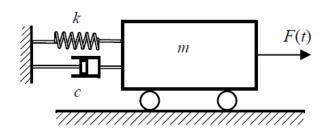
Universidade de São Paulo Escola Politécnica

PME 3380 - Modelagem de Sistemas Dinâmicos

Lista E

Mariana Claudino Pin 9348644



Equacionamento:

$$m \cdot x'' = -k \cdot x - b \cdot x' + F(t)$$
.

A partir das considerações sobre equilíbrio, tem-se:

$$m \cdot x_{eq}$$
" + $b \cdot x_{eq}$ + $k \cdot x_{eq}$ = $F(t)$ => $k \cdot x_{eq}$ = $F(t)$ => x_{eq} = $F(t)/k$.
$$x_1 = x \cdot x_{eq} => x = x_1 + x_{eq}$$

$$x_2 = x' \cdot x_{eq}$$
 = $v \cdot v_{eq}$ => $v = x_2 + v_{eq}$

$$u = F(t) \cdot F_{eq}$$
 = $F(t) \cdot k \cdot x_{eq}$ => $F(t)$ = $u + k \cdot x_{eq}$

Então
$$x_1' = x_2 e m \cdot x_2' = -k \cdot (x_1 + x_{eq}) - b \cdot (x_2 + v_{eq}) + (u + k \cdot x_{eq}).$$

Rearranjando a segunda equação:

$$x_2' = (1/m) \cdot (-k \cdot x_1 - b \cdot x_2 - b \cdot v_{eq} + u) = (1/m) \cdot (-k \cdot x_1 - b \cdot x_2 + u).$$

A saída, y, então, será dada por $y = x_1 e$, daí, obtém-se:

$$[x_1'; x_2'] = [0 \ 1; -k/m -b/m] \cdot [x_1; x_2] + [0; 1/m] \cdot u$$

 $y = [1 \ 0] \cdot [x_1; x_2] + [0] \cdot u$

A partir da comparação com $[x_1]$; x_2] = A · x + B · u, chega-se a:

$$A = [0 \ 1; -k/m -b/m].$$

Os autovalores de A serão as raízes do polinômio característico dado por p(x) = -x(-b/m - x) - 1(-k/m) = x² + (b/m) · x + (k/m). Essas raízes são r₁ = $\frac{-b - \sqrt{b^2 - 4m \cdot k}}{2m}$ e

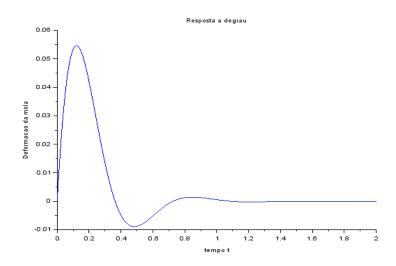
r₂ = $\frac{-b + \sqrt{b^2 - 4m \cdot k}}{2m}$. Se b < $2\sqrt{(m \cdot k)}$, observa-se que r₁ e r₂ serão números complexos. Consequentemente, os autovetores de A também o serão. Faça-se, ainda, a adimensionalização de r₁ e r₂ para perceber que r₁ = $\omega \cdot (-\zeta - \sqrt{\zeta^2 - 1})$ e r₂ = $\omega \cdot (-\zeta + \sqrt{\zeta^2 - 1})$, onde $\omega = \sqrt{\frac{k}{m}}$. Isso significa que, se $\zeta < 1$, r₁ e r₂ serão dados por $\omega \cdot (-\zeta \pm i\sqrt{1 - \zeta^2})$, cujo módulo é igual a $\sqrt{\omega^2 \cdot \zeta^2 + \omega^2 \cdot (1 - \zeta^2)} = \omega$. Da divisão de $|\text{Re}(\omega \cdot (-\zeta - \sqrt{\zeta^2 - 1}))|$ por $|\omega \cdot (-\zeta - \sqrt{\zeta^2 - 1})|$, que, acaba-se de ver, vale ω , observa-se o resultado $\omega \cdot \zeta/\omega$, ou, simplesmente, ζ . A frequência de oscilação, por sua vez, vale, como se pode observar, $\sqrt{1 - \zeta^2}$, que equivale à parte imaginária do número complexo obtido.

Exercício 2

Caso 1

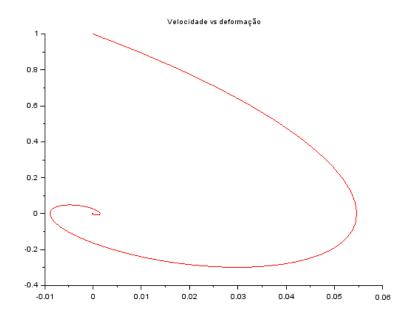
Parâmetros: m = 1 kg; b = 10 Ns/m; k = 100 N/m.

a) Condições iniciais: x1 = 0; x2 = 1.

