m}\dot{x}_{1} \\ \ddot{x}_{2} = \frac{A_{pistao}}{m} \left[p_{2} - \frac{p_{inicial}V_{aux}}{V_{aux} - (x_{2} - 0, 2)A_{pistao}} \right] - \frac{k}{m}x_{2} - \frac{c}{m}\dot{x}_{2} \\ \dot{p}_{1} = \frac{(p'_{1} - p_{1})p_{1}\pi d_{m}^{4}}{128\mu A_{pistao}x_{1}L} \\ \dot{p}_{2} = \frac{(p'_{2} - p_{2})p_{2}\pi d_{m}^{4}}{128\mu A_{pistao}x_{2}L} \\ \dot{p}'_{1} = \frac{RT}{VPC} \left\{ \frac{(p_{0} - p'_{1})p'_{1}BP\pi D^{4}}{128\mu TPLRT} - \frac{(p'_{2} - p_{2})p_{2}\pi d_{m}^{4}}{128\mu LRT} - \frac{(p'_{1} - p_{1})p_{1}\pi d_{m}^{4}}{128\mu LRT} - \left[\frac{(p'_{1} - p'_{2})p'_{2}\pi BPD^{4}}{128\mu TPLRT} - \frac{(p'_{2} - p_{2})p_{2}\pi d_{m}^{4}}{128\mu LRT} \right] \right\} \\ \dot{p}'_{2} = \frac{RT}{VPC} \left[\frac{(p_{1} - p'_{2})p'_{2}BP\pi D^{4}}{128\mu TPLRT} - \frac{(p'_{2} - p_{2})p_{2}\pi d_{m}^{4}}{128\mu LRT} \right]$$

Equação geral obtida

$$\dot{X} = \begin{bmatrix} \dot{x}_{1} \\ \frac{A_{pistao}}{m} \left[p_{1} - \frac{p_{inicial}V_{aux}}{V_{aux} - (x_{1} - 0, 2)A_{pistao}} \right] - \frac{k}{m}x_{1} - \frac{c}{m}\dot{x}_{1} \\ \frac{x_{2}}{x_{2}} \\ \frac{A_{pistao}}{m} \left[p_{2} - \frac{p_{inicial}V_{aux}}{V_{aux} - (x_{2} - 0, 2)A_{pistao}} \right] - \frac{k}{m}x_{2} - \frac{c}{m}\dot{x}_{2} \\ \frac{(p'_{1} - p_{1})p_{1}\pi d_{m}^{4}}{128\mu A_{pistao}x_{1}L} \\ \frac{(p'_{2} - p_{2})p_{2}\pi d_{m}^{4}}{128\mu A_{pistao}x_{2}L} \\ \frac{\frac{(p'_{2} - p_{2})p_{2}\pi d_{m}^{4}}{128\mu LRT} - \frac{(p'_{2} - p_{2})p_{2}\pi d_{m}^{4}}{128\mu LRT} - \left[\frac{(p'_{1} - p'_{2})p'_{2}\pi BPD^{4}}{128\mu LRT} - \frac{(p'_{2} - p_{2})p_{2}\pi d_{m}^{4}}{128\mu LRT} \right] \end{bmatrix} Y = \frac{RT}{VPC} \begin{bmatrix} (p_{1} - p'_{2})p'_{2}DP\pi D^{4} - \frac{(p'_{2} - p_{2})p_{2}\pi d_{m}^{4}}{128\mu LRT} - \frac{(p'_{2} - p_{2})p_{2}\pi d_{m}^{4}}{128\mu LRT} \end{bmatrix}$$

