
Computer Methods and Programs in Biomedicine 195 (2020) 105536 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

Predictive modeling of blood pressure during hemodialysis: a 

comparison of linear model, random forest, support vector regression, 

XGBoost, LASSO regression and ensemble method 

Jiun-Chi Huang 

a , b , d , e , Yi-Chun Tsai b , d , Pei-Yu Wu 

a , b , e , Yu-Hui Lien 

f , Chih-Yi Chien 

f , 
Chih-Feng Kuo 

g , Jeng-Fung Hung 

g , Szu-Chia Chen 

a , b , d , ∗, Chao-Hung Kuo 

a , c , d , ∗

a Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan 
b Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan 
c Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan 
d Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan 
e Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan 
f Wistron Corporation, Taipei, Taiwan 
g Graduate Institute of Science Education and Environmental Education, National Kaohsiung Normal University, Kaohsiung, Taiwan 

a r t i c l e i n f o 

Article history: 

Received 21 December 2019 

Revised 30 April 2020 

Accepted 8 May 2020 

Keywords: 

Intradialytic hypotension 

Blood pressure 

Hemodialysis 

Machine learning 

Predictive modeling 

a b s t r a c t 

Background: Intradialytic hypotension (IDH) is commonly occurred and links to higher mortality among 

patients undergoing hemodialysis (HD). Its early prediction and prevention will dramatically improve the 

quality of life. However, predicting the occurrence of IDH clinically is not simple. The aims of this study 

are to develop an intelligent system with capability of predicting blood pressure (BP) during HD, and to 

further compare different machine learning algorithms for next systolic BP (SBP) prediction. 

Methods: This study presented comprehensive comparisons among linear regression model, least absolute 

shrinkage and selection operator (LASSO), tree-based ensemble machine learning models (random forest 

[RF] and extreme gradient boosting [XGBoost]), and support vector regression to predict the BP during 

HD treatment based on 200 and 48 maintenance HD patients containing a total of 7,180 and 2,065 BP 

records for the training and test dataset, respectively. Ensemble method also was computed to obtain 

better predictive performance. We compared the developed models based on R 2 , root mean square error 

(RMSE) and mean absolute error (MAE). 

Results: We found that RF (R 2 = 0.95, RMSE = 6.64, MAE = 4.90) and XGBoost (R 2 = 1.00, RMSE = 1.83, 

MAE = 1.29) had comparable predictive performance on the training dataset. However, RF (R 2 = 0.49, 

RMSE = 16.24, MAE = 12.14) had more accurate than XGBoost (R 2 = 0.41, RMSE = 17.65, MAE = 13.47) on test- 

ing dataset. Among these models, the ensemble method (R 2 = 0.50, RMSE = 16.01, MAE = 11.97) had the best 

performance on testing dataset for next SBP prediction. 

Conclusions: We compared five machine learning and an ensemble method for next SBP prediction. 

Among all studied algorithms, the RF and the ensemble method have the better predictive performance. 

The prediction models using ensemble method for intradialytic BP profiling may be able to assist the HD 

staff or physicians in individualized care and prompt intervention for patients’ safety and improve care 

of HD patients. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Intradialytic hypotension (IDH) is a major notable complication

n patients on hemodialysis (HD). The incidence of IDH has been

eported with a wide range, from 7.5% to 69% according to the di-

gnostic criteria used [1-5] . Risk factors associated with IDH, such

s ischemic heart disease, cardiac arrhythmia, systolic or diastolic

ysfunction of the heart, old age, excessive interdialytic weight
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gain, malnutrition, diabetes, autonomic dysfunction, severe anemia,

as well as low predialytic blood pressure (BP), have been noted in

previous studies [2,3,6-9] . There is currently, however, no consen-

sus on the definition of IDH [10] . 

