Experimento 41 changetinebic onia, simple it appears would considered a some Introdução p musil de desinde est go Ondre remoras são, genericamente, qualquer conto mecânica longitudinal. Como todos es finômenos endulatorios, elas esão raracteriza des pela velocidade de propagação, a qual depende do meio ende a fenômeno i aporrado. Dissa forma a conda conora tambino use uncaira na vielação V=1. Formos as use confiner contes mecânicas um um tubo, a reflecão progressiva des condes mes certremidades que superposição co, portante, uma orde estacionária é formada Caso uma dos vertremiddes sija fira o nó ali presente acaba climitando as posserveis frequências dos condos estacionárias, sendo cada cuma delas denominada frequência de vressorância. assim, tem-se o harmónico, que ié a conda respecífica de nibração, responsavel por vausar o ferêmeno contrecido como versonância. O primeiro harmonico i itambém conhecido como modo fundamental ce popui n=1. Materiais u metodos Para a realização do unperimento, foram utilizados os seguintes equipamentos: tubo de iacrelico transporente com extremidade mouel, microfone, camplificador, fone de couvido, gerador de Aunção, um diapasão de frequência desconhecida, termômetro, martela de borocacha ce trona. De primeira parte de urperimento, fai utilizado la tubo de iacrilico com um emissor de autofalante em usua entremidade caberta e um combola para manter a contra contramidade. fechada. Esse umbolo una vapaz de se mover dentro do tubo, rariande veu comprimento e limitando o espaço um que as under se propagam. Assim, a vetremidade moviel ura variada vaté que use uncontrasse la posição um que la intenside de vom fosse marcina, marcando usos clocal com um

mprime	ento de onda e velocidade do s	om para f :	= 425,99Hz	
n	comprimento L médio (m)	λ (m)	v (m/s)	cogoch one, ochre
1	0.181	0,724	308,42	was and of solution
3	0.586	0,781	332,7	- a spinowing of
5	0.993	0,794	338,24	

mprime	ento de onda e velocidade do s	om para f	= 479,30Hz	Indance and on askall
n	comprimento L médio (m)	λ (m)	v (m/s)	of the second of the control of the
1	0,162	0,648	310,59	yara was do out
3	0,521	0,695	333,11	
5	0.876	0,701	335,99	

	ento de onda e velocidade do s	1 /m1	v (m/s)	1.00
n	comprimento L médio (m)	λ (m)		- 3/ YY
1	0,141	0,564	296,13	
3	0,472	0,629	330,26 00 0 0/100 000	* 2 Jan
5	0.8	0,64	336,04 so obnosú /	OCH
and the second of the second of the second	, alm	30 HAG	is que or vin is de	
CO	mprimento de onda para o diapa		7 X A	- 3
n	comprimento L médio (m)	λ (m)	1 = (er) = = 1 V / 10	
1	0,121	0,484		
3	0,39	0,52	7	
5	0,65	0,52		
taz al	tabelas foram uncontr airo. Nos cálculos vu	ados at	, as medidas das cert	i pe
tos al lades pue me	tabelas foram uncontr	to sobo tiver or ruscog c	navies des requações de , as medidas das rente ar veras de medição, n reasonância.	i pe
tos d lades ue no	tabelar foram encontraction of the calculor o	to sobo tiver or ruscog c	naviez des equações de , as medidas das ente ar veres de medição, n versonância. \(\lambda = \lambda + \lambda \) 4	i pe

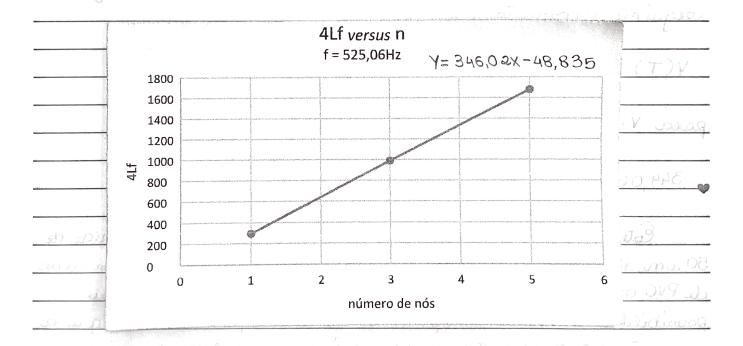
9999999999

Uma vez que la 1950m para N=1,3 ve 5 para cada frequência utilizada fai uncontrada, calculou-coe a média dos velocidades, a fim de cobter a velocidade média do com.

F=346,34 Hz ⇒ Vm = 326,66 m/z

F=425,99 Hz ⇒ Vm = 326,48 m/z

F=449,30 Hz ⇒ Vm = 326,48 m/z


F=525,06 Hz ⇒ Vm = 320,48 m/z

tilibra

Para determinor la velocidade do vom graficamente, foram montados os esquintes gráficos, que velacionam 4LF como número de nos. Dessa forma, tem-se que a unclinação de creta, ou seja, a icoeficiente angular, cé requiralente à relacidade de vom. Tirando a média dos coeficientes angulares, uncontra- se que a 19m i de 344,06 m/s 7. K=00 O-L= n(v/F) " grafico 4LF, m L= ml =D 00= 4LF 4 4 4Lf versus n f = 376,34HzY=342,09x-30,231 1800 1600 1400 1200 1000 4Lf 800 600 400 200 0 1 2 3 0 número de nós 4Lf versus n f = 425,99HzY=345,9x-38,051 1800 1600 1400 1200 1000 4Lf 800 600 400 200 Ũ 4 5 2 3 6 1 0 número de nós

tilibra

número de nós

Considerando que o ralez conhecido ma Ulteratura para a relocidade do som mo ar a uma temperatura de 25°C é de aprocimadamente 346 m/s, e que a temperatura ambiente de laboratorio era de 24°C, conclui-so que a relocidade encontrada por mios gráficos (344,06 m/s) é mais prócima desse ralor e portanto tal técnica é mais eficiente e precisa quando comporada ao calculo pela formula $0 = \lambda$. F (cem que 0 = 325,16 m/s).

tilibra

T

1

Correção

Resultados e discussões

A partir dos dados obtidos na parte experimental, foram elaboradas as tabelas que se encontram anexadas ao final.