 x_1

 x_2

Mudança de variavel

Z =	$\begin{bmatrix} Z_1 \\ Z_2 \\ Z_3 \\ Z_4 \\ Z_5 \\ Z_6 \\ Z_7 \\ Z_8 \end{bmatrix}$	⇒ .	Ż =	$egin{array}{c} \dot{z}_1 \ \dot{z}_2 \ \dot{z}_3 \ \dot{z}_4 \ \dot{z}_5 \ \dot{z}_6 \ \dot{z}_7 \ \dot{z}_8 \end{array}$	=	$\begin{bmatrix} \dot{x}_{1} \\ \ddot{x}_{1} \\ \dot{x}_{2} \\ \ddot{x}_{2} \\ \dot{p}_{1} \\ \dot{p}_{2} \\ \dot{p}'_{1} \\ \dot{p}'_{2} \end{bmatrix}$	=	$ \begin{bmatrix} f_1(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, u, t) \\ f_2(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, u, t) \\ f_3(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, u, t) \\ f_4(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, u, t) \\ f_5(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, u, t) \\ f_6(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, u, t) \\ f_7(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, u, t) \\ f_8(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, u, t) \\ \end{bmatrix} $	
$Y = \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} g_1(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, u, t) \\ g_2(z_1, z_2, z_3, z_4, z_5, z_6, z_7, z_8, u, t) \end{bmatrix}$									

 $\begin{bmatrix} \frac{\partial f_1}{\partial z_1} & \frac{\partial f_1}{\partial z_2} & \frac{\partial f_1}{\partial z_3} & \frac{\partial f_1}{\partial z_4} & \frac{\partial f_1}{\partial z_5} & \frac{\partial f_1}{\partial z_6} & \frac{\partial f_1}{\partial z_7} & \frac{\partial f_1}{\partial z_8} \\ \frac{\partial f_2}{\partial z_1} & \frac{\partial f_2}{\partial z_2} & \frac{\partial f_2}{\partial z_3} & \frac{\partial f_2}{\partial z_4} & \frac{\partial f_2}{\partial z_5} & \frac{\partial f_2}{\partial z_6} & \frac{\partial f_2}{\partial z_7} & \frac{\partial f_2}{\partial z_8} \\ \frac{\partial f_3}{\partial z_1} & \frac{\partial f_3}{\partial z_2} & \frac{\partial f_3}{\partial z_3} & \frac{\partial f_3}{\partial z_4} & \frac{\partial f_3}{\partial z_5} & \frac{\partial f_3}{\partial z_6} & \frac{\partial f_3}{\partial z_7} & \frac{\partial f_3}{\partial z_8} \\ \frac{\partial f_4}{\partial z_1} & \frac{\partial f_4}{\partial z_2} & \frac{\partial f_5}{\partial z_3} & \frac{\partial f_5}{\partial z_4} & \frac{\partial f_4}{\partial z_5} & \frac{\partial f_4}{\partial z_6} & \frac{\partial f_4}{\partial z_7} & \frac{\partial f_4}{\partial z_8} \\ \frac{\partial f_5}{\partial z_1} & \frac{\partial f_5}{\partial z_2} & \frac{\partial f_5}{\partial z_3} & \frac{\partial f_5}{\partial z_4} & \frac{\partial f_5}{\partial z_5} & \frac{\partial f_5}{\partial z_6} & \frac{\partial f_5}{\partial z_7} & \frac{\partial f_8}{\partial z_8} \\ \frac{\partial f_6}{\partial z_1} & \frac{\partial f_6}{\partial z_2} & \frac{\partial f_6}{\partial z_3} & \frac{\partial f_6}{\partial z_4} & \frac{\partial f_6}{\partial z_5} & \frac{\partial f_6}{\partial