Of note, the link between IDH and unfavorable outcomes, in-

cluding arrhythmia [9] , myocardial infarction [9] , cardiovascular

morbidity and mortality [11-13] , myocardial stunning [14] , throm-

bosis of the vascular access [15] and an insufficient dose of dialysis

[16] is evident. Furthermore, IDH has also been reported to be as-

sociated with white matter ischemia and brain atrophy among pa-

tients undergoing HD [17-19] . Recurrent IDH may also predispose

patients to mesenteric ischemia and endotoxemia, which can then

lead to the generation of proinflammatory cytokines, endothelial

dysfunction and oxidative stress, thereby increasing the risk of car-

diovascular disease [7] . IDH could accelerate the loss of residual

renal function [1] and increase risk of volume overload [20] . Pre-

diction and prevention of IDH could drastically improve the quality

of life for maintenance HD patients, but it remains challenging to

develop an ideal prediction model for IDH. 

In clinical practice, BP is measured frequently during HD treat-

ment for patients’ safety. Managing a HD patient’s BP is diffi-

cult due to significant fluctuations and variations pre-, intra- and

post-dialysis, and predicting these intradialytic fluctuations in BP

is challenging. Accordingly, the aim of this study is to develop an

intelligent system of BP profiling and prediction during HD. In this

study, machine learning algorithms were applied to build a warn-

ing system prior to the occurrence of IDH and comparing different

machine learning methods for next systolic blood pressure (SBP)

prediction. 

2. Materials and Methods 

2.1. Patients and measurement methods 

The study was retrospectively conducted at an outpatient HD

unit in a regional hospital in Taiwan between September 2018

and May 2019. The study protocols were approved by the Insti-

tutional Review Board of Kaohsiung Medical University Hospital

(KMUHIRB-E(II)-20180189). Adult patients ( > 18 years) were eligi-

ble to be included if they carried out maintenance HD treatments

thrice weekly. Each treatment period was lasting up to 4 hours.

The settings for HD treatment of most patients included dialysate

sodium concentration of 138 mmol/L, dialysate potassium con-

centration of 2.0 mmol/L, dialysate calcium concentration of 2.5

mmol/L, dialysate flow rate of 500 mL/min, and dialysate tempera-

ture of 36.5 °C. During HD treatment, BP and pulse rate were taken

by electronic sphygmomanometers from the beginning to the end

of HD on a half-hourly basis and additionally according to clinical

needs, such as patients’ cramp or discomfort. At each BP check,

concurrent HD settings including dialysate temperature, ultrafil-

tration (UF) rate, blood flow rate, total UF volume and dialysate

sodium concentration were recorded. The dry weight was defined

as the lowest tolerated postdialysis weight achieved by gradual

change and iterative process which there are minimal signs or

symptoms of either hypovelemia or hypervolemia [21] . 

The Vital Info Portal (VIP) gateway device as well as the dig-

ital healthcare system collected the patients’ BP and pulse rate

and corresponding HD recording. To manage the electronic med-

ical records of each study patient, Structured Query Language was

used and the Oracle database was used for data storage. Other clin-

ical information such as demographics, anthropometric characteris-

tics, co-morbidities, vascular access type, cardiothoracic ratio, car-

diac medication, Kt/V, frequency of IDH, and laboratory tests were

collected for every participant. The cardiothoracic ratio was defined

as the ratio of the transverse diameter of the cardiac shadow to the

transverse diameter of the chest on chest radiographs. Kt/V was
valuated based on the Daugirdas formula to assess the adequacy

f HD treatment [22] . The definition of IDH was based on predial-

sis SBP – minimum intradialytic SBP ≥30 mmHg and minimum

ntradialytic SBP < 90 mmHg [2] . 

