INTRODUÇÃO Existem duar contegorias de princhelos: ousimples, em que la massa m pade user considerada um porlo material + o fio de comprimento l'é imextensinel à de massa une levante; e o pirdule comporte, que consiste em um corpo veigido, de mara relevante, em vistação sao vudor de um eixo fixo. O desenho la veguir illustra um prindulo __composto; O: eiza de usus pensão r: distância entre e centre de mara e a eine de suspensão O: Angulo que o segmento or faz com a vertical Quando o volos de 9 utilizado é tal que 0<10°, pode-se consideras NMO = 0, 1, portanto, diz x que o movimento do pindulo pode usu estuchdo como um movimento Ramônico simples. O período de escilação do pindulo (T) é dado conforme a equação T= 271 / I (equação I), em que I é o momento de unitaria, m i a massa da borra e og i a coceração da

MATERIAIS E MÉTODOS

- graviclade

Os materiais wti lizados nesse experimento una barra metaleira.

vigida (de marra 421± 19, largura 2,40±0,05 cm, espessura 0,60±
0,05 cm + altera 100,00±0,05 cm). A barra continha 39 furor espavados em 2,5±0,05 cm. Foram untilizados dambém um suporte

para a barra, uma vigua, uma balança e um conômitivo

O experimento constituue em apoias os 19 primeiros furor

da barra, i deixas que a barra acilasse 10 reges em cada

furo um um ângulo menos que 10°. Esse tempo foi tilibro

icionometrado e imedicio 4 veges para cada um dos 19 furas. O 20° fung mão loi testado pois era o centro de mara. Os dados foram colitados e montou-se uma tabela. RESULTADOS E DISCUSSÃO Paio de giro é uma determinada jórua que ten um momento ude inércia (Ix) em velação or eixo x. Se concentramos essa area em uma faixa estruta pantea po eixox, e com momento de inércia (Ix) a distincia dessa laixa pa cino X o viais de giros Audemonstações das equações utilizadas vião facilitar a comprensão der verultader: > equaçõe 2 T= 27 / R2+12 - T2 - 472 (R2+12) - 472 -5= T2g = 11+12 (eq 8) P= 471B2 = R2 = 11.12 (eq 9) Provondo o porqui da equação 2 das o Timin)

Carling

_ Substituendo R=1 kmon
$\frac{T = 2\pi \sqrt{R^2 + R^2}}{g \cdot R} = 3\pi \sqrt{R(R+R)} \rightarrow Tmin = 2\pi \sqrt{2R}$
fargnote um gnifico de puido (T) em funçõe de de sem
en dodor obtides pela reguente dabela, obtemos o gráfico rabaixo:
Tabela 1: distância entre extremidade esuperior e eino ede suspensão
Gnáfico 1:
Ougráfico nos permite observar que conforme vomos vos aproximando
udo vigísimo furo, que i o centro de marsa da barrer, o período
tende vao cinfinito, o ique é confirmado pelo fato de não ser
possível medir o período no vigisimo furo.
- Ao fazer a média de Jodos os valores de vais de giro experimentalment
Stides, Augomos a R=0,2865963. Assim, podemos valcular o Trino,
- considerando g = 9.8 m /s. 2
Train = 27 /2.R = 27. /2.0,2865963 = 1,51879 %
- 1 9 1 7,8
Sabela 2: viais de gino (em m) mos 19º furor
com base do que foi observado mo gráfico obaises podomos vamelia
en pontos dos finos 8.10, pois dem períodos riguais (1,537s). Vamor
Laddar T = 1,537 , 11 = 93 + 15=0,25
11. r2, = R ² → R = 0,2\$3 m
[1+12=1537 2 -> g=9,19m/s2
411 2
Comparando os valores obtidos cardecionmente, Jemos uma vociação de
apporimendamente 0,056 de diferença entre en vaios de giros e 0,61
entre la gravidade obtida e la que confecemon (9,8 m/s2), orque
demonstra nossa pricisos.
Grafice 2: [tilibra


Utilizando o mesmo gráfico e a mesma idea apresentada unteriormente, uit lizarennos m= 421 g, R= 0,273 m = r= 0,475 m Ix = m. R2 + m.r2 In= 0,421.0,273 + 0,421.0,475 In = 0, 1263 kg. m2 Agon, vamos compras un valor com o momento ude vinércia de uma brivia vem fures, may com a mesmas medidas. Utilizando: I= m.12 - 0,421. 1 = 0,1403 kg.m2 Podemos perceber que o momento de cinércia da barra sem fucos é maior e caprisenta uma idiferença ide 0014 Como ja esperado, o momento de inércia da barra sem furos é maior que o da barra som furer devido sas fato de que or furer fazem vom vque a marra vas reja distribuida vde maneira uniforme, diferente da barra sem fuer, que possui marsa uniforme e um volume maios para distribuir essa massa durante a viotação. CONCLUSÃO I experimento veralizado nos permitur amalisar o comportamen. to de um pirolu la física e, a partir des dades voletades em Sobordólio, for possível montar gráficos e tables que nos vajudaron a comprunder o seu funcionamento. As equações apprentador e deduzidor mon resultados e idiscussões foram utilizadas no cálculo da gavidade, momento de une ca e vous de giro de pendulo. Sambem foram comparador ex

visultados obtidos na prática com os esperados pela teoria, explican-

tilibra

do possíveis disparidades.

Gráfico 1 período em função da distância

Tabela 1: distância entre o eixo de suspensão e a extremidade superior e o período de oscilação

d(cm)	T(s)
2,5	1,614
5	1,615
7,5	1,589
10	1,557
12,5	1,540
15	1,525
17,5	1,576
20	1,537
22,5	1,534
25	1,537
27,5	1,536
30	1,590
32,5	1,637
35	1,668
37,5	1,758
40	1,897
42,5	2,155
45	2,505
47,5	3,233

Tabela 2: raio de giro dos 19 primeiros furos

R(m)	
0,2859	25
0,29873	38
0,29315	91
0,28453	38
0,28349	34
0,28230	44
0,30805	56
0,29324	41
0,291	94
0,29026	81
0,28502	67
0,29250	96
0,29309	76
0,28490	64
0,28349	83
0,28185	98
0,28447	16
0,27473	48
0,25356	83

grafico 2: período em função da distância

Tabela 3: raio e período

periodo	
r(cm)	T(s)
47,5	4
45	4
42,5	4
40	4

37,5 35

32,5

27,5

22,5

17,5

30

25

20

15

3,750

3,500

3,250

3,000

2,750

2,500

2,250

2,000

1,750

1,500