z_5} & \frac{\partial f_6}{\partial z_7} & \frac{\partial f_7}{\partial z_8} \\ \frac{\partial f_6}{\partial z_1} & \frac{\partial f_7}{\partial z_2} & \frac{\partial f_7}{\partial z_3} & \frac{\partial f_7}{\partial z_4} & \frac{\partial f_7}{\partial z_5} & \frac{\partial f_7}{\partial z_6} & \frac{\partial f_7}{\partial z_7} & \frac{\partial f_7}{\partial z_8} \\ \frac{\partial f_6}{\partial z_1} & \frac{\partial f_7}{\partial z_2} & \frac{\partial f_7}{\partial z_3} & \frac{\partial f_7}{\partial z_4} & \frac{\partial f_7}{\partial z_5} & \frac{\partial f_7}{\partial z_6} & \frac{\partial f_7}{\partial z_7} & \frac{\partial f_7}{\partial z_8} \\ \frac{\partial f_6}{\partial z_1} & \frac{\partial f_7}{\partial z_2} & \frac{\partial f_7}{\partial z_3} & \frac{\partial f_7}{\partial z_4} & \frac{\partial f_7}{\partial z_5} & \frac{\partial f_7}{\partial z_6} & \frac{\partial f_7}{\partial z_7} & \frac{\partial f_7}{\partial z_8} \\ \frac{\partial f_8}{\partial z_1} & \frac{\partial f_8}{\partial z_2} & \frac{\partial f_8}{\partial z_3} & \frac{\partial f_8}{\partial z_4} & \frac{\partial f_8}{\partial z_5} & \frac{\partial f_8}{\partial z_6} & \frac{\partial f_8}{\partial z_7} & \frac{\partial f_8}{\partial z_8} \\ \frac{\partial f_8}{\partial z_1} & \frac{\partial f_8}{\partial z_2} & \frac{\partial f_8}{\partial z_3} & \frac{\partial f_8}{\partial z_4} & \frac{\partial f_8}{\partial z_5} & \frac{\partial f_8}{\partial z_6} & \frac{\partial f_8}{\partial z_7} & \frac{\partial f_8}{\partial z_8} \\ \frac{\partial f_8}{\partial z_1} & \frac{\partial f_8}{\partial z_2} & \frac{\partial f_8}{\partial z_3} & \frac{\partial f_8}{\partial z_4} & \frac{\partial f_8}{\partial z_5} & \frac{\partial f_8}{\partial z_6} & \frac{\partial f_8}{\partial z_7} & \frac{\partial f_8}{\partial z_8} \\ \frac{\partial f_8}{\partial z_1} & \frac{\partial f_8}{\partial z_2} & \frac{\partial f_8}{\partial z_3} & \frac{\partial f_8}{\partial z_4} & \frac{\partial f_8}{\partial z_5} & \frac{\partial f_8}{\partial z_6} & \frac{\partial f_8}{\partial z_7} & \frac{\partial f_8}{\partial z_8} \\ \frac{\partial f_8}{\partial z_1} & \frac{\partial f_8}{\partial z_2} & \frac{\partial f_8}{\partial z_3} & \frac{\partial f_8}{\partial z_4} & \frac{\partial f_8}{\partial z_5} & \frac{\partial f_8}{\partial z_6} & \frac{\partial f_8}{\partial z_7} & \frac{\partial f_8}{\partial z_8} \\ \frac{\partial f_8}{\partial z_1} & \frac{\partial f_8}$ $\begin{array}{c}
\frac{\partial f_1}{\partial u} \\
\frac{\partial f_2}{\partial u} \\
\frac{\partial f_3}{\partial u} \\
\frac{\partial f_4}{\partial u} \\
\frac{\partial f_5}{\partial u} \\
\frac{\partial f_6}{\partial u} \\
\frac{\partial f_7}{\partial u} \\
\frac{\partial f_8}{\partial u} \\
\frac{\partial f_8}{\partial u}
\end{array}$ Equacionamento $\dot{Z} - \dot{Z}_{eq} =$ $(Z-Z_{eq}) +$ $(U - U_{eq})$