.2. Training and testing dataset 

We obtained 248 patients from our complete dataset. To

nrich the dataset, we computed “delta” variables, such as

etla_conductivity, delta_UF, delta_temperature, etc, to describe

he change of dialysis parameters by clinical nurses. An example

or the formula was written as: detla_conductivity i = conductivity i -

onductivity i-1 where i was the record times of a patient. It was

ecause that we assumed the doctors and nurses took certain ac-

ions to change HD settings would lead to BP change. We included

he first SBP record which was measured before starting HD treat-

ent as the baseline. In addition, we considered the previous HD

tatus, such as previous SBP, previous dialysis temperature, etc., as

previous variables” to estimate the prediction of the following BP

ince the previous information influence the BP change as well.

urthermore, the average information for last HD session was also

onsidered as the possible features to estimate the BP change. Sev-

ral “mean variables” for last HD session were computed. The dis-

ributions for these variables are shown in Table 1 . The data set

as randomly partitioned into a training set of 200 patients and a

esting set of 48 patients. 

Training set: The final training set contained 200 patients with

,180 BP records in which the incomplete or missing HD data were

xcluded. Testing set: The remaining 48 patients with 2,065 were

erved as a testing dataset for testing. 

.3. Statistical analysis 

We modeled the next SBP value prediction using five machine

earning methods, such as multiple linear regression, random for-

st regression, extreme gradient boosting (XGBoost), support vec-

or regression and least absolute shrinkage and selection opera-

or (LASSO) regression. All analysis was conducted with statistical

ackage R version 3.5.1. 

.4. Multiple linear regression 

In multiple linear regression, we want to map the relationship

etween a dependent variable, SBP, and explanatory variables. In-

luding demographic variables, dialysis setting variables, delta vari-

bles, previous variables and mean variables. This result in a multi-

le regression model which was defined as: SBP = β0 + 

K ∑ 

k =1 

βk x k +
 k 

.5. Random forest regression 

The random forest algorithm is an extension of the decision tree

lgorithm, in which decision trees are combined and each decision

ree is independently trained [23] . The training procedure was em-

loyed as follows: (1) from the training dataset, a bootstrap sample

as drawn as a randomized subset; (2) each individual tree was

rown using the randomized subset of predictor variables. Each

ree model f(x i ) was defined as y i = f ( x i ) + εi . The trees were

rown to the largest extent possible without pruning; (3) repeat

he step (2) until the number of trees was grown. Then the pre-

icted results were aggregated by averaging them. 

The package ‘randomForest’ version 4.6.14 was used with the

umber of parameters set at mtry = 9; ntree = 200; nodesize = 5. 
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Table 1 

Characteristics of the patients in training and testing dataset 

Training dataset Testing dataset 

Number of study patients 200 48 

Number of SBP records 7180 2065 

Age (years) 62.9 ± 11.6 60.9 ± 12.6 

Men 97 (48.5%) 25 (52.1%) 

Diabetes mellitus 91 (45.5%) 16 (33.3%) 

Cardiovascular disease 33 (16.5%) 15 (31.3%) 

Hypertension 109 (54.5%) 30 (62.5%) 

SBP (mmHg) 130.0 ± 26.3 133.9 ± 22.4 

UF goal (L) a 2.96 ± 1.03 3.19 ± 0.83 

Dry weight (kg) b 58.4 ± 10.2 58.7 ± 12.6 

Body temperature ( °C) 36.2 ± 0.4 36.2 ± 0.4 

Dialysis duration (years) 9.87 ± 7.11 9.02 ± 5.64 

Blood flow (mL/min) 260.0 ± 61.7 267.7 ± 63.9 

Albumin (g/dL) 3.95 ± 0.23 4.06 ± 0.28 

Hemoglobin (g/dL) 10.4 ± 1.21 10.35 ± 1.08 

Kt/V (Daugirdas) 1.61 ± 0.23 1.66 ± 0.25 

Cardiothoracic ratio 0.51 ± 0.06 0.48 ± 0.04 

AV fistula 185 (92.5%) 41 (85.4%) 

AV graft 15 (7.5%) 7 (14.6%) 

ACE inhibitors or ARBs use 34 (17.0%) 7 (14.6%) 

Beta-blockers use 44 (22.0%) 9 (18.8%) 

Calcium channel blockers use 42 (21.0%) 13 (27.1%) 

