

PME3380 – Modelagem de Sistemas Dinâmicos

Modelagem Dinâmica de um Veículo Aéreo Não Tripulado do Tipo Quadrirrotor

Professores: Agenor T. Fleury e Décio C. Donha

PME3380 - Modelagem de Sistemas Dinâmicos

S Gabriela Vasconcelos Araujo NUSP: 10771497

Ítalo Gonçalves Sant'Ana Paiva NUSP: 10853310

Henrique Silva BarbetaNUSP: 10769323

João Pedro Junqueira S. de Morais NUSP: 10774437

Introdução

Modelagem Matemática

Análise do Sistema

Objetivos e Revisão Bibliográfica

Linearização

Estudo de Estabilidade

3

Introdução

Tamanho do mercado global de VANTs (US\$)

Quadricóptero

Pilotados à distância

Autônomos

Uso Militar

Entretenimento

O registro mais remoto de VANTs foi de balões austráiacos contra Veneza

Fonte: LEISHMAN (2000), Aviastar

Foi desenhado pelos irmãos Brégue com a ajuda do professor Charles Richet no ano de 1907

O registro mais remoto de VANTs foi de balões austráiacos contra Veneza

Fonte: LEISHMAN (2000), Aviastar

7

Oehmichen No. 2

Foi produzido por Étienne Oehmichen. O Oehmichen No. 2 possuía quatro rotores e oito hélices, todos movidos por um motor

O registro mais remoto de VANTs foi de balões austráiacos contra Veneza

Fonte: LEISHMAN (2000), Aviastar

Octopus"

O registro mais remoto de VANTs foi de balões austráiacos contra Veneza

Fonte: LEISHMAN (2000), COSTA (2008), Aviastar

Em direção a aparelhos enxutos e de menor porte

9

O principal foco vem sendo testar os microcomponentes usados para controlar os gistro mais rVANTs e obter novos processos de estabilidade e controle para esses veículos aéreos

Fonte: LEISHMAN (2000), COSTA (2008), Aviastar

Avanço da Tecnologia

1980

Em direção a aparelhos enxutos e de menor porte

Objetivos e Revisão Bibliográfica

11

Objetivos do trabalho proposto

Modelar cinematica e dinamicamente o funcionamento de um quadricóptero

Enfoque na influência do valor das entradas do sistema para operação

Estudar a estabilidade do sistema

Revisão Bibliográfica

Sistema de coordenadas:

- LEISHMAN (2000)
- CAVALLARO (2019)

Modelagem por Lagrange: LIMA (2015), BOUABDALLAH (2007) e OLIVEIRA (2019)

Parâmetros do sistema:

- DOMINGUES (2009)
- CAVALLARO (2019)

Modelagem Cinemática e Dinâmica

14

Equação Geral:

$$\begin{cases} \vec{F} = M_{Total} \dot{\vec{V}} + \vec{\Omega} \times M_{Total} \vec{V} \\ \dot{\vec{\tau}} = J \dot{\vec{\Omega}} + \vec{\Omega} \times (J \vec{\Omega}) \end{cases}$$

Matriz de Inércia:

$$J = \begin{bmatrix} I_x & 0 & 0 \\ 0 & I_y & 0 \\ 0 & 0 & I_z \end{bmatrix} = \begin{bmatrix} 2 \cdot m \cdot l^2 & 0 \\ 0 & 2 \cdot m \cdot l^2 \\ 0 & 0 & 4 \cdot m \end{bmatrix}$$

Massas e braços do quadricóptero:

Método de Newton-Euler: Forças Envolvidas

Força Gravitacional - Z

Força de Empuxo Hipóteses; Bernoulli; Somatório de Empuxos

Força de Arrasto Resistência do ar; Desprezível para as forças

$$F_P = M_{Total} \cdot \begin{bmatrix} 0 & 0 & -g \end{bmatrix}^T$$

$$E_{\text{Total},B} = \begin{bmatrix} 0\\ 0\\ C_e \left(\omega_1^2 + \omega_2^2 + \omega_3^2 + \omega_4^2\right) \end{bmatrix}$$

$$F_{ar} = \frac{1}{2}\rho C_a \begin{bmatrix} A_{\text{ref},X} \cdot \dot{X}^2 \\ A_{\text{ref},Y} \cdot \dot{Y}^2 \\ A_{\text{ref},Z} \cdot \dot{Z}^2 \end{bmatrix}$$