 $Y - Y_{eq} = \begin{bmatrix} \frac{\partial g_1}{\partial z_1} & \frac{\partial g_1}{\partial z_2} & \frac{\partial g_1}{\partial z_3} & \frac{\partial g_1}{\partial z_4} & \frac{\partial g_1}{\partial z_5} & \frac{\partial g_1}{\partial z_6} & \frac{\partial g_1}{\partial z_7} & \frac{\partial g_1}{\partial z_8} \\ \frac{\partial g_2}{\partial z_1} & \frac{\partial g_2}{\partial z_2} & \frac{\partial g_2}{\partial z_3} & \frac{\partial g_2}{\partial z_4} & \frac{\partial g_2}{\partial z_5} & \frac{\partial g_2}{\partial z_6} & \frac{\partial g_2}{\partial z_7} & \frac{\partial g_2}{\partial z_8} \end{bmatrix} (Z - Z_{eq}) + \begin{bmatrix} \frac{\partial g_1}{\partial u} \\ \frac{\partial g_2}{\partial u} \end{bmatrix} (U - U_{eq})$

• Obtenção do sistema

$$\dot{Z} - \dot{Z}_{eq} = A(Z - Z_{eq}) + B(U - U_{eq}) \qquad Y - Y_{eq} = C(Z - Z_{eq}) + D(U - U_{eq})$$

Constantes e posições de equilíbrio

$$\begin{split} & Z_{eq} \approx \begin{bmatrix} 0.278 \\ 0 \\ 0.278 \\ 0 \\ 338 \\ 338 \\ 338 \\ 338 \\ 338 \\ 338 \end{bmatrix}; \dot{Z}_{eq} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}; \\ & Y_{eq} \approx \begin{bmatrix} 0.278 \\ 0 \end{bmatrix}; U_{eq} = [338] \end{split}$$

BCD = 0.56 mSLP = 0.2 mTPL = 14 mBPL = 2 m(L)TPD = 0.03 mBPD = 0.03 m $\mu = 18.3 * 10^{-6}$ T = 300 K $A_{pistao} = 0.25 m^2$ Vaux = $0.049 m^3$ $VPC = TPD^2 * \frac{\pi}{4} * TPL$

• Matrizes finais obtidas

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1106.190 & -100 & 0 & 0 & 0.493 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0.493 & 0 & 0 \\ 0 & 0 & 0 & 0 & -2.682 & 0 & 2.682 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2.682 & 0 & 2.6823801 \\ 0 & 0 & 0 & 0 & 0 & 18.527 & 0 & -23.821 & 2.647 \\ 0 & 0 & 0 & 0 & 0 & 18.527 & 2.647 & -21.174 \end{bmatrix}$$
$$B = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2.647 \\ 0 \end{bmatrix}; \ C = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix}; \ D = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

RESULTADOS

7.1 3 CILINDROS FIXO

- Quantidade escolhida devida a complexidade
- Sistema estável
- Reservatórios próximos aumentam a pressão primeiro
- Risco de frenagem precipitada
- Tendência a valor 338kPa

NÃO LINEAR

LINEAR

NÃO LINEAR

LINEAR

Deslocamentos dos pistões 1 e 2 em função do tempo (Modelo linear)

7.3 COMPARATIVO

PRESSÃO

DESLOCAMENTO

ANÁLISE DE ESTABILIDADE E FREQUÊNCIA

8.1 DIAGRAMA DE BODE

- Sem frequência de ressonância
- Decaimento 85dB/década para frequências altas
- Para frequências baixas se mantem em 70dB
- Diferença notável de curvas, como nas pressões
- Estabilização de fases em -430 graus para x₂ e de -350 graus para x₁

8.2 FUNÇÃO DE TRANSFERÊNCIA

• Obtida através da linearização prévia, com programação no Scilab

 $g_1(s) = \frac{27465.34 + 94773.311s + 12236.528s^2 + 433.15484s^3 + 3.49724s^4 + 1.513 * 10^{-9}s^5 + 1.819 * 10^{-11}s^6 + 8.527 * 10^{-14}s^7}{61676410 + 6.099 * 10^8s + 9 * 10^8s^2 + 2.107 * 10^8s^3 + 20358876s^4 + 966042.78s^5 + 22930.758s^6 + 250.35912s^7 + s^8}$

 $g_2(s) = \frac{27465.34 + 12722.043s + 950.45275s^2 + 9.2562403s^3 + 2.980 * 10^{-8}s^4 + 9.313 * 10^{-10}s^5 + 1.091 * 10^{-11}s^6 + 5.684 * 10^{-14}s^7}{61676410 + 6.099 * 10^8s + 9 * 10^8s^2 + 2.107 * 10^8s^3 + 20358876s^4 + 966042.78s^5 + 22930.758s^6 + 250.35912s^7 + s^8}$

