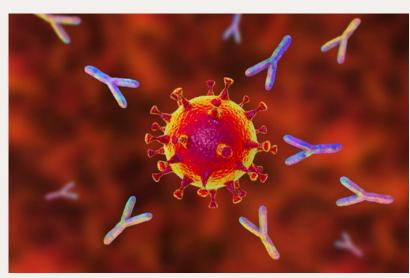

# ANTICORPOS MONOCLONAIS PARA TRATAMENTO DE INFECÇÕES VIRAIS



## Hibridoma

Para fabricação dos anticorpos monoclonais, é utilizada a técnica dos hibridomas, pois ela permite a fabricação em larga escala.


Essa técnica se baseia na fusão de uma célula B produtora de anticorpos com uma célula de mieloma - ou seja, célula de neoplasia dos linfócitos B, que permite que o clone se reproduza intensamente. Quando essas células são fusionadas, é gerado o hibridoma.

## Definição

Anticorpos monoclonais são um grupo de anticorpos específicos para uma única região do antígeno, o chamado epítopo, que não são produzidos naturalmente.

Sua produção ocorre em laboratórios com o princípio de reconhecerem o mesmo epítopo de um antígeno de interesse. Essa técnica foi descrita pela primeira vez em 1975 e rendeu um prêmio Nobel de Medicina aos pesquisadores César Milstein, Georges Kohler e Niels Kaj Jerne.

Atualmente esses anticorpos são muito usados contra doenças autoimunes, como tumores, leucemias, linfomas, lúpus, doenças inflamatórias intestinais, dermatites atópicas, entre outras.



**Figura 1:** Ilustração de anticorpos em forma de Y, parte da resposta imunológica humana que combate o vírus que causa COVID-19 [10].

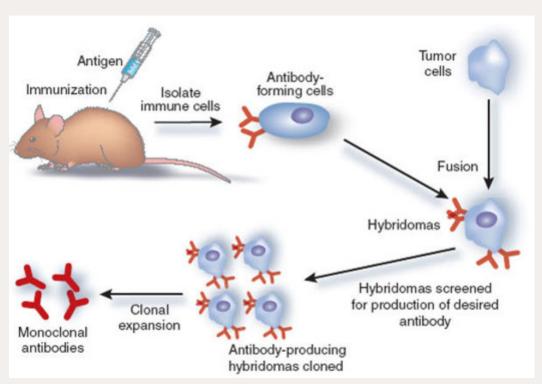


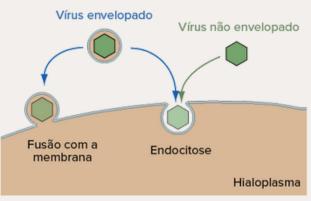

Figura 2: Visão geral da produção de anticorpos monoclonais [1].

O hibridoma é formado através das seguintes etapas:

- 1) Seleciona-se o antígeno de interesse, que é otimizado para produzir o anticorpo específico de interesse;
- 2) Esse antígeno é administrado em um animal hospedeiro, normalmente em ratos, para gerar resposta imune e induzir o animal a produzir anticorpos monoclonais através de suas células B;
- 3) As células B são isoladas no baço do animal e fusionadas com células de mieloma, gerando o hibridoma.

As etapas descritas podem ser melhor visualizadas no esquema da Figura 2.




# Aplicações práticas

Além de seu uso para doenças autoimunes, atualmente também se estuda seu uso para tratamento de infecções virais.

Os anticorpos monoclonais recombinantes são os tipos mais utilizados e atacam especificamente uma proteína que está presente nas células estranhas, estimulando melhorando а ação do sistema imunológico ou bloqueando proteínas específicas do capsídeo viral.

## Mecanismos contra vírus

A fusão das membranas virais e celulares é um modo básico de entrada para vírus envelopados, enquanto os vírus não envelopados penetram nas células por lise de uma membrana ou pela criação de uma estrutura semelhante a poros. Os anticorpos interferem na entrada dos vírus nas células através de diferentes mecanismos, tais como:



**Figura 3:** Ilustração dos mecanismos de entrada dos vírus envelopados e não envelopados [8].

- Inibição da capacidade de ligação do vírus a receptores da superfície celular, através da ligação do anticorpo à superfície do vírus. Também se consegue este efeito através de receptores alvo de anticorpos ou co-receptores tornando os locais de ligação dos vírus indisponíveis;
- Neutralização pós-ligação ou pré-fusão e interferência com as alterações conformacionais necessárias na membrana celular ou na membrana endossomal, por parte de anticorpos cujo alvo são regiões de ligação sem receptores.

## **Tratamentos**



Principais infecções em que os anticorpos monoclonais podem ser utilizados:

#### TOCILIZUMABE (Actera):

Anticorpo monoclonal humanizado, que possui a capacidade de se ligar às duas formas do receptor da interleucina 6 (IL-6R): a ligada à membrana e a solúvel.

COVID

#### SARILUMABE:

Anticorpo monoclonal completamente humano constituído por uma forma recombinante da imunoglobulina (Ig) G do subtipo 1. Inibição dos efeitos da IL-6 - liga-se ao receptor da citocina (maior afinidade com o receptor e menor probabilidade de reações alérgicas).