Método de Newton-Euler: Momentos Envolvidos

Diferença entre empuxos: $M_{\rm ro}$ Hélices $M_{\rm ar}$

Tentativa de alinhamento do eixo: Inércia dos rotores

$$M_{Mi} = rac{1}{2}
ho C_a A_{
m ref} R(\omega R)^2 = K_a \omega^2$$

 $au_{M3} = K_a \left[\left(\omega_2^2 + \omega_4^2 \right) - \left(\omega_1^2 + \omega_3^2 \right) \right]$

$$\sum_{\text{olagem}} = E_3 l - E_1 l = C_e l \left(\omega_2^2 - \omega_4^2\right)$$
$$\sum_{\text{arfagem}} = E_2 l - E_4 l = C_e l \left(\omega_3^2 - \omega_1^2\right)$$

$$M_{Gir} = \vec{\Omega} \times \begin{bmatrix} 0 & 0 & J_r \omega_i \end{bmatrix} = \begin{bmatrix} \dot{\theta} J_r \omega_i & -\dot{\phi} J_r \omega_i & 0 \end{bmatrix}$$

$$R = R_Z(\psi)R_Y(\theta)R_X(\phi) = \begin{vmatrix} C\psi C\theta \\ S\psi C\theta \\ -S\theta \end{vmatrix}$$

Referencial Não Inercial B(x, y, z)

$\begin{array}{ccc} C\psi S\theta S\phi - S\psi C\phi & C\psi S\theta C\phi + S\psi S\phi \\ S\psi S\theta S\phi + C\psi C\phi & S\psi S\theta C\phi - S\phi C\psi \\ C\theta S\phi & C\theta C\phi \end{array} \right|$

Referencial Inercial E(X, Y, Z)

Método de Newton-Euler: Equações Dinâmicas (Forças)

Despreza Coriolis e Força de arrasto; entrada u₁

$M_{Total}\dot{V} + (\vec{\Omega} \times (M_{Total}\vec{V})) = F_P - F_{ar} + R.E_{Total,B}$

 $\begin{bmatrix} \ddot{X} \\ \ddot{Y} \\ \bar{Z} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -g \end{bmatrix} + \frac{1}{M_{\text{Total}}} u_1 \begin{bmatrix} C\psi S\theta C\phi + S\psi S\phi \\ S\psi S\theta C\phi - S\phi C\psi \\ C\theta C\phi \end{bmatrix}$

Método de Newton-Euler: Equações Dinâmicas (Momentos)

 $J\Omega = -\Omega \times J\Omega - M_{qir} + M_{rot}$

Modelagem: Método de Lagrange

$L = E_C + E_P$

$$\begin{bmatrix} \boldsymbol{f}_P \\ \tau_\eta \end{bmatrix} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\boldsymbol{q}}_i} \right) - \frac{\partial}{\partial \boldsymbol{q}_i}$$

$$E_p = mgZ$$

$$E_{c\text{Trans}} = \frac{1}{2} \int \dot{P}^2(X, Y, Z) dm = \frac{m}{2} \dot{P}^T \dot{P}$$

$$E_{cRot} = \frac{1}{2} I_x (\dot{\phi} - \dot{\psi} . S\theta)^2 + \frac{1}{2} I_y (\dot{\theta} . C\phi + \dot{\psi} . S\phi . C\theta)^2 + \frac{1}{2} I_z (\dot{\theta} . S\phi - \dot{\psi} . C\phi . C\theta)^2$$

∂L $L = E_C + E_P$ q_i

Parcela rotacional

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}} \right) - \frac{\partial L}{\partial \phi} = \tau_{\phi}$$
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = \tau_{\theta}$$
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\psi}} \right) - \frac{\partial L}{\partial \psi} = \tau_{\psi}$$

 $\ddot{\phi} = \frac{I_y - I_z}{I_x} \dot{\psi} \dot{\theta} - \frac{J_r \dot{\theta}(\omega_i)}{I_x} + \frac{u_2}{I_x} \\ \ddot{\theta} = \frac{I_z - I_x}{I_y} \dot{\psi} \dot{\phi} + \frac{J_r \dot{\phi}(\omega_i)}{I_y} + \frac{u_3}{I_y}$ $\ddot{\psi} = \frac{I_x - I_y}{I_z} \dot{\theta} \dot{\phi} + \frac{u_4}{I_z}$

Parcela rotacional

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\phi}} \right) - \frac{\partial L}{\partial \phi} \equiv \tau_{\phi}$$
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} \equiv \tau_{\theta}$$
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\psi}} \right) - \frac{\partial L}{\partial \psi} \equiv \tau_{\psi}$$