Polos do sistema encontrados

 $\begin{cases} s_1 \approx -87.364346 \\ s_2 \approx -87.303171 \end{cases}$

- $s_3^2 \approx -27.461875$ •
- $s_{4}^{\circ} \approx -22.09771$
- $s_5 \approx -12.666772$ •
- $s_5 \approx -12.66572$ $s_5 \approx -0.6768223$
- $s_5 \approx -0.1227176$

- Sistema estável, todas as variáveis reais negativas
 - Partes imaginárias nulas, caráter não oscilatório

8.3 MÉTODO DE ROUTH-HURWITH

• Análise de estabilidade por meio de $g_1(s)$ e $g_2(s)$

<i>s</i> ⁸	1	22930,758	20358876	9×10^8	61676410
<i>s</i> ⁷	250,35912	966042,78	$2,107 \times 10^{8}$	6,099 × 10 ⁸	0
<i>s</i> ⁶	19072,13	19517284,9287	$8,976 \times 10^{8}$	61676410	0
s ⁵	709840,12	1,989 × 10 ⁸	6,091 × 10 ⁸	0	0
<i>s</i> ⁴	14172723	8,812 × 10 ⁸	61676410	0	0
<i>s</i> ³	$1,548 \times 10^8$	6,060 × 10 ⁸	0	0	0
<i>s</i> ²	$8,257 \times 10^8$	61676410	0	0	0
<i>s</i> ¹	$5,944 \times 10^8$	0	0	0	0
<i>s</i> ⁰	61676410	0	0	0	0

- Apenas números positivos
- Sistema analisado é estável e todos os seus polos têm parte real negativa
- Coerente com a análise de estabilidade prévia

9 MODELO FINAL DE FRENAGEM

- Complementação do modelo de frenagem: modelagem da sapata
- Hipótese: não há escorregamento e desconsidera-se outras forças de resistência

$$F_{frenagem} = F_{atrito}$$

 $F_{atrito} = \mu \times F_{pistao}$

$$F_{pistao,i} = A \times p_i \times ra \times ef \times 10$$

A = área da superfície do pistão de pressão; $p_i =$ pressão do referente cilindro para o qual se quer determinar a força; ef = eficiência timoneira (aproximadamente 60%); $\mu = 0,35$; ra = 5,13 razão alavancas; M = 160 ton (2 vagôes normais).

9.1 RESULTADOS DA FRENAGEM

- Frenagem em 130s e 1100m
- Resultados razoáveis quando comparados a outros artigos, valores próximos de 950m e 95s

10 CONCLUSÃO

- Modelo de dois cilindros de freio com pistões: simplificações e considerações adotadas permitiram a obtenção de respostas desejadas. Poucas irregularidades e fenômenos esperados de defasagem entre os cilindros e pistões
- A maior quantidade de variáveis consideradas, apresentou menor defasagem se comparado ao modelo de cilindros de volume fixo
- Trabalhar com um modelo que resulte em menores defasagens de tempo de frenagem entre os vagões, é possível garantir maior validez ao modelo
- Frenagens similares devido o sistema apresentar poucos reservatórios, mas satisfatório
- Possíveis melhoras: considerar um elemento de trava que impeça o deslocamento do pistão no sentido contrário ou cilindro de freio com alívio para a tubulação geral
- Uso de válvula de controle e reservatório auxiliar para futuro controle do sistema

REFERÊNCIAS

Claudio Garcia. Modelagem e Simulação de Processos Industriais e de Sistemas Eletromecânicos. 2° edição. São Paulo: editora da Universidade de São Paulo, 2005.

Luiz Carlos Felício. Modelagem da Dinâmica de Sistemas e Estudo da Resposta. 2° edição. São Paulo: RiMa Editora, 2010.

L Pugi; M Malvezzi; B Allotta; L Banchi; P Presciani. A parametric library for the simulation of a Union Internationale des Chemins de Fer (UIC) pneumatic braking system. 16 f. Artigo. Departamento de Energia 'Sergio Stecco', Seção de Mecânica Aplicada, Universidade de Florença, 2004.

S. Bharath; B. C. Nakra; K. N. Gupta. A Distributed Mathematical Model for Pressure Transient Analysis in Railway Pneumatic Brake System. 13 f. Artigo. Int. J. Mech, 1989.