## ECULIZUMABE (Sorilis):

Anticorpo monoclonal humanizado - associação de anticorpos murinos e anticorpos humanos da classe IgG. Trata-se de uma antiproteína do complemento C5, age diminuindo os níveis séricos de C5a e, consequentemente, diminuindo a infiltração de células inflamatórias de forma exacerbada.

## LERONLIMABE:

Anticorpo monoclonal humanizado IgG4 que tem capacidade de se ligar ao C-C receptor de quimiocina tipo 5 (CCR5), receptor de quimiocina presente em células do sistema imune. Sendo assim, age diminuindo a ativação e migração das células imunológicas e, consequentemente a liberação de citocinas pró-inflamatórias no sítio da inflamação.

## IBALIZUMABE:

Anticorpo monoclonal que bloqueia CD4 (receptores presentes nos linfócitos). Utilizado na terapia antirretroviral, se liga ao receptor CD4 impedindo a ligação entre o vírus e o linfócito.. Apenas aprovado nos Estados Unidos (EUA) e na União Europeia (UE).



**EBOLA** 

HIV

## ATOLTIVIMABE/MAFTIVIMABE/ODESIVIMABE::

Coquetel de anticorpos que consiste em três anticorpos monoclonais totalmente humanos direcionados a três epítopos não sobrepostos de glicoproteínas do ebolavirus do Zaire. Esses anticorpos monoclonais se ligam simultaneamente à glicoproteína na superfície do vírus e bloqueiam a fixação e a entrada do vírus. Foi aprovado pela Food and Drug Administration (FDA) dos EUA para o tratamento da infecção por ebolavirus do Zaire em crianças e adultos.

## ANSUVIMABE::

Anticorpo monoclonal IgG1 humano direcionado à glicoproteína do ebolavirus do Zaire.

# Referências Bibliográficas

- [1] ABI-GHANEM, Daad; BERGHMAN, Luc. **Immunoaffinity Chromatography: A Review.** Affinity Chromatography, Chapter 5. Texas A&M University, mar/2012. DOI: 10.5772/35871.
- [2] Anticorpos Monoclonais: Uma nova forma de combater o câncer. Recepta bio, 2021. Disponível em: <a href="http://www.receptabio.com.br/pesquisa-desenvolvimento/anticorpos-monoclonais-recepta-detem-potencial-para-tratar-diversos-tipos-de-cancer/">http://www.receptabio.com.br/pesquisa-desenvolvimento/anticorpos-monoclonais-recepta-detem-potencial-para-tratar-diversos-tipos-de-cancer/</a>. Acesso em: 23, nov. de 2021.
- [3] **BMJ Best Practice. Infecção pelo vírus Ebola: novos tratamentos**. Disponível em: <a href="https://bestpractice.bmj.com/topics/pt-br/1210/emergingtxs">https://bestpractice.bmj.com/topics/pt-br/1210/emergingtxs</a>.
- [4] COELHO, João Tomás Albuquerque. **Anticorpos monoclonais**. 2014. Tese de Doutorado. [sn].
- [5] COSTA, F. **Anticorpos monoclonais: o que são, tipos e para que servem**. Tua Saúde, 2021. Disponível em: <a href="https://www.tuasaude.com/anticorpos-monoclonais/">https://www.tuasaude.com/anticorpos-monoclonais/</a>
- [6] LEÃO, Carlos. **Tratamento do HIV: Anticorpos em alta!.** Dr. Carlos Leão, 2021. Disponível em: <a href="https://www.drcarlosleao.com.br/os-anticorpos-em-alta/">https://www.drcarlosleao.com.br/os-anticorpos-em-alta/</a>. Acesso em: 24, nov de 2021.
- [7] MARASCO, Wayne A.; SUI, Jianhua. **The growth and potential of human antiviral monoclonal antibody therapeutics**. Nature biotechnology, v. 25, n. 12, p. 1421-1434, 2007.
- [8] Introdução aos vírus (artigo). Khan Academy. Atualizado em 10 de maio de 2016. Disponível em: <a href="https://pt.khanacademy.org/science/biology/biology-of-viruses/virus-biology/a/intro-to-viruses">https://pt.khanacademy.org/science/biology/biology-of-viruses/virus-biology/a/intro-to-viruses</a>.
- [9] SILVA, D. L.; MAIA, D. C. G.; BACHUR, T. P. R.; ARAGÃO, G. F. **Uso de fármacos anticorpos monoclonais, imunomoduladores e anti-inflamatórios no tratamento da infecção por COVID-19.** Sociedade Brasileira de Clínica Médica, 2020. Disponível em: <a href="https://www.sbcm.org.br/ojs3/index.php/rsbcm/article/view/733/399">https://www.sbcm.org.br/ojs3/index.php/rsbcm/article/view/733/399</a>>
- [10] OHSU News. **OHSU investigating lab-made antibodies to treat COVID-19 in clinical trial**. Disponível em: <a href="https://news.ohsu.edu/2020/10/12/ohsu-investigating-lab-made-antibodies-to-treat-covid-19-in-clinical-trial">https://news.ohsu.edu/2020/10/12/ohsu-investigating-lab-made-antibodies-to-treat-covid-19-in-clinical-trial</a>