Parcela translacional $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{P}}\right) - \frac{\partial L}{\partial P} = f_P$

 $\ddot{x} = \frac{1}{m} (\cos \psi \sin \theta \cos \phi + \sin \psi \sin \phi) \mathbf{u}_1$ $\ddot{y} = \frac{1}{m} (\operatorname{sen} \psi \operatorname{sen} \theta \cos \phi - \cos \psi \operatorname{sen} \phi) u_1$ $\ddot{z} = -g + \frac{1}{m} (\cos \theta \cos \phi) \mathbf{u}_1$

Modelo no plano XZ

Avanço

Ganho de Altura

Short – Period

Fonte: (COOK, 2013, p. 170)

Coordenadas (x, z, θ)

$$\begin{cases} \ddot{x} = \frac{1}{m} \cdot \operatorname{sen} \theta \cdot u_1 \\ \ddot{z} = -g + \frac{1}{m} \cdot \cos \theta \cdot u_1 \\ \ddot{\theta} = \frac{u_3}{I_y} \end{cases}$$

Espaço de estados

$$X = \begin{bmatrix} x & \dot{x} & z & \dot{z} & \theta & \dot{\theta} \end{bmatrix}^T = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 & x_6 \end{bmatrix}^T$$

$$\begin{cases} \dot{x_1} = x_2 \\ \dot{x_2} = \frac{1}{m} \cdot \operatorname{sen} x_5 \cdot u_1 \\ \dot{x_3} = x_4 \\ \dot{x_4} = -g + \frac{1}{m} \cdot \cos x_5 \cdot u_1 \\ \dot{x_5} = x_6 \\ \dot{x_6} = \frac{u_3}{I_y} \end{cases}$$

Modelo linear

$$\dot{\tilde{X}} = A \cdot \tilde{X} + B \cdot \tilde{U}$$
$$\tilde{Y} = C \cdot \tilde{X} + D \cdot \tilde{U}$$

$$\tilde{x} = x - \overline{x}$$
$$\tilde{u} = u - \overline{u}$$

Expansão por Taylor

$$\dot{\tilde{x}} = f(x, u)$$
$$\dot{\tilde{x}} \cong f(\overline{x}, \overline{u}) + \left[\frac{\partial f(x, u)}{\partial x}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) + \left[\frac{\partial f(x, u)}{\partial u}\right]_{\overline{x}, \overline{u}} \cdot (x - \overline{x}) +$$

Como no equilíbrio $f(x, u) = f(\overline{x}, \overline{u}) = 0$, temos:

$$\dot{\tilde{x}} \cong \left[\frac{\partial f(x,u)}{\partial x}\right]_{\overline{x},\overline{u}} \cdot \left(x - \overline{x}\right) + \left[\frac{\partial f(x,u)}{\partial u}\right]_{\overline{x},\overline{u}} \cdot \left(u - \overline{u}\right)$$

Fazendo o Jacobiano:

$$A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}_{\overline{x},\overline{u}}; B = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \cdots & \frac{\partial f_1}{\partial u_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial u_1} & \cdots & \frac{\partial f_n}{\partial u_n} \end{bmatrix}_{\overline{x}}$$

Funções do sistema

 $(u - \overline{u})$

$$\begin{cases} f_1 = x_2 \\ f_2 = \frac{1}{m} \cdot \operatorname{sen} x_5 \cdot u_1 \\ f_3 = x_4 \\ f_4 = -g + \frac{1}{m} \cdot \cos x_5 \cdot u_1 \\ f_5 = x_6 \\ f_6 = \frac{u_3}{I_y} \end{cases}$$

Ponto estacionário de operação:

$$\overline{X} = [\overline{x} \ \dot{\overline{x}} \ \overline{z} \ \dot{\overline{z}} \ \overline{\theta} \ \dot{\overline{\theta}}]^T = [0 \ 0 \ \overline{z} \ 0 \ 0 \ 0]$$

 $\overline{c}, \overline{u}$

T

Definindo o vetor \overline{U} :

$$\overline{U} = \begin{bmatrix} \overline{u}_1 & \overline{u}_2 & \overline{u}_3 & \overline{u}_4 \end{bmatrix}^T$$

$$\begin{cases} \overline{u}_1 = C_e \cdot (\omega_1^2 + \omega_2^2 + \omega_3^2 + \omega_4^2) = mg \\ \overline{u}_2 = C_e l \cdot (\omega_4^2 - \omega_2^2) = 0 \\ \overline{u}_3 = C_e l \cdot (\omega_3^2 - \omega_1^2) = 0 \\ \overline{u}_4 = K_a \cdot (\omega_1^2 - \omega_2^2 + \omega_3^2 - \omega_4^2) = 0 \end{cases}$$