Aspirin use 20 (10.0%) 7 (14.6%) 

UF rate (L/hr) 0.61 ± 0.39 0.65 ± 0.38 

UF/dry weight (%) 2.80 ± 1.80 2.88 ± 1.85 

Dialysate calcium concentration (mmol/L) 2.55 ± 0.15 2.51 ± 0.08 

Frequency of IDH 154 (2.1%) 25 (1.2%) 

Previous SBP (mmHg) 132.9 ± 27.2 137.1 ± 22.3 

Previous time (min) 127.6 ± 46.7 126.3 ± 49.0 

Previous dialysis temperature ( °C) 36.3 ± 0.5 36.3 ± 0.6 

Previous UF rate (L/hr) 0.72 ± 0.34 0.79 ± 0.30 

Previous dialysate conductivity (mS/cm) c 14.0 ± 0.11 14.0 ± 0.1 

Previous blood flow (mL/min) 273.4 ± 36.4 281.5 ± 38.6 

Previous total UF (L) 1.71 ± 0.85 1.82 ± 0.83 

�1 Elapsed time of HD (min) 46.7 ± 28.9 46.4 ± 29.5 

�2 Elapsed time of HD (min) 52.5 ± 33.0 51.1 ± 31.6 

�2 SBP (mmHg) -3.9 ± 20.9 -2.3 ± 18.7 

�2 UF rate (L/hr) -0.04 ± 0.27 -0.03 ± 0.26 

�2 Dialysis temperature ( °C) 0.02 ± 0.27 0.00 ± 0.30 

�2 Dialysate conductivity (mS/cm) 0.01 ± 0.10 0.01 ± 0.11 

�2 Blood flow (mL/min) 1.95 ± 45.19 2.30 ± 39.07 

Body weight before HD (kg) 62.0 ± 10.9 62.5 ± 13.3 

Previous DBP (mmHg) 70.4 ± 15.0 71.2 ± 12.5 

Previous pulse (beat/min) 74.5 ± 12.3 75.4 ± 12.0 

Previous venous (mmHg) 133.4 ± 36.3 138.1 ± 38.2 

Previous dialysate flow (mL/min) 499.4 ± 37.6 508.5 ± 59.0 

�2 Total UF (L) 0.70 ± 0.55 0.73 ± 0.53 

�2 DBP (mmHg) -1.27 ± 10.95 -0.82 ± 9.34 

�2 Pulse (beat/min) -0.23 ± 8.77 -0.55 ± 8.20 

�2 Venous (mmHg) 3.68 ± 27.51 4.54 ± 28.08 

�2 Previous dialysate flow (mL/min) 0.42 ± 23.72 1.43 ± 29.58 

Mean SBP of last HD session (mmHg) 134.2 ± 23.2 137.6 ± 18.6 

Mean DBP of last HD session (mmHg) 70.8 ± 13.1 71.5 ± 11.2 

Mean UF of last HD session (kg) 0.65 ± 0.32 0.71 ± 0.29 

Mean body temperature of last HD session ( °C) 36.2 ± 0.4 36.2 ± 0.4 

Mean venous pressure of last HD session (mmHg) 127.9 ± 38.5 132.6 ± 39.2 

Mean dialysate conductivity of last HD session (mS/cm) 14.0 ± 0.2 14.0 ± 0.3 

Mean dialysate flow of last HD session (mL/min) 498.9 ± 35.1 508.5 ± 55.9 

Mean dialysate temperature of last HD session ( °C) 36.3 ± 0.5 36.3 ± 0.5 

Mean pulse of last HD session (beat/min) 75.0 ± 11.3 76.3 ± 10.8 

First SBP record (mmHg) 139.4 ± 26.3 139. 8 ± 21.6 

Values are expressed as means ± standard deviations (SD) for continuous data. 

Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; HD, hemodialysis; UF, 

ultrafiltration; AV, arteriovenous; ACE, angiotensin- converting enzyme; ARB, angiotensin receptor 

blocker; IDH, intradialytic hypotension. 
∗�1 = t i -t i-1 ; �2 = t i-1 -t i-2 . 

UF goal a : the setting amount of fluid removal to achieve dry weight in each HD session. 

Dry weight (kg) b : goal of body weight without fluid overload or hypovolemia. 

Previous dialysate conductivity (mS/cm) c : a parameter of sodium concentration in dialysate 
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Table 2 

Comparison of models on training and testing datasets. 

Model Training dataset Testing dataset 

R 2 RMSE MAE R 2 RMSE MAE 

Linear model 0.59 16.98 12.90 0.48 16.39 12.23 

Random forest 0.95 6.64 4.90 0.49 16.24 12.14 

XGBoost 1.00 1.83 1.29 0.41 17.65 13.47 

SVR 0.78 12.58 8.57 0.44 17.17 12.99 

LASSO 0.60 16.92 12.87 0.48 16.33 12.16 

Ensemble 0.86 10.53 7.84 0.50 16.01 11.97 

Abbreviations: RMSE, root mean square Error; MAE, mean absolute er- 

ror, XGBoost, Extreme Gradient Boosting; SVR, support vector regression; 

LASSO, least absolute shrinkage and selection operator. 
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2.6. Extreme gradient boosting 

The XGBoost model uses a gradient boosting framework and is

also a decision-tree-based ensemble method. As the tree structure,

f(x), the final prediction was calculated by summing up the scores

across all leaves and this can be expressed as ˆ y i = 

N ∑ 

j=1 

f j ( x i ) .The

XGBoost makes improvement on objective optimization function

which is to optimize the loss function and complexity punish-

ment. We denoted the loss function and complexity punishment

as 
n ∑ 

i =1 

l( y i , ̂  y i ) and 

k ∑ 

k 

�( f k ) , respectively. 

For the XGBoost, the package ‘xgboost’ version 0.71.2 was used

for which we set each parameter was max_depth = 9, eta = 0.2863

and gamma = 0.0917. 

2.7. Support vector regression (SVR) 

SVR is one of the applications of Support-vector Machine (SVM).

SVM constructs a hyperplane in a high-dimensional space, which

can be used for classification and regression. Given the training

data {(x i , y i ), i = 1,2, . . . n}, where x was the independent variables

as the independent variables in the multiple linear regression and

y was SBP as well. The SVR developed an optimal function f(x) in

which the Lagrange multipliers were converged. 

f ( x ) = 

N ∑ 

i =1 

(
αi − α∗

i 

)
K 

(
x i , x j 

)
+ b, 

Where αi and αi 
∗ were the Lagrange multipliers, b was a con-

stant and K was the kernel function. In this study, we built the

SVR model by ‘e1071’ package with default parameters. 

2.8. Least absolute shrinkage and selection operator 

We also applied LASSO regression (least absolute shrinkage and

selection operator) which is a linear model with regularization.

LASSO is the technique to reduce model complexity and avoid

over-fitting in prediction model. We selected the β j parameters to

minimize the residual sum of squares: 
n ∑ 

i =1 

( β0 + 

K ∑ 

k = j 
βk x k,i − y i ) 

2 , 

In LASSO regression, we computed λ subject to minimize the

residual sum of squares: 
n ∑ 

i =1 

( β0 + 

K ∑ 

k =1 

βk x k,i − y i ) 
2 + λ

k ∑ 

k =1 

βk . 

2.9. Statistical result 

Continuous variables are presented as mean ± SD and categori-

cal variables as absolute frequencies and percentages (n, %). R 

2 was

applied to indicate how a model explains the variation in the de-

pendent variables. The root mean square error (RMSE) and mean

absolute error (MAE) were reported to measure the prediction er-

ror. 