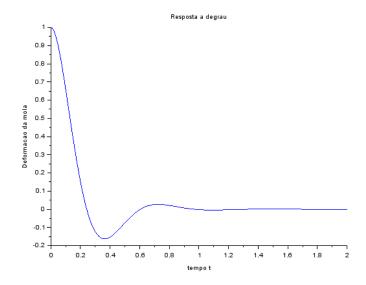


Para [R, diagevals] = spec(A), observa-se:

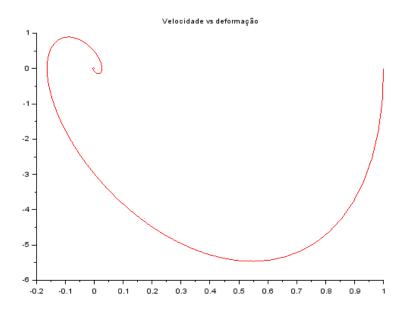
Por fim, o gráfico v vs x fica:



b) Condições iniciais: x1 = 1; x2 = 0.



Como os pólos dependem apenas dos parâmetros, não se observa mudança a partir das condições iniciais. Por fim, gráfico v vs x torna-se:



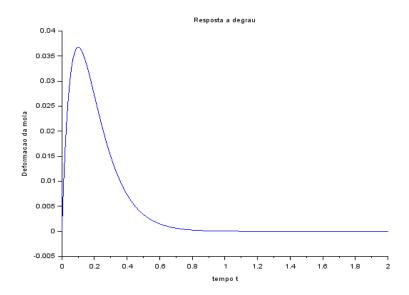
Nota-se, aqui, que, para um vetor condição inicial rotacionado 90º no sentido horário no plano Argand-Gauss, resulta-se em uma figura rotacionada da mesma maneira.

Caso 2

Parâmetros: m = 1 kg; b = 20 Ns/m; k = 100 N/m.

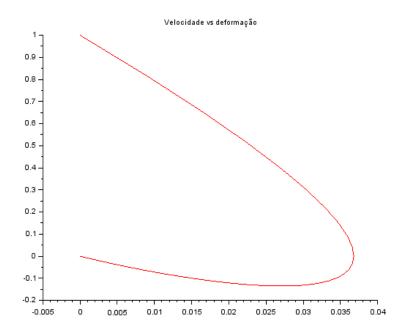
a) Condições inicais: x1 = 0; x2 = 1.

Aqui, o gráfico é coerente com o de um amortecimento crítico, uma vez que o parâmetro ζ vale, agora, 1.

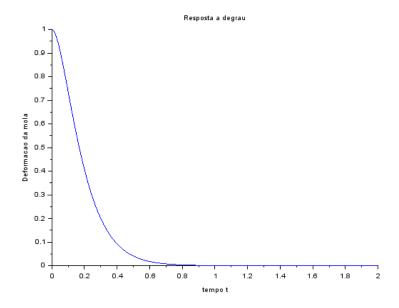


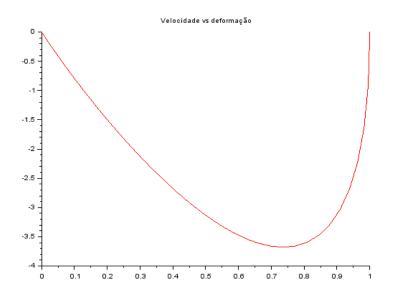
Também como era de se esperar, observa-se que os autovalores de A são iguais (e reais).

Finalmente, o gráfico de v vs x comporta-se da seguinte forma:



b) Condições inicais: x1 = 1; x2 = 0.



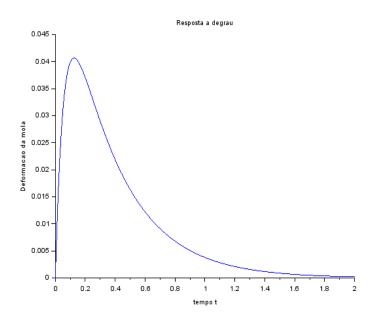


Caso 3

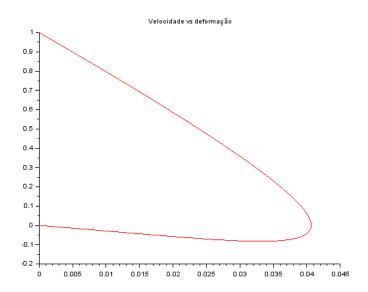
Parâmetros: m = 1 kg; b = 20 Ns/m; k = 50 N/m.

a) Condições iniciais: x1 = 0; x2 = 1.

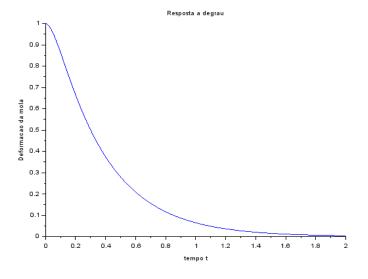
Aqui, observa-se o caso em que ocorre amortecimento supercrítico.

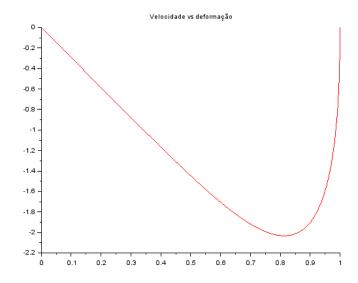


Os dois autovalores, bem como seus autovetores associados, são reais e distintos.



b) Condições iniciais: x1 = 1; x2 = 0.





Reitere-se, aqui, que as posições dos pólos no plano complexo independem das condições iniciais e são parâmetros apenas da matriz A, que é relativa apenas à equação diferencial.