Reescrevendo o vetor \overline{U} para o plano XZ:

$$\overline{U} = \begin{bmatrix} \overline{u}_1 & \overline{u}_3 \end{bmatrix}^T = \begin{bmatrix} mg & 0 \end{bmatrix}^T$$

Reescrevendo na forma $\dot{\tilde{x}} = A \cdot \tilde{x} + B \cdot \tilde{u}$:

$$+ \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \frac{1}{m} & 0 \\ 0 & \frac{1}{I_{y}} \end{bmatrix} \cdot \begin{bmatrix} \tilde{u_{1}} \\ \tilde{u_{3}} \end{bmatrix} \quad \begin{cases} \dot{x_{1}} = \tilde{x_{2}} \\ \dot{x_{2}} = g \cdot \tilde{x_{5}} \\ \dot{x_{3}} = \tilde{x_{4}} \\ \dot{x_{4}} = \frac{1}{m} \cdot \tilde{u_{1}} \\ \dot{x_{5}} = \tilde{x_{6}} \\ \dot{x_{6}} = \frac{1}{I_{y}} \tilde{u_{3}} \end{cases}$$

Análise do Sistema

Parâmetro	Valor
$M_{\text{Total}} [kg]$	0,82
$l \ [m]$	0, 29
$g \ [m/s^2]$	9,81
$I_y \; [kg \cdot m^2]$	0,0081
C_e	0,1154

Parâmetro	Valor
$M_{\text{Total}} [kg]$	0,82
$l \ [m]$	0, 29
$g \ [m/s^2]$	9,81
$I_y \; [kg \cdot m^2]$	0,0081
C_e	0,1154

Cenários	$X_0[m]$	$\dot{X}_0[m/s]$	$Z_0[m]$	$Z_0[m/s]$	$\theta_0[rad]$	$\theta_0[rad/s]$	$\mathbf{u}_1[N]$	$u_3[\Lambda$
Cenário 0	0	0	0,3	0	0	0	mg	
Cenário 1	0	0	0,3	0	0,01	0	$\frac{mg}{\cos \theta_0}$	
Cenário 2	0	0	0,3	0	0	0	1, 1mg	
Cenário 3	0	0	0,3	0	0	0	1, 1mg	1,004.1

Cenário 0 – Teste

Cenário 0 – Teste

Cenário 1 – Movimento em X

Cenário 1 – Movimento em X

-	-	1				<u></u>
						11
						Ŀ
						Ľ
						H
		-				Ľ
-	Ш			C		Ľ
		-				1 j
						-
		Ľ				÷
		i.				÷,
		I.				1
_		<u>.</u> -				÷
		i.				ĥ
		i.				1
		1				1
_		÷			_	4
		i.				- i
		1				1
		Ľ				÷
		i.				Ľ,
		1				1
						1
		i.				÷,
_	_	<u>.</u>				1
						1
		i.				ĥ
						- I
		1. 1				
		ĺ.				Ĩ
		1				
		1 				
		t				
	5	1	5			6
	Ŷ	- 75	2			9

Cenário 1 – Movimento em X

Cenário 2 – Movimento em Z

om	nir	12	al		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- - -	 _	-	-	-	
י 	- - - -	-	-	-	- - - -
		_			
	-	-	-	-	•
 		-	-	-	1
	-	-	-	-	i
		_	_	_	;
5.	5				6

41

Cenário 2 – Movimento em Z

42

Cenário 2 – Movimento em Z

Cenário 3 – Movimento em X e Z

44

Cenário 3 – Movimento em X e Z

45

Cenário 3 – Movimento em X e Z

Estudo de Estabilidade

Fonte: OGATA, 2011

Definição

Matriz Solvente

$\begin{array}{l} G=C\cdot(sI-A)^{-1}\cdot B+D\\ \Phi(s)=(sI-A)^{-1} \end{array} \rightarrow G=C\Phi B+D \end{array}$