RMSE = 

√ √ √ √ 

n ∑ 

i =1 

(
y i − ˆ y i 

)2 

n 

MAE = 

n ∑ 

i =1 

∣∣y i − ˆ y 
∣∣

n 

3. Results 

In this study, 200 and 48 maintenance HD patients containing

a total of 7,180 and 2,065 BP records were collected in the training

and test dataset, respectively. Among the individuals included in
raining dataset, the mean age was 62.9 ± 11.6 years, 48.5% were

ale, 45.5% were diabetic, and the mean dry body weight was 58.4

10.2 kilograms. The summary of demographic features and HD

ecords is shown in Table 1 . 

Table 2 presents R 

2 , RMSE and MAE of linear model, random

orest, XGBoost, SVR, LASSO and ensemble method on training and

esting datasets for predicting SBP. RMSE and MAE on the train-

ng dataset show the goodness-of-fit of the developed models and

MSE and MAE on the testing dataset show the performance of

he developed models. The ensemble prediction value was calcu-

ated by averaging the predictions from the above-mentioned al-

orithms. Linear model has the highest RMSE. However, we did

ot apply feature selection method in linear model. Therefore, we

dopt LASSO regression with regularization. Generally, the random

orest algorithm has better performance across training and test

atasets. However, XGBoost has the lowest MAE in training dataset

MAE = 1.29), but has the highest RMSE and MAE testing dataset. It

eans that XGBoost may encounter more serious overfitting prob-

em than other algorithms. The random forest algorithm has the

owest MAE in testing dataset compared with other algorithms ex-

ept ensemble method. Furthermore, we averaged prediction of

bove algorithms as ensemble prediction, we found the lowest

AE in testing dataset were calculated by ensemble method. 

Total data included 57 variables and Pearson coefficients be-

ween SBP and other variables are demonstrated in Figure 1 . We

nly presented top 10 most correlated variables in both positive

nd negative correlation and we found the top five most corre-

ated with SBP is the previous SBP record, the mean SBP of last

D session, first SBP record, the previous diastolic blood pressure

DBP) and the mean of DBP of last HD session. The top five vari-

bles were all positive correlation. Besides, the previous HD time,

t/V, the previous total UF and the previous pulse rate were neg-

tive correlated with SBP. However, the demographic features are

ess correlated with SBP than physiological and hemodialysis pa-

ameters. 

. Discussion 

In this study, we compared five machine learning models and

n ensemble method to predict SBP. Even though XGBoost had the

ighest R 

2 and smallest RMSE and MAE for the training dataset,

he RMSE and MAE for the testing dataset were the most impor-

ant for the purpose of constructing a predictive model as an early

arning system for use in clinical practice. Among these models,

he ensemble method (R 

2 = 0.50, RMSE = 16.01, MAE = 11.97) had the

est performance on testing dataset for next SBP prediction. 

The first important finding of this study is the performance of

achine learning algorithms for prediction of intradialytic BP. Our

esults demonstrated that the random forest algorithm had lower

MSE and MAE values in the testing dataset (16.24 and 12.14, re-

pectively) compared to the RMSE and MAE of XGBoost (17.65 and

3.47, respectively). The SVR method had an unsatisfied perfor-
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Figure 1. The correlation coefficients between systolic blood pressure and variables. 
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ance with RMSE and MAE values of 17.17 and 12.99, respectively.

inear regression model and LASSO had similar RMSE and MAE

alues to the random forest model, although ensembles of these al-

orithms slightly improved the performance of the models. In this

tudy, it is interesting that the linear model had a similar perfor-

ance to the LASSO method which decreased the coefficients of

ollinear covariates towards each other. It is possible that only a

ew important features were included in both models. Even though

e included many potential explanatory variables, the R 

2 for these

odels was only moderate. Furthermore, the performance of these

odels may be enhanced by incorporating laboratory indexes of

tudy patients. 