O comprimento de onda e a velocidade do som apontados nas tabelas foram encontrados através das equações dispostas abaixo. Nos cálculos realizados, as medidas das extremidades foram desprezadas para evitar erros de medição, já que nesses pontos as ondas não possuem ressonância.

$$L=\frac{\lambda}{4}+n\frac{\lambda}{2}\text{ , temos que }L=\frac{\lambda}{4}(2n+1)$$

$$logo,\lambda=\frac{4L}{2n+1}\rightarrow\lambda=\frac{4L}{n}\text{ , em que n \'e um n\'umero \'impar}$$

$$v=\lambda f$$

Uma vez que a V_{som} para n=1,3 e 5 para cada frequência utilizada foi encontrada, calculamos a média das velocidades, a fim de obter a velocidade média do som.

$$f = 376,34Hz \rightarrow V_m = 326,66 \pm 1,612m/s$$

 $f = 425,99Hz \rightarrow V_m = 326,78 \pm 1,218m/s$
 $f = 479,30Hz \rightarrow V_m = 326,48 \pm 0,648m/s$
 $f = 525,06Hz \rightarrow V_m = 320,71 \pm 0,718m/s$
 $\therefore V_{msom} = 325,16 \pm 0,56m/s$

Para determinar a velocidade do som graficamente, foi montando o gráfico anexado no final do relatório, que relaciona a frequência com o inverso do comprimento de onda. Dessa forma, tem-se que a inclinação da reta, ou seja, o coeficiente angular, é equivalente à velocidade do som. Assim, encontramos que a velocidade do som é $V = 324,79 \pm 1,435m/s$.

$$v=\lambda f
ightarrow f=vrac{1}{\lambda}$$
 analogamente à equação da reta $y=ax+b$

Considerando os dois métodos utilizados para determinar a velocidade do som, temos que os dois resultados foram próximos entre si, mas divergiram um pouco do valor encontrado na literatura $(V_{som}(ar) = 346m/s)$.

A frequência do diapasão foi encontrada da seguinte forma:

$$v = \lambda f \to f = \frac{v}{\lambda}$$

$$assumindo V = \frac{324,79m}{s} \to f = \frac{324,79}{0,508} = 639,35 \pm 2,55Hz$$

$$assumindo V_{m_{som}} = \frac{325,16m}{s} \to f = \frac{325,16}{0,508} = 640,08 \pm 3,67Hz$$

Durante toda a discussão, os valores apresentados para a velocidade do som são equivalentes a 24°C, que era a temperatura ambiente. Para descobrir a velocidade a 0°C, vamos utilizar a seguinte expressão:

$$V(T) = V_0 \sqrt{1 + \beta T}$$

$$para\ V(24) = 324,79m/s, temos:$$

$$324,79 = V_0 \sqrt{1 + 24/273} \rightarrow V_0 = 311,39m/s$$

Esse experimento também pode ser montado com um balde de 50cm de altura e cheio de água, no qual é introduzido um cano de PVC de 60cm de comprimento e 32mm de largura, o que possibilita variar o comprimento da coluna, deixando com que a audição detecte os pontos de ressonância ao colocar o ouvido na extremidade superior do cano. O diapasão é substituído por um programa de computador.

Anexos

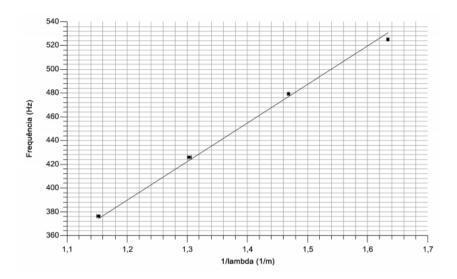
comprimento de onda e velocidade do som para f=376,34Hz

n	comprimento L médio (m)	λ (m)	v (m/s)
1	0,207	0,828	311,61
3	0,662	0,883	332,31
5	1,116	0,893	336,07

comprimento de onda e velocidade do som para f=425,99Hz

n	comprimento L médio (m)	λ (m)	v (m/s)
1	0,181	0,724	308,42
3	0,586	0,781	332,7
5	0,993	0,794	336,24

comprimento de onda e velocidade do som para f=479,30Hz


n	comprimento L médio (m)	λ (m)	v (m/s)	
1	0,162	0,648	310,59	
3	0,521	0,695	333,11	
5	0,876	0,701	335,99	

comprimento de onda e velocidade do som para f=525,06Hz

n	comprimento L médio (m)	λ (m)	v (m/s)
1	0,141	0,564	296,13
3	0,472	0,629	330,26
5	0,8	0,64	336,04

comprimento de onda para o diapasão

n	comprimento L médio (m)	λ (m)
1	0,121	0,484
3	0,39	0,52
5	0,65	0,52

^{*}As partes que estão realçadas em cinza no texto correspondem às mudanças que foram feitas em relação ao relatório original, com base nos slides e na aula ministrada