Fonte: OGATA, 2011

Definição

Matriz Solvente

Fonte: OGATA, 2011

Análise do Sistema estudado

2 entradas: $u_1 e u_3$ 6 saídas: $x \dot{x} z \dot{z} \theta \dot{\theta}$

12 funções de transferência

Definição

Matriz Solvente

Fonte: OGATA, 2011

Análise do Sistema estudado

Seis funções não nulas

$$G_{12} = x/u_3 = \frac{1.211,1111}{s^4}$$

$$G_{22} = \dot{x}/u_3 = \frac{1.211,1111}{s^3}$$

$$G_{31} = z/u_1 = \frac{1,2195122}{s^2}$$

$$G_{41} = \dot{z}/u_1 = \frac{1,2195122}{s}$$

$$G_{52} = \theta/u_3 = \frac{123,45679}{s^2}$$

$$G_{62} = \dot{\theta}/u_3 = \frac{123,45679}{s}$$

Polos do Sistema

Fonte: FELÍCIO (2010)

Domínio da Frequência

 $sX = Ax + Bu \to (sI - A) * X = Bu$

Polos do Sistema

Condição de Estabilidade	Valores de $s = \sigma_i + j\omega_i \ (i = 1$
Assintoticamente Estável/ Estável	$\sigma_i < 0$ para $i = 1, \dots, n$
Marginalmente estável ou Marginalmente instável	Pelo menos algum $\sigma_i = 0$; Nenhum valor $\sigma_i > 0$; Nenhum polo múltiplo no eix
Instável	Pelo menos algum $\sigma_i > 0$ ou $\sigma_i = 0$ de ordem múltipla (po múltipla no eixo $j\omega$)

Polos do Sistema

Condição de Estabilidade	Valores de $s = \sigma_i + j\omega_i \ (i = 1)$
Assintoticamente Estável/ Estável	$\sigma_i < 0$ para $i = 1, \dots, n$
Marginalmente estável ou Marginalmente instável	Pelo menos algum $\sigma_i = 0$; Nenhum valor $\sigma_i > 0$; Nenhum polo múltiplo no eix
Instável	Pelo menos algum $\sigma_i > 0$ ou $\sigma_i = 0$ de ordem múltipla (po múltipla no eixo $j\omega$)

- O sistema é instável;
- Era esperado que todos os polos encontrados fossem nulos, pois é algo característico do sistema.

Critério de Routh-Hurwitz

- O critério é adotado em relação à equação característica da função de transferência;
- O polinômio de seu denominador igualado a zero.

Critério de Routh-Hurwitz

- O critério é adotado em relação à equação característica da função de transferência;
- O polinômio de seu denominador igualado a zero.

 - b_1 b_2 b_3
 - $c_1 \quad c_2$
 - $d_1 \quad d_2$
 - e_1
 - f_1

Critério de Routh-Hurwitz

- O critério é adotado em relação à equação característica da função de transferência;
- O polinômio de seu denominador igualado a zero.
 - $a_6 \ a_4 \ a_2 \ a_0$
 - a_5 a_3 a_1
 - b_1 b_2 b_3
 - $c_1 \quad c_2$
 - $d_1 \quad d_2$
 - e_1
 - f_1
- O sistema é instável;
- É possível perceber isso antes mesmo de montarmos a tabela.

Diagrama de Bode

É a representação gráfica da resposta em frequência em escala logarítmica.

Gráfico em dB Fonte: FELÍCIO (2010)

Modelos lineares

Termo correspondente ao Integrador ou Derivador: *s*^N

Gráfico em fase

$$\phi = -90^{\circ} \times (-N)$$
, para N <

1.211,1111 *x* Função de Transferência: $G_{22} =$ $\overline{u_3}$ *s*³

N = -3

Inclinação: -60 *db/década*

Fase: -90°

1.211,1111 $\frac{\chi}{\chi}$ Função de Transferência: G₁₂ = *s*⁴ u_3

$$N = -4$$

Inclinação: -80 *db/década*

Fase: 0°

Condições de Contorno

 $u_1(t) = \begin{cases} mg \text{ para } t < t_{u1} \\ 1, 1 \cdot mg \text{ para } t > t_{u1} \\ \text{ para } t = t_{u1} \text{ a função não é definida} \end{cases}$ $x_0 = \dot{x}_0 = z_0 = \dot{z}_0 = \theta_0 = \dot{\theta}_0 = 0$ $t_{u1} = 2 \ s.$ $u_3 = 0.$