Even though the scientific technology and computer industry

rastically progress in the recent decades, prediction of IDH and

hanges in BP is still currently challenging for clinicians in HD pa-

ients. Previous studies have reported that dialysis machine-related

arameters, such as calcium and sodium concentrations in the

ialysate and the dialysate temperature, can play important roles

ffecting BP during HD [24-26] . However, in our machine learning

odels, the top five most highly correlated variables (previous SBP,

ean SBP of the last HD session, first SBP reading, previous DBP

eading and mean DBP in the last HD session) did not include any

ialysis machine-related parameter. Thus, HD machine-related pa-

ameter may affect BP during HD, but not as relevant as the level

f hemodynamic parameters affect. 

Of note, the most important predictor of the next SBP reading

uring HD in this study was the level of the previous SBP, followed

y mean SBP in the last HD session, first SBP reading, previous DBP

eading and mean DBP in the last HD session. Rapid plasma os-

olalilty changes [27] , body fluid removal [9,28] , electrolyte im-

alance [29,30] , and myocardial stunning [31] are interacting piv-

tal elements of hemodynamic instability during HD session. IDH

s potentially life-threatening, and preventive strategies for high-

isk patients must be developed. These strategies include avoid-

nce of aggressive UF volume and UF rate, UF and sodium mod-

ling to achieve the dry weights, controlling interdialytic weight

ain, cessation of long-acting vasodilators and pre-dialysis anti-
ypertensive drugs, and not eating during HD treatments [32,33] .

oreover, surveillance of cardiac etiologies of IDH, such as cardiac

rrhythmia, impaired systolic function, and coronary artery disease,

hould also be done. Modifying the routine HD schedule to longer

reatment duration and/or frequent HD treatments per week may

inimize the risk of IDH as well [34] . However, this is dependent

n whether the patient can tolerate the treatment. Chronic HD pa-

ients were generally unwilling to have extended or longer treat-

ent duration [35] . The balance of the consequences of IDH and

atients’ will could be possibly achieved in the future, though this

ind of machine-learning model to prediction of BP changes during

D. 

There are several limitations to this study. First, this is a ret-

ospective study, therefore it was difficult to elucidate the effects

f all clinical variables on intradialytic BP. In fact, the intelligent

ystem developed in this study showed an impressive accuracy in

redicting intradialytic changes in SBP. Further studies, however,

re needed to validate this intelligent system in more large-scaled

D patient population. Second, we could not assess the long-term

mpact of anti-hypertension medications on intradialytic BP. In this

ase, the medication may have had an effect on an HD session

ven if it was not taken on the day of dialysis. Third, we lacked

ata in regard to interventions and symptoms that may alter the

P, and these factors may confound our associations. Even though

e adjusted carefully for clinically relevant covariates and certain

stablished risk factors for IDH, residual confounding and/or un-

easured confounders may still exist. Fourth, this algorithm did

ot consider extracellular fluid status, bioimpedance information

nd cardiac performance of patients. Further studies are warranted

o include these important factors and develop more individual-

zed algorithm. Moreover, this retrospective study does not indi-

ate that in a prospective way the predictive value of this model

ill remain accurate and will improve clinical outcome. This con-

ept deserves further studies including refinement in modeling ap-

roach and prospective testing in real life. Finally, we used data

rom a single center to develop our prediction models, and thus

ur results may not be directly applicable to other patient groups.
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However, as the model performed well in the prediction for new

patients, suggesting that it should be probably applied in other HD

centers. 

5. Conclusion 

IDH is associated with significant signs and symptoms that re-

quire interventions. The frequency of IDH also has significant prog-

nostic implications. The prediction models using ensemble method

for intradialytic BP profiling may be able to assist the dialysis staff

or physicians in individualized care and providing prompt inter-

vention for patients’ safety and improvement of patient care . The

application of an intelligent early warning system of BP prediction

might be helpful for clinical decision-making, patients’ safety, and

reduction in frequency of IDH. Furthermore, the use of this kind

of prediction model to achieve BP-targeted outcomes and provide

insights into how to reduce the occurrence of intradialytic BP vari-

ability and its associated co-morbidities are worthy of further in-

vestigations. 
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