Ganho de altura Z

Resposta ao degrau – Degrau único

 Compatível com sistema instável • Aceleração diferente de zero

Resposta ao degrau – Degraus múltiplos

Condições de Contorno

mg para $t < t_{u_{1a}}$ 2mg para $t_{u_{1a}} < t < t_{u_{1b}}$ -2mg para $t_{u_{1b}} < t < t_{u_{1c}}$ $u_1(t) =$ 4mg para $t_{u_{1c}} < t < t_{u_{1d}}$ 0 para $t > t_{u_{1d}}$ para $t=t_{u_{1a}}=t_{u_{1b}}=t_{u_{1c}}=t_{u_{1d}}$ a função não é definida $x_0 = \dot{x}_0 = z_0 = \dot{z}_0 = \theta_0 = \dot{\theta}_0 = 0$ $t_{u_{1a}} = 2 \ s, \ t_{u_{1b}} = 4 \ s, \ t_{u_{1c}} = 6 \ s \ e \ t_{u_{1d}} = 8 \ s.$ $u_3 = 0.$

> Uma primeira tentativa de controle do veículo

> > Subida e descida em Z

Resposta ao degrau – Degraus múltiplos

- Inércia: Resposta do deslocamento com a mudança na velocidade não é simultânea
- Referencial como topo de um prédio justifica a altura negativa em Z

- Simetria relacionada a resultante das forças
- 2s 4s -> +mg
- 4s 6s -> -3mg
- 6s 8s -> 3mg
- 8s 10s -> -mg

Conclusão

A finalidade foi executar corretamente a modelagem cinemática e dinâmica do movimento de um quadrirrotor no plano XZ.

O foco foi na influência do valor das entradas do sistema considerando sua operação, levando em conta que o sistema não é amortecido.

Modelagem por Newton-Euler e Lagrange e simplificação para o plano XZ. Simulações demonstraram a instabilidade do sistema.

No estudo de estabilidade do sistema, os polos encontrado foram nulos, caracterizando um sistema instável. O critério de Routh-Hurwitz também comfirmou a instabilidade.

Os desafios envolvem o sistema possuir diversos graus de liberdade e ser instável, necessitando de controle para melhor compreender suas simulações.

O que poderia ser feito é um estudo de outros cenários mais complexos.

Referências Bibliográficas

BOUABDALLAH, S., 2007. **Design and Control of Quadrotors with Application to Autonomous Flying.** Tese de Doutorado, École Polytechnique Fédérale de Lausanne.

CAVALLARO, S. L. H. **Modelagem, Simulação e Controle de um VANT do Tipo Quadricóptero.** Tese de Mestrado em Engenharia Mecânica, Universidade de São Paulo, 2019.

COOK, M. V. Flight Dynamics Principles. 3a edição. Oxford, UK, Elsevier, 2013.

COSTA, S. **Controle e Simulação de um Quadrirrotor Convencional.** Tese de Mestrado em Engenharia Aeroespacial, Universidade Técnica de Lisboa, 2008.

DA SILVA, A. L. **Voo Autônomo de Veículo Aéreo Não tripulado tipo quadrirrotor.** 2012. 70p. Relatório Final de Pós-Doutorado, Programa de PósGraduação em Engenharia de Telecomunicação e controle – USP, São Paulo, 2012

DOMINGUES, J. M. B. **Quadrotor Prototype.** Tese de Mestrado em Engenharia Mecânica, Universidade de Lisboa, 2009

FELÍCIO, L. C. Modelagem da Dinâmica de Sistemas e Estudo da Resposta. 2a edição, 2010.

GARCIA, C. Modelagem e Simulaçã Eletromecânicos. 1a edição, 1997.

LEISHMAN, J. G. **A History of Helicopter Flight.** s.l. : University of Maryland, 2000. Disponível em: http://terpconnect.umd.edu/~leishman/Aero/history.html. Acesso em 01 out. 2020.

LIMA, G.V. **Modelagem Dinâmica e Controle para Navegação de um Veículo Aéreo Não Tripulado do tipo Quadricóptero.** Tese de Mestrado em Engenharia Elétrica, Universidade Federal de Uberlância, 2015.

OGATA, K. **Engenharia de Controle Moderno.** 5a edição. São Paulo, BR: Pearson, 2011.

OLIVEIRA, A. C. F. **Modelagem Dinâmica e Controle de um Veículo Aéreo Não Tripulado do Tipo Quadrirrotor.** Tese de Mestrado em Engenharia Mecânica, Universidade Federal do ABC, 2019

GARCIA, C. Modelagem e Simulação de Processos Industriais e